
An Approach to Employ Modeling in a
Traditional Computer Science Curriculum

or: Why Posing Essentials of the
Object Constraint Language without Objects and Constraints?

Martin Gogolla
University of Bremen

Database Systems Group
Bibliothekstr. 1

D-28334 Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract—This paper has two purposes: first, it discusses one
approach that shows how modeling and in particular information
systems modeling techniques are employed within a traditional
computer science curriculum, and second, it explains and recapit-
ulates essential concepts of a contemporary modeling language
in a conventional style without stressing modern concepts. In
the second part the paper focuses on the Object Constraint
Language (OCL) without using objects and constraints. We use
this as an example to explain how to summarize taught concepts
in a good way. Experience on teaching modeling is constantly
gained in three lectures on a basic, advanced, and specialized
level, and roughly speaking, the three lectures introduce and
concentrate on (1) syntax, (2) semantics, and (3) metamodeling
of modeling techniques.

I. INTRODUCTION

The employment of modeling languages as the Unified
Modeling Language (UML) [1, 2] and partly also the Object
Constraint Language (OCL) [3, 4] during undergraduate and
graduate Computer Science (CS) courses has been becoming
a must nowadays. However, the position and importance
of modeling languages in comparison to say, programming
languages, widely differs.

This contribution is formulated from a perspective of a
teacher that is involved in three main university courses:
Database Basics (for the 2nd semester), Database Systems (for
the 5th semester), and Design of Information Systems (for the
6th semester and higher). We have decided that each single
course chooses a particular motto and concentrates teaching
around that motto. The three mottos are: syntax, semantics,
metamodeling.

Naturally, one cannot only teach the syntax of a language
without explaining the evaluation, and thereby one will explain
certain aspects of the semantics. However, the focus for the
Database Basics course is on syntax, the core of the Database
Systems course handles semantics, and in the center of the
Design of Information Systems course is metamodeling. In
our view, metamodeling is able to combine syntactical and
semantical aspects in a formal, but yet comprehensible way.
One can build metamodels for the syntax and by employing
that one can construct metamodels covering semantics. The

categorization is not meant as a disjoint and exclusive catego-
rization. So even elements from metamodeling may be shortly
discussed during the Database Basics course, however in a
very narrow setting, for example, when discussing the database
catalogue.

When we are using the term ‘traditional CS curriculum’
we are referring to the fact that our curriculum was initiated
by the end of the 1970 years and takes a view on software
development that is ‘code-centered’ and that emphasizes the
responsibilities that IT professionals have in respecting the so-
ciety’s demands. It has been reformed several times since then.
However the reformations have been triggered, e.g., by practi-
cal questions around study organization, by changing profiles
of study entrants or by the development of technology (e.g.,
the world wide web), but definitively not by considerations to
give the curriculum a ‘model-centered’ character. The view on
modeling, in particular, formal modeling, widely differs among
members of our teaching team. Thus, the teachers supporting
modeling try to inject as far as possible modeling principles
and approaches disputing always with the more code-oriented
representatives.

The work here has connections to related approaches. Our
curriculum takes up central requirements from [5, 6] for the
involvement of UML into our information system courses
as far as the current situation in our department allows it.
In all our courses we employ our UML and OCL design
tool USE (Uml-based Specification Environment) [7] that
gives direct feedback to course participants, in particular for
the evaluation of OCL expressions in complex UML class
diagrams. Our examples all obey the modeling principles [8]
that we have developed earlier. Our approach emphasizes
direct involvement of a formal tool with fast feedback steps
and tries to minimize the gap between informal and formal
modeling that was discussed in [9]. The approach [10] where
new technologies as, e.g., smart phone apps are envisioned
for course tests and that proposes an incorporation of social
media into courses, seems to be good approach to reduce the
distance between traditional and modeling-oriented approaches
to teaching CS basics.

1

II. TEACHING SYNTAX, SEMANTICS, AND METAMODELS
OF INFORMATION SYSTEM MODELS

As we have stated before, our experience relies on three
major courses: (1) Database Basics (2nd semester, Bachelor
degree, 2 lecture hours + 1 exercise hour, 4 ECTS, up to
250 participants), (2) Database Systems (5th semester, Bach-
elor degree, 4+2, 8 ECTS, up to 90 participants), (3) Design
of Information Systems (6th semester and higher, Bachelor or
Master degree, 4+2, 8 ECTS, up to 40 participants). The motto
of each single course is (in the above order): syntax, semantics,
metamodeling of information systems. These mottos are not
meant to be exclusive or disjoint, but indicate the focal point
of the respective course.

• In the Database Basics course the syntax of UML class
diagrams (which is first taught in a different, accompany-
ing software engineering course) is shortly recapitulated.
Then the transformation into SQL Relational database
schemata emphasizing the SQL options and the general
need for database integrity is discussed. Integrity is
handled in form of primary key, foreign key and check
constraints. A large part of the course is devoted to
SQL expressions as they are employed in SQL queries,
data manipulation statements, view definitions, and check
constraints. The students need to employ and practically
apply the forwarded know-how in a two-semester Java
development project. Thus the emphasis in the course is
on practically applying SQL, and thus the focus is on
the SQL syntax and an informal understanding of the
constructs.

• In the Database Systems course an in-depth discussion of
current and partly past data models is given: ER diagrams,
UML class diagrams, object-oriented data models, the
Relational data model (including Relational database the-
ory with normal forms) and variations of the Relational
model in form of non-first-normal-form approaches are
discussed in a detailed way or are shortly sketched, as
appropriate. For all data models the interpretation of
schemata through database states, i.e., the semantics of
schemata is put forward. The students need to thoroughly
understand the differences between the data models, and
thus the focus is on the schema semantics determined by
the database states.

• The Design of Information Systems course concentrates
on UML, OCL and our tool USE. UML class diagram
concepts such as aggregation and composition or gener-
alization constraints such as {overlapping, disjoint} and
{incomplete, complete} are put forward in detail. The
concepts are explained and their differences in terms of
object diagrams are discussed with the help of OCL.
The OCL syntax and the semantics of expressions and
constraints is treated.
In the last part the course treats metamodels. Therefore, a
larger example for a UML and OCL model is introduced
for the handling of the Entity-Relationship (ER) and
Relational data model and their transformation on the

schema and state level. A formal transformation between
ER and the Relational schemata respecting also semantic
properties is put forward. This means that metamodels
are used heavily, also transformation metamodels. In
a nutshell, the ER syntax metamodel introduces the
classes ErSchema, Entity, Relationship, Relationship end,
Attribute, and Datatype. The ER semantic metamodel
treats for each syntactic class a semantic class (in the
mentioned order): ErState, Instance, Link, Relationship
end map, Attribute map, and Value. The Relational syntax
metamodel uses the classes Relational database schema,
Relational schema, and again Attribute and Datatype.
The Relational semantic metamodel interprets the syn-
tactic classes through introducing classes for Relational
database states, Tuples, and employing again Attribute
maps and Values. The connection between syntax and
semantics is formally done in the metamodel with asso-
ciations. The transformation metamodel concentrates on
transformation correctness constraints that are attached to
a Transformation class.
Apart from getting deep and fundamental insights into
modeling languages as UML or OCL and into past and
present data models, the students are prepared during
this course for a thesis, either in the Bachelor or Master
degree.

The three mottos, in the mentioned order syntax, semantics,
metamodeling, seem natural, at least to us. In order to learn
and apply a language you first have to know the basic rules
how to arrange units to build sentences in the language. You
must know the fundamental syntactical rules. In order to pose
meaningful language units you have to understand what you
are saying or writing, and thus semantical considerations come
into play. By learning the language to a larger extent you
will enlarge your knowledge with respect to the available
syntactical options and thus you have to get aware of more
semantical colors and shades. In the last step you may want
to contemplate about the language as a whole with all its
facets, let it be syntactical or semantical, and you may end
up in thinking about and describing syntax and semantics in
a uniform and systematic way.

Another is aspect is the question why we decided to con-
centrate on the mottos and to divide teaching the information
system field into these aspects. Teaching on different levels,
i.e., basic, advanced and specialized, requires to subdivide
the contents into manageable units. One criterion could go
along the languages (SQL Data Definition Language, SQL
Data Manipulation Language, UML, OCL, etc.). But this does
not work in our curriculum, because basic knowledge about
UML and SQL DDL is required already at the end of the first
study year. Therefore we have chosen the three mottos which
are orthogonal to the language dimension.

III. AN EXAMPLE FOR CONTENT SUMMARIES:
OCL WITHOUT OBJECTS AND CONSTRAINTS

As one important ingredient of a course we want to discuss
how to compile good summaries of taught content. Apart from

2

Constructors and `destructors'
- Set{7,8}, Bag{7,8,8}, Sequence{7,8,7}, OrderedSet{8,7,7}
- Set{}, Bag{}, Sequence{}, OrderedSet{}
- Set{7..9}, Bag{7..9}, Sequence{7..9}, OrderedSet{7..9}
- Set{}->including(8)->including(7), Bag{8,9,7,8,9}->excluding(9)
Basic boolean and integer query operations
- Set{7,8}=Set{8,7,8,7}, OrderedSet{7,8}<>OrderedSet{8,7}
 Set{7,8}<>Bag{7,8}, OrderedSet{7,8}<>Sequence{8,7}
- Set{7,8}->includes(8), Set{7,8}->excludes(9),
 Set{7,8}->includesAll(Set{8,8,7,7}), Set{7,8}->excludesAll(Set{6,9})
- Set{}->isEmpty(), Set{7,8}->notEmpty(), Set{8,8,7,7}->size()=2
 Set{7,8,7}->count(7), Bag{7,8,7}->count(7)
 Sequence{7,8,7}->count(7), OrderedSet{7,8,7}->count(7)
Advanced boolean query operations
- Set{7..9}->forAll(i|i>=0), Bag{7..9}->exists(i|i.mod(2)=0)
- Sequence{7..9}->one(i|i.mod(2)=0)
- OrderedSet{-9..-8}->including(8)->including(9)->isUnique(i|i*i)=false
Advanced collection-valued query operations
- Set{21..42}->select(i|i.mod(3)=0 and i.mod(7)=0)
- Bag{21..42}->reject(i|i.mod(2)=0 or i.mod(3)=0)
- Set{21..42}->any(i|i.mod(2)=1)
- Set{7,8,8}->union(Set{9,9,8}), Bag{7,8,8}->union(Bag{9,9,8})
 Sequence{7,8,8}->union(Sequence{9,9,8})
 OrderedSet{7,8,8}->union(OrderedSet{9,9,8})
- Set{-2..2}->collect(i|i*i), Set{-2..2}->collect(i|Sequence{i,i*i})
 Set{-2..2}->collectNested(i|Sequence{i,i*i})
- Set{-2..2}->collectNested(i|Sequence{i,i*i})->flatten()
- Set{-6,-5,-4,7,8,9}->sortedBy(i|i*i)
Complex query operations
- Set{-2..2}->iterate(i:Integer;r:Set(Sequence(OclAny))=Set{}|
 r->including(Sequence{i,i*i,if i.mod(2)=0 then 'E' else 'O' endif}))
- Capitals: M[adrid], P[aris], A[msterdam], B[erlin], Z[urich], V[ienna]
 let TupleSet=
 Set{Tuple{s:'M',t:'P'},Tuple{s:'P',t:'A'},Tuple{s:'A',t:'B'},
 Tuple{s:'M',t:'Z'},Tuple{s:'Z',t:'V'},Tuple{t:'B',s:'V'}} in
 TupleSet->closure(T1|
 TupleSet->select(T2|T1.t=T2.s)->
 collect(T2|Tuple{s:T1.s,t:T2.t})->
 asSet())
 +-------------+
 | select = |
 Tuple{T1.s,T1.t} Tuple{T2.s,T2.t}
 | collect |
 +-----------------------+
Coercions
- Sequence{8,7,8}->asSet()=Set{8,7}
- OrderedSet{8,7,8}->asBag()=Bag{8,7}
- Set{7,8}->asSequence()=Sequence{8,7}
 or Set{7,8}->asSequence()=Sequence{7,8}
- Bag{8,8,7,7}->asOrderedSet()=OrderedSet{7,8}
 or Bag{8,8,7,7}->asOrderedSet()=OrderedSet{8,7}
- Set{-2..2}->collect(i|i*i)->asSet()

3Fig. 1. Example OCL expressions showing OCL essentials avoiding objects.

3

| order independent | order dependent
----------------------+--------------------+----------------
frequency independent | Set(T) | OrderedSet(T)
frequency dependent | Bag(T) | Sequence(T)

| |
--------------+-------------------+----------------------
Set(T) | order independent | frequency independent
OrderedSet(T) | order dependent | frequency independent
Bag(T) | order independent | frequency dependent
Sequence(T) | order dependent | frequency dependent

Fig. 2. OCL collection kind properties.

mentioning all taught concepts in an easy understandable and
appreciable form, we find it helpful to present a fresh view
on the content. We try to avoid to only repeat already known
material. A summary is intended as a help for students in
preparing the examination, understanding the technical content
and help to bring it up during the examination, let it be written
or oral. The summary should have a clear structure helping
to identify the central structural items. We try to obey this
principle in all courses.

• For the Database Basics course, for example, a plain
alphabetical list of SQL keywords is stated within an ex-
ercise asking the students to structure the list along com-
mon areas into which the keywords belong. The struc-
ture is asked to go along essential SQL query concepts
using ‘select-from-where-groupBy-having-orderBy’, es-
sential SQL logical connective concepts using ’and-or-
not’, essential SQL subquery concepts ‘exists-in-any-all’,
essential SQL join concepts following join formulation
‘natural-on-using’ and join handling of null values ‘inner-
fullOuter-leftOuter-rightOuter’, or SQL data manipula-
tion commands ‘insert-update-delete’ (among other struc-
ture items).

• For the Database Systems course, for example, an ASCII-
like syntax for basic and derived Relational algebra op-
erations (product, union, difference, selection, projection,
renaming; natural join, equi-join, theta join, intersection,
division) is stated. The Relational algebra operations
have been discussed before in set-theoretic, mathematical
notation. In addition an implementation of the respective
operations in SQL is pointed out.

• For the Design of Information Systems course, for exam-
ple, essential concepts of OCL expressions are explained
employing only values without using objects at all. This
emphasizes in OCL the expression aspect and of course
neglects the constraint aspect which is summarized at a
different spot. Neglecting objects and constraints and con-
centrating on the expression character of OCL establishes
a connection between OCL and general programming
languages. It demonstrates that OCL expressions could be
used inside a programming language, of course under the
assumption that appropriate collection types are available

in the programming language.
Thereby we try to minimize the gap between program-
ming and modeling. This also has the aim to bring the
modeling-oriented way of teaching CS in a curriculum
closer to the traditional, code-oriented way of teaching.
It shows that on the technical basis both ways of teaching
have transport similar and comparable technical content.
The OCL summary in Fig. 1 is structured along a clas-
sification of OCL collection operations: constructors and
‘destructors’, basic boolean and integer query operations,
advanced boolean query operations, advanced collection-
valued query operations, complex query operation, coer-
cions.
All expressions can be evaluated without having a class
diagram available. Usually it is said that OCL can only
be employed meaningfully within the context of a class
diagram, and the concrete evaluation is then done within
an object diagram. This summary demonstrates that this
is not the case. The summary shows all central collection
operations that are available for all collection kinds. It
does not show the few collection operations that are
defined only on particular collection kinds as for example
first or last that can be defined only on Sequence
and OrderedSet.

All expressions can be evaluated in the UML and OCL
tool USE [8] that is employed in our courses. The tool gives
direct feedback to course participants for their exercises and is
used in the classroom to demonstrate principle and enhanced
aspects of example models.

The OCL collection kinds Set(T), Bag(T), Seq(T),
Ord(T) (we abbreviate Sequence by Seq and
OrderedSet by Ord) together with their abstract superclass
Collection(T) can be characterized independently
from objects by two algebraic, abstract laws that express
fundamental properties of collection kinds through stating
equalities between constructor terms.

• Set(T) and Bag(T) are insertion order independent by
obeying:
C->including(E1)->including(E2) =
C->including(E2)->including(E1)

Seq(T) and Ord(T) are insertion order dependent.

4

Seq{ Set{ Set{7,8}, Set{8,7}, Set{8,7,7}, Set{8,7,8} },
Set{ Bag{7,8}, Bag{8,7}, Bag{8,7,7}, Bag{8,7,8} },
Set{ Ord{7,8}, Ord{8,7}, Ord{8,7,7}, Ord{8,7,8} },
Set{ Seq{7,8}, Seq{8,7}, Seq{8,7,7}, Seq{8,7,8} } }

=
Seq{ Set{ Set{7,8} },

Set{ Bag{7,8}, Bag{7,7,8}, Bag{7,8,8} },
Set{ Ord{7,8}, Ord{8,7} },
Set{ Seq{7,8}, Seq{8,7}, Seq{8,7,7}, Seq{8,7,8}} }

Fig. 3. Illustration of OCL collection kind properties by a single OCL term.

• Set(T) and Ord(T) are insertion frequency indepen-
dent by obeying:
C->includes(E) implies

C->including(E)=C

Seq(T) and Bag(T) are insertion frequency dependent.
• A summary of the laws can be represented in tables as

shown in Fig. 2.

As shown in Fig. 3 the facts can nicely be summarized by
four set terms denoting one set, four bag terms denoting three
bags, four ordered set terms denoting two ordered sets, and
four sequence terms denoting four sequences. Altogether the
various terms are wrapped together into one single OCL term,
so that the evaluation of this single term points out the central
differences between the OCL collection kinds.

The term is of sort Sequence(Set(Collection
(Integer))). Basically, we want to explain with this
term how the four different collection kinds in OCL behave
differently, when the same collection elements are inserted
resp. included in the same order. Altogether, we build four
test cases:

1) Starting from the empty collection, for the first test case
one first inserts 7 and then 8. For the collection kind
Set this can be represented as Set{7,8}.

2) Starting from the empty collection, for the second test
case one inserts first 8 and afterwards 7. For the collec-
tion kind Set this can be represented as Set{8,7}.

3) Starting from the empty collection, for the third test case
one inserts first 8 and afterwards 7 and then again 7.
For the collection kind Set this can be represented
as Set{8,7,7}.

4) Starting from the empty collection, for the fourth test
case one inserts first 8 and afterwards 7 and then
again 8. For the collection kind Set this can be repre-
sented as Set{8,7,8}.

The four mentioned Set(Integer) literals all evaluate to
the same set. Thus the four literals evaluate to one collection.
If one uses Bag instead of Set, one obtains three different
collections. If one uses OrderedSet instead of Set, one
obtains two different collections. And if one uses Sequence
instead of Set, one obtains four different collections. One uses
the same construction rules for the different collection kinds,
and ends up in different results in each test case. These test

cases demonstrate the differences between the four collection
kinds.

IV. CONCLUSIONS

We have explained how information system modeling is
integrated in different courses for various study years within
a traditional CS curriculum. Structuring the courses along the
mottos ‘syntax, semantics, metamodels’ works with reasonable
success. However we would like to discuss how to improve the
situation. One difficulty arising is that there are different views
on the importance of particular, detailed modeling concepts
in different CS areas. For example, to mention just a small,
but important detail, association names are ignored widely in
the programming language context (and are not taught with
sufficient emphasis), whereas they are crucial concepts in the
database area, because they must be used for naming tables in
a Relational database.

Naturally also the different sublanguages of modeling lan-
guages as UML take different roles in different CS areas,
for example, within the networking area sequence diagrams
are the central formalism. Thus the idealized view ‘Teaching
modeling ... is teaching abstraction’ [11] is seen differently
from the different CS areas. Another observation is that the
link to theoretical CS, as it is present in the similarity be-
tween automata and UML statecharts, is often not emphasized
enough and consequently not observed by students.

We have been injecting modeling topics around and within
traditional CS content. We have been accepting and agreeing
the kingdom view for CS (with kingdom names like Database
Systems, Networking, or Programming Languages). What
would it be like if one proceeds the other way round and looks
at a curriculum from the central concepts point of view, i.e., if
one would structure CS curricula around modeling principles
and techniques, e.g., focus a complete curriculum around
more abstract notions as ‘model’, ‘metamodel’, ‘instantiation’,
‘abstraction’, ‘reduction’, ‘concern’, ‘refinement’, ‘syntax’ or
‘semantics’?

ACKNOWLEDGEMENT

Thanks to the reviewers who have made many constructive
remarks that have improved the paper and led to extensions.
All deficiencies are of course due to the author.

5

REFERENCES

[1] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage 2.0 Reference Manual, 2nd Edition. Addison-Wesley, Reading,
2005.

[2] OMG, Ed., Unified Modeling Language, Version 2.4.1. OMG, 2011,
OMG Document, www.omg.org.

[3] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 2003, 2nd Edition.

[4] OMG, Ed., Object Constraint Language, Version 2.3.1. OMG, 2012,
OMG Document, www.omg.org.

[5] ACM/IEEE, Computer Science Curricula 2013, Curriculum Guidelines
for Undergraduate Degree Programs in Computer Science. ACM/IEEE,
2013, https://www.acm.org/education/CS2013-final-report.pdf.

[6] ACM/AIS, IS 2010 Curriculum Guidelines for Undergraduate
Degree Programs in Information Systems. ACM/AIS, 2010,
https://www.acm.org/education/curricula/IS%202010%20ACM%
20final.pdf.

[7] M. Gogolla and A. Vallecillo, “On Explaining Modeling Principles with
Modeling Examples: A Classification Catalog,” in Proc. 8th MODELS
Educators’ Symposium (EduSymp 2012), D. Chiorean and B. Combe-
male, Eds. ACM Digital Library, 2012, pp. 28–31.

[8] M. Gogolla, “Employing the Object Constraint Language in Model-
Based Engineering,” in Proc. 9th European Conf. Modelling Foundations
and Applications (ECMFA 2013), P. V. Gorp, T. Ritter, and L. Rose, Eds.
Springer, Berlin, LNCS 7949, 2013, pp. 1–2, Invited talk.

[9] J. Whittle, C. N. Bull, J. Lee, and G. Kotonya, “Teaching in a software
design studio: Implications for modeling education,” in Proc. MODELS
Educators Symposium, ACM/IEEE 17th Int. Conf. MODELS, ser. CEUR
Workshop Proceedings, B. Demuth and D. R. Stikkolorum, Eds., vol.
1346, 2014, pp. 12–21.

[10] M. Scholz, P. Kaufmann, and M. Seidl, “Making UML ”hip”: A first
experience report on using modern teaching tools for object-oriented
modelling,” in Proc. MODELS Educators Symposium, ACM/IEEE 16th
Int. Conf. MODELS, ser. CEUR Workshop Proceedings, T. C. Lethbridge
and P. Stevens, Eds., vol. 1134, 2013.

[11] G. Engels, J. H. Hausmann, M. Lohmann, and S. Sauer, “Teaching UML
is teaching software engineering is teaching abstraction,” in Satellite
Events MODELS 2005, Int. Workshops, Doctoral Symposium, Educators
Symposium, Springer, LNCS 3844, J.-M. Bruel, Ed., 2005, pp. 306–319.

6

