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Abstract. UML and OCL are frequently employed languages in model-based
engineering. OCL is supported by a variety of design and analysis tools having
different scopes, aims and technological corner stones. The spectrum ranges from
treating issues concerning formal proof techniques to testing approaches, from
validation to verification, and from logic programming and rewriting to SAT-
based technology.
This paper presents steps towards a well-founded benchmark for assessing UML
and OCL validation and verification techniques. It puts forward a set of UML
and OCL models together with particular questions centered around OCL and
the notions consistency, independence, consequences, and reachability. Further-
more aspects of integer arithmetic and aggregations functions (in the spirit of
SQL functions as COUNT or SUM) are discussed. The claim of the paper is not
to present a complete benchmark. It is intended to continue the development of
further UML and OCL models and accompanying questions within the modeling
community having the aim to obtain an overall accepted benchmark.
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1 Introduction

Model-driven engineering (MDE) as a paradigm for software development is gaining
more and more importance. Models and model transformations are central notions in
modeling languages like UML, SysML, or EMF and transformation languages like
QVT or ATL. In these approaches, the Object Constraint Language (OCL) can be em-
ployed for expressing constraints and operations and therefore OCL plays a central role
in MDE.

A variety of OCL tools and verification/validation/testing techniques around OCL
are currently available (e.g. [16], [22], [10], [14], [6, 15], [4], [2], [1], [19], [3], [11],
[23], [21], [17], [8], [9]) but it is an open issue how to compare such tools and sup-
port developers in choosing the OCL tool most appropriate for their project. In many
other areas of computer science this comparison is performed by evaluating the tools
over a set of standardized benchmark able to provide a somewhat fair comparison envi-
ronment. Unfortunately, such benchmarks are largely missing for UML and practically
inexistent for OCL.



In this sense, this paper continues the initial proposal of a set of UML/OCL bench-
marks [13] and puts forward a couple of complementary benchmark models and a few
ideas to encourage the community to have an active participation in this benchmark
creation and acceptance process. The two new scenarios focus on integer arithmetic
(area that has a significant effect on the tool efficiency depending on the underlying
formalism used in the reasoning tasks) and large models with heavy use of aggregated
functions, a topic for which the OCL language itself has limited coverage [7].

The structure of the rest of this paper is as follows. The next section gives a short
introduction to OCL. Section 3 reviews the initial set of models in our benchmark.
Section 4 puts forward additional benchmark models while Section 5 discusses possible
actions to take to further extend the benchmark. The paper is finished in Sect. 6 with
concluding remarks.

2 OCL in a nutshell

The Object Constrains Language (OCL) is a textual, descriptive expression language.
OCL is side effect free and is mainly used for phrasing constraints and queries in object-
oriented models. Most OCL expressions rely on a class model which is expressed in a
graphical modeling language like UML, MOF or EMF. The central concepts in OCL
are objects, object navigation, collections, collection operations and boolean-valued ex-
pressions, i.e., formulas. Let us consider these concepts in connection with the object
diagram in Fig. 1 which belongs to the class diagram in Fig. 2. This class diagram

Fig. 1. Object Diagram for WR

captures part of the submission and reviewing process of conference papers. The class
diagram defines classes with attributes (and operations, not used in this example) and
associations with roles and multiplicities which restrict the number of possible con-
nected objects.

Objects: An OCL expression will often begin with an object literal or an object vari-
able. For the system state represented in the object diagram, one can use the objects



Fig. 2. Class Diagram for WR

ada,bob,cyd of type Researcher and sub_17,sub_18 of type Paper.
Furthermore variables like p:Paper and r:Researcher can be employed.

Object navigation: Object navigation is realized by using role names from associa-
tions (or object-valued attributes, not occurring in this example) which are applied
to objects or object collections. In the example, the following navigation expres-
sions can be stated. The first line(s) shows the OCL expression and the last line the
evaluation result and the type of the expression and the result.

bob.manuscript
sub_17 : Paper

bob.manuscript.referee
Set{ada} : Set(Researcher)

cyd.manuscript.referee.manuscript.referee
Bag{ada} : Bag(Researcher)

sub_17.author->union(sub_17.referee)
Set{ada,bob} : Set(Researcher)

Collections: Collections can be employed in OCL to merge different elements into a
single structure containing the elements. There are four collection kinds: sets, bags,
sequences and ordered sets. Sets and ordered sets can contain an elements at most
once, whereas bags and sequences may contain an element more than once. In sets
and bags the element order is insignificant, whereas sequences and ordered sets are
sensitive to the element order. For a given class, the operation allInstances yields
the set of current objects in the class.



Paper.allInstances
Set{sub_17,sub_18} : Set(Paper)

let P=Paper.allInstances in P.referee->union(P.author)
Bag{ada,bob,bob,cyd} : Bag(Researcher)

Paper.allInstances->sortedBy(p|p.wordCount)
Sequence{sub_18,sub_17} : Sequence(Paper)

Sequence{bob,ada,bob,cyd,ada}->asOrderedSet
OrderedSet{bob,ada,cyd} : OrderedSet(Researcher)

Collection operations: There is a number of collection operations which contribute
essentially to the expressibility of OCL and which are applied with the ar-
row operator. Among further operations, collections can be tested on emptiness
(isEmpty, notEmpty), the number of elements can be determined (size),
the elements can be filtered (select, reject), elements can be mapped to a
different item (collect) or can be sorted(sortedBy), set-theoretic operations
may be employed (union, intersection), and collections can be converted
into other collection kinds (asSet, asBag, asSequence, asOrderdSet).
Above, we have already used the collection operations union, sortedBy, and
asOrderedSet.

Paper.allInstances->isEmpty
false : Boolean

Researcher.allInstances->size
3 : Integer

Researcher.allInstances->select(r | not r.isStudent)
Set{ada,cyd} : Set(Researcher)

Paper.allInstances->reject(p | p.studentPaper)
Set{sub_17} : Set(Paper)

Paper.allInstances->collect(p | p.author.name)
Bag{’Bob’,’cyd’} : Bag(String)

Boolean-valued expressions: Because OCL is a constraint language, boolean expres-
sions which formalize model properties play a central role. Apart from typical
boolean connectives (and, or, not, =, implies, xor), universal and existen-
tial quantification are available (forAll, exists).

Researcher.allInstances->forAll(r,s |
r<>s implies r.name<>s.name)

true : Boolean

Paper.allInstances->exists(p |
p.studentPaper and p.wordCount>4242)

false : Boolean



Boolean expressions are frequently used to describe class invariants and operation
pre- and postconditions.

3 Previous benchmarks

The previous benchmark posed general questions that concerned the validation and
verification of properties in UML and OCL models. The questions came hand in hand
with precise models in which the questions were made concrete. Questions were given
names in order to reference them. The following questions were stated:

ConsistentInvariants: Is the model consistent? Is there at least one object diagram
satisfying the UML class model and the explicit OCL invariants?

Independence: Are the invariants independent? Is there an invariant which is a conse-
quence of the conditions imposed by the UML class model and the other invariants?

Consequences: Is it possible to show that a stated new property is a consequence of
the given model?

LargeState: Is it possible to automatically build valid object diagrams in a parameter-
ized way with a medium-sized number of objects, e.g. 10 to 30 objects and appro-
priate links, where all attributes take meaningful values and all links are established
in a meaningful way? These larger object diagrams are intended to explain the used
model elements (like classes, attributes and associations) and the constraints upon
them by non-trivial, meaningful examples to domain experts not necessarily famil-
iar with formal modeling techniques.

InstantiateNonemptyClass: Can the model be instantiated with non-empty popula-
tions for all classes?

InstantiateNonemptyAssoc: Can the model be instantiated with non-empty popula-
tions for all classes and all associations?

InstantiateDisjointInheritance: Can all classes be populated in presence of UML
generalization constraints like disjoint or complete?

InstantiateMultipleInheritance: Can all classes be populated in presence of multiple
inheritance?

ObjectRepresentsInteger: Given a representation of the integers in terms of a UML
class model where an integer is captured as a connected component in an object
diagram. Is it true that any connected component of a valid object diagram either
corresponds to the term zero or to a term of the form succn(zero) with n > 0 or
to a term of the form predn(zero)?

IntegerRepresentsObject: Is it true that any term of the form zero or of the form
succn(zero) or of the form predn(zero) corresponds to a valid object diagram for
the model?

The concrete four UML and OCL models models that were used to make the ques-
tions precise were: CivilStatus (CS) [see Fig. 3], WritesReviews (WR) [see Fig. 2],
DisjointSubclasses (DS) [see Fig. 4], and ObjectsAsIntegers (OAI) [see Fig. 5]. All
details can be found in [13].



Fig. 3. Class Diagram for CS

Fig. 4. Class Diagram for DS

4 Additional benchmarks

The two new benchmarks described in this section complement the old benchmarks
with regard to the use of integer arithmetic and the construction of larger models for
which aggregate functions (in the sense of SQL functions as count or min) are needed.

4.1 Integer arithmetic

As indicated in Fig. 6, for the integer arithmetic benchmark the respective class diagram
only has one class with three integer attributes a, b, and c. Basically in this benchmark



Fig. 5. Class Diagram for OAI

Fig. 6. Integer arithmetic benchmark

solutions for the equation a = b op c have to be found. The operator op is one of
the basic OCL integer operators +, -, *, div. Exactly one of the four invariants
from the lower left of Fig. 6 will be active.



The benchmark asks for the construction of a number of C objects (in the example
exactly 31) in which the respective operator invariant is valid. The other two invariants
guarantee that the solutions in the found C objects are mutually distinct solutions, i.e.,
each solution appears only once.

We have used this benchmark to compare the efficiency of different SAT solvers that
can be employed for the model validator available in the USE tool. The different SAT
solvers (SAT4J, LightSAT4J, MiniSat, MiniSatProver) available under Windows show
significantly different performance under this benchmark. Another instantiation of the
benchmark for available SAT solvers under Linux confirmed the observations made for
Windows.

4.2 Larger model with aggregation functions

The second new benchmark handles global invariants restricting many classes and
concerns the construction of object diagrams for a State-Distict-Community world as
shown in Fig. 7. States consist of districts that in turn consist of communities. Indi-

Fig. 7. Class diagram for State-District

vidual persons with four statistical attributes (female, young, degree, married) live in
communities. The task is to construct an object diagram where in each geographical
area (State, District, Community) the statistical distribution of the attributes follows the
percentages (Pc) stated in the Config object.



Fig. 8. Object diagram for Country-District



An example object diagram is presented in Fig. 8. For example, there the Config
object requires that in each state, district and community the percentage of young peo-
ple lies between 25% and 75% (minPcYoung and maxPcYoung). This example object
diagram used 2 states, 3 districts, and 4 communities. The number of Person objects is
also stated in the Config object.

The underlying invariants concern the three geographical areas and the four statisti-
cal attributes. The invariants also include a decent degree of integer arithmetic in order
to restrict the statistical distribution of the attributes correctly. It took the USE model
validator about 6 minutes to construct the example object diagram. This benchmark is
well-suited for comparing the abilities of a UML and OCL analysis tool with regard to
global constraints, integer arithmetic and the construction of middle-sized object dia-
grams.

5 Community Roadmap

Completing the benchmark is not something we can do on our own. And we shouldn’t
either. The next subsections discuss three different community-driven actions to bring
our proposal closer to reality.

5.1 Improving Benchmark Coverage

Our initial collection of benchmark models covers already a good number of interesting
OCL expressions and scenarios but it is far from being complete. Speaking generally,
for an OCL tool there are challenges in two dimensions: (a) challenges related to the
expressiveness of OCL (i.e., the complete and accurate handling of OCL) and (b) chal-
lenges related to the computational complexity of the evaluating OCL for a given prob-
lem (verification, testing, code-generation,...).

Therefore, beyond increasing the number of benchmark models, we also require
several variations of the same model, e.g. in terms of size and specific constructs used
in the OCL constraints, to be part of the benchmark and improve this way it’s coverage.
And each of these variations can be decomposed in a number of subvariations that are
relevant too. For instance, wrt size variations, we can increase a model by adding more
classes, more attributes per class, increasing its density (number of associations between
classes), the number of constraints, or all of them at the same time. Some underlying
formalisms are more sensitive than others to some of these variations so fair evaluations
would require to play with all these extension variables.

This could easily lead to a combinatorial explosion. Still, based on our own expe-
rience we believe that at least the following scenarios should be added to our current
collection of benchmark models:

1. Models with tractable constraints, i.e., constraints that can be solved ‘trivially’ by
simple propagation steps.

2. Models with hard, non-tractable constraints, e.g., representations of NP-hard prob-
lems.

3. Unsatisfiable models, i.e. models that cannot be even instantiated in way that all
constraints are satisfied.



4. Highly symmetric problems, i.e., that require symmetry breaking to efficiently de-
tect unsatisfiability.

5. Intensive use of Real arithmetic.
6. Intensive use of String values and operations on strings. So far, String attributes are

mostly ignored [5] or simply regarded as integers which prohibits the verification
of OCL expressions including String operations other than equality and inequality.

7. Many redundant constraints: is the approach able to detect the redundancies and
benefit from them to speed up the evaluation?

8. Sparse models: instances with comparably few links offer optimization opportuni-
ties that could be exploited by tools.

9. Support for recursive operations, e.g. in form of fixpoint detection or static unfold-
ing.

10. Intensive use of the ‘full’ semantic of OCL (like the undefined value or collection
semantics); this poses a challenge for the lifting to two-valued logics.

Recent research developments (e.g. [20]) could be enhanced to deal with OCL ex-
pressions and be employed to automatically generate some of these benchmark models,
specially variations in size or density given a “seed” model. Nevertheless, making an
effort to find and contribute industrial models is still key to make sure that tools face
realistic models.

5.2 OCL repository

The easiest way to share and contribute models to a common benchmark is by storing
them all in a single repository. This is not a new idea, several initiatives like MDEForge
[18] or ReMODD [12] have been proposed before but with limited success, mainly
due to their ambitious goal: a repository for all kinds of models (and other modeling
artifacts) in any format, shape or size.

We aim for a less ambitious but more feasible goal, a repository for OCL-focused
models. Being a textual language, the standard infrastructure for code hosting ser-
vices/version control systems can be largely reused. We still need to store the models
accompanying those OCL expressions but, in our scenario, they are basically only UML
models and, mostly, limited to class diagrams which simplifies a lot their management.

Nowadays, the online coding platform GitHub (with over 30 million hosted
projects) is the only reasonable choice to host such repository since it offers all the func-
tionality we need and it is very well-known which reduces the entry barrier of possible
contributors that are not forced to invest time learning a new environment. Therefore
we have initialized our OCL repository there 4 and added some basic instructions on
how to contribute new UML/OCL models there.

5.3 OCL competitions

Competition is in our blood. Therefore, one way to increase awareness on the bench-
mark is to organize yearly competitions of OCL tools where tool vendors evaluate their
tools against each other by executing them on the same set of benchmark models.

4 https://github.com/jcabot/ocl-repository

https://github.com/jcabot/ocl-repository


This format is very successful in the SAT community (e.g. see 5) where winning a
competition is considered a very prestigious achievement for a SAT solver and there-
fore something that vendors/researchers strive for. In the MDE community we have the
successful example of the Tool Transformation Contest6, focusing on comparing the
expressiveness, usability and performance of transformation tools to get a deeper un-
derstanding of their relative merits and identify open problems. We propose to replicate
these successes in the OCL community

Typically, competitions are organized in different tracks depending on the properties
we want to measure and, more importantly, include an initial call for problems / case
studies to use in the competition itself. These proposals are perfect candidates to extend
our benchmark.

6 Conclusions

This paper emphasizes the increasing need for a reliable set of OCL Benchmarks that
can be used to consistently evaluate and compare OCL tools. We believe such bench-
marks would encourage the development of new OCL tools (that now would have a way
to evaluate their progress and contrast it against more established tools and a chance to
distinguish themselves by focusing on those aspects where others may be failing) and
increase the user base of OCL and other similar languages since users would be more
confident on the tools’ capabilities.

This is still work in progress, and thus, we have also outlined how the community
as a whole should (and could) push forward these ideas by, for instance, contributing
to a common repository or organizing and participating in specific events on this topic.
We hope to see these actions taking place in a near future.
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