
Modeling Behavior with Interaction Diagrams

in a UML and OCL Tool

Martin Gogolla, Lars Hamann, Frank Hilken, Matthias Sedlmeier

Database Systems Group, University of Bremen, Germany
{gogolla|lhamann|fhilken|ms}@informatik.uni-bremen.de

Abstract. This paper discusses system modeling with UML behavior
diagrams. We consider statecharts and both kinds of interaction dia-
grams, i.e., sequence and communication diagrams. We present new im-
plementation features in a UML and OCL modeling tool: (1) Sequence
diagram lifelines are extended with states from statecharts, and (2) com-
munication diagrams are introduced as an alternative to sequence dia-
grams. We assess the introduced features and propose selection mecha-
nisms which should be available in both kinds of interaction diagrams.
We emphasize the role that OCL can play for such selection mechanisms.

Keywords. UML, OCL, Model behavior, Statechart diagram, Interac-
tion diagram, Sequence Diagram, Communication Diagram, Model vali-
dation, Diagram view.

1 Introduction

In the last years the Unified Modeling Language (UML) has become a de-facto
standard for the graphical design of IT systems. UML [19, 21] comprises language
features for structural and behavioral modeling. The textual Object Constraint
Language (OCL) as part of UML adds precision in form of class invariants for
restricting structural aspects and pre- and postconditions for constraining be-
havioral ones, among other uses of OCL [20, 23] within UML.

This contribution puts emphasis on UML interaction diagrams which are syntac-
tically presented in form of sequence and communication diagrams. Interactions
describe sequences of messages exchanged among parts of a system. We use in-
teractions for the analysis of a system which has been described structurally
with a class diagram including class invariants and behaviorally with operation
pre- and postconditions, operation implementations, and statecharts. In general,
behavioral diagrams have become more important in the modeling of systems.
The specification of interactions using the respective behavior diagrams is more
understandable, which is one of the goals of the UML. In addition, the specifica-
tion of actions is more intuitive using diagrams instead of textual OCL pre- and
postconditions, which is widely used for, e.g., business services. We introduce
new features for interactions in a UML tool and discuss how the two interaction
diagrams could be handled in a uniform way.

1

Our group is developing the UML and OCL tool USE (UML-based Specification
Environment) since about 15 years. USE [7, 10] originally started as a kind of
OCL interpreter with class, object and sequence diagrams available in the tool
from the beginning. Other behavioral diagrams have been added over the last
years, namely statechart diagrams in form of protocol state machines and most
recently communication diagrams. USE claims to be useful for validation and
verification of UML and OCL models. USE has been employed successfully in
national and international projects (see, for example, [1] and [6] among other
projects).

The rest of this paper is structured as follows. Section 2 introduces a running
example. After having set with the example the context of our work, we discuss
in Sect. 3 some general issues concerning behavioral modeling: ‘abstraction’,
‘best practices’, and ‘tool support’. Section 4 explains in more details how our
system USE contributes to system validation and verification. Section 5 shows
the UML metamodel for interactions and sets the context for the interaction
diagram implementation within USE. Section 6 presents new features in sequence
diagrams, and Sect. 7 discusses established and new features in communication
diagrams. In Sect. 8 a direct comparison between the two interaction diagrams
is shown. Section 9 proposes systematic selection mechanisms that could be
available in both interaction diagrams. Section 10 compares our approach to
related papers. The contribution is closed in Sect. 11 with concluding remarks
and future work.

2 Running Example

This section explains a running example which is used throughout the paper.
In Fig. 1, a small, abstract version of Toll Collect1 is shown. Toll Collect is
a tolling system for trucks on German motorways. In the figure, the follow-
ing USE features are employed: (a) a class diagram with two classes, (b) two
statecharts (two protocol state machines) for each of the classes, (c) one object
diagram, (d) one list of commands representing a scenario (test case), and the
evaluation of (e) the class invariants and (f) a stated OCL query expression in
the system state that is reached by executing the command list. The reached
system state is characterized by the object diagram.

The class diagram consists of a part responsible for building up the mo-
torway connections (basically Point, Connection, northConnect(Point),
southConnect(Point)) and a part for managing trucks and journeys (basi-
cally Truck, Current, enter(Point), move(Point), pay(Integer)). The model
includes three OCL class invariants (restricting system structure) and a num-
ber of OCL operation contracts in form of pre- and postconditions (restricting
system behavior). Apart from the above used standard UML descriptions, the
operations are implemented in a Simple OCL-like Imperative programming Lan-
guage (SOIL). An example for an operation contract and an operation imple-

1 www.toll-collect.de/en/home.html

2

Fig. 1. Example model Toll Collect.

3

Truck::move(target:Point)

begin self.trips:=self.trips->including(target);

self.debt:=self.debt+1;

delete (self,self.current) from Current;

insert (self,target) into Current;

end

pre currentExists:

self.current->notEmpty

pre targetReachable:

self.current.north->union(self.current.south)->includes(target)

post debtIncreased:

self.debt@pre+1=self.debt

post tripsUpdated:

self.trips@pre->including(target)=self.trips

post currentAssigned:

target=self.current

post allTruckInvs:

numIsKey()

Fig. 2. Example of operation implementation and pre- and postconditions.

Fig. 3. Sequence diagram with statechart states on lifelines (some details suppressed)
and equivalent communication diagram.

4

Fig. 4. Command list for used interaction diagrams.

Fig. 5. Example for motorway connections.

5

mentation in SOIL [2] is shown in Fig. 2. Figure 3 displays a shortened variation
of the scenario that the paper will discuss in detail in form of a sequence diagram
and an equivalent communication diagram.

In Fig. 4, we show a longer command list where the single commands either
generate objects with a specified object identity or call operations on generated
objects. This command list and the commands determined by the respective
operation implementation in SOIL are used in the following as the basis for the
discussed interaction diagrams. This command list represents one test case, and
this test case shows the consistency of the operation contracts in the sense that
at least one scenario is possible where all operations are called (and thus all
pre- and postconditions are valid) and all invariants are valid at times when no
operation is active. The considered motorway connections are a toy example with
the largest German towns Hamburg (hh), Berlin (b), and Munich (m). A slightly
larger motorway example allowing to travel between western and eastern points
as well is shown in Fig. 5. The complete USE model is given in the Appendix.

3 General Behavioral Modeling Issues: Abstraction,
Best Practices, Tool Support

Before we go into the details of our approach we want to discuss crucial questions
between our work and general issues in behavioral modeling: To what extent does
our approach support behavioral modeling abstraction mechanisms? What is the
relationship between our proposal and established best practices in behavioral
modeling? How is our work supported by tools?

Abstraction: The motivation for modeling and the relationship to abstrac-
tion has been formulated to the point in [22] (and other works by the same
author): Why do engineers build models? (a) To understand problems and
solutions, (b) to communicate model and design intent, (c) to predict in-
teresting characteristics of the system under study, and (d) to specify the
implementation of the system under study. Building models is realized by
selecting statements through abstraction, i.e., reduction of information pre-
serving properties relative to a given set of concerns.
In our view structural and behavioral modeling must go hand in hand. As
our background is database and information system modeling, we typically
start with structural modeling and later involve behavioral aspects. Other
IT disciplines as, for example, embedded systems may prefer to start with
behavioral issues and continue with structural ones. In our view, behavioral
aspects are inherently more complex than structural issues because in in-
formation systems the behavioral descriptions must be aware of and respect
the structural requirements. Thus finding good abstraction techniques that
reduce information are even more relevant for behavioral modeling.

As said already before, we use UML interactions for the analysis of a system
which has been described structurally with a class diagram including class

6

invariants and behaviorally with operation pre- and postconditions, opera-
tion implementations, and statecharts. One focus here is on UML interaction
diagrams in form of communication diagrams. Communication diagram are
able to present all details of a behavioral scenario and bear the danger to
overwhelm the modeler with too many messages which are the basic corner-
stones of a scenario. Thus in particular for communication diagrams proper
and adequate abstraction mechanisms are strongly needed. This demand
leads in our approach to a proposal for allowing views on interaction di-
agrams that take into account message number intervals, message depth,
and message kind abstraction mechanisms in order to show that part of a
scenario that the modeler regards as important.

Best practices: UML sequence and communication diagrams are employed for
showing interactions, i.e., message exchanges between objects (or object
roles) in order to perform a task. Both sequence and communication dia-
grams show interactions, but they emphasize different aspects. A sequence
diagram shows time sequence as a geometric dimension, but the relation-
ship among [object] roles are implicit. A communication diagram shows the
relationships among [object] roles geometrically and relates messages to the
connectors, but time sequences are less clear because they are implied by the
sequence numbers. Each diagram should be used when its main aspect is the
focus of attention (quoted from [21]). If one wants to capture the difference
along the slogan Time vs Space, one would classify the sequence diagram
into the Time dimension and the communication diagram into the Space
dimension.
However, there is only little methodological help on the question when to
use which diagram. Our observation is that sequence diagrams are more fre-
quently used than communication diagrams. It seems that sequence diagrams
can be used intuitively easier due to explicitly displayed message order. The
message order must be mentally retrieved in communication diagrams. How-
ever, as said before, communication diagrams show the relationship between
objects which is neglected in sequence diagrams.

Tool support: Both sequence and communication diagrams are supported by
UML tools. However, a general common view mechanism on the underlying
interactions is not explicitly stated in UML. This leads to different features
for interactions diagrams in different tools.
Our proposal here is to offer the same view mechanisms in both interaction
diagrams. The motivation for an (as far as possible) uniform treatment of
sequence diagrams and communication diagrams comes from the fact that
both diagram forms treat the same model elements: interactions, i.e., objects
and messages between them. For example, if one starts from a complex inter-
action in form of a sequence diagram and one selects a subset of the involved
objects for viewing, then it should be possible to do the same selection in
the corresponding communication diagram. The same holds if the selection is
made for messages. A conversion between both diagram forms is in principle
possible because of identical underlying elements (objects and messages) and
because of the fact that the geometrical ordering in the sequence diagram

7

has its equivalent in the numerical ordering in the communication diagram.
However the relationships between objects present in the communication di-
agram do not have an equivalent in the sequence diagram and thus cannot
be represented. With respect to the underlying static structure (the class
diagram) both interaction diagrams use the same elements arising from the
class diagram, basically commands for the creation and deletion of objects
and links, for the manipulation of attributes and for operation calls.
Interaction diagrams can be looked at from different angles. One can view
interactions in both sequence and communication diagrams along the ob-
ject or along the message dimension. Furthermore, apart from interactively
selecting relevant parts in a scenario, we discuss how to employ OCL for
systematically accessing objects and messages.
The discussed features are implemented in our tool USE. Sequence diagrams
have been present in USE from the very beginning, and only later commu-
nication diagrams were added. Integrated views on both kinds of interaction
diagrams with common features are currently under development. The aim
of the newly added view features is to better support new abstraction mech-
anisms for behavioral modeling, in particular in connection with communi-
cation diagrams that are only poorly supported in present UML tools as far
as voluminous scenarios are concerned.

4 Validation and Verification with USE

OCL can be employed in USE for various tasks: in class diagrams for (a) class
invariants, (b) operation contracts, (c) attribute and association derivation rules,
and (d) attribute initializations; in protocol state machines for (e) state invari-
ants and (f) transition pre- and postconditions; furthermore for (g) ad-hoc OCL
queries in object diagrams, and for (h) expressions within SOIL. In USE, class
diagrams and protocol machines enriched by invariants, operation contracts,
statechart constraints and SOIL operation implementations determine system
structure and behavior. Sequence and communication diagrams are employed in
USE for visualizing and analyzing specified test cases in form of scenarios. Inter-
action diagrams are not used for restricting system behavior, but to document,
analyze, and understand the interactions. These diagrams are built after a com-
plete model including the SOIL operation implementation has been constructed.

The overall aim of USE is to support development by reasoning about the
model through (a) validation, i.e., checking informal expectations against for-
mally given properties, for example, by stating OCL queries against a reached
system state (object diagram) and (b) verification, i.e., checking formal proper-
ties of the model, for example by considering model consistency or the indepen-
dence of invariants as in [7]. That contribution also shows how USE supports
making deductions from the stated model on the basis of a finite search space
of possible system states (object diagrams). Such checks are realized in form of
positive and negative scenarios which can be thought of as being test cases for
the system under consideration. Thus USE supports the development of tests.

8

In OCL operation contracts as well as pre- and postconditions can be general
OCL formulas. In postconditions, one can refer with @pre to attribute and as-
sociation end values at precondition time. Postconditions can state general re-
quirements and are not restricted to the specification of changes to attribute
and association end values. Thus the actual changes made by the operation are
described in SOIL and are checked against the contract. Concerning the protocol
state machines, concurrency is currently not supported, and operation call se-
quences which do not fit to the protocol are rejected. The definition of protocol
state machines is optional.

Various validation and verification use cases for the USE tool are discussed in [9].
A comparison between the USE verification method for behavioral aspects and
another approach is discussed in [11]. The so-called ‘filmstripping’ technique
within USE for mapping behavioral descriptions into structural problems is pro-
posed in [8].

5 UML Metamodel for Interactions

The interactions part of the UML metamodel2 [19, p. 473ff.] was developed to
visualize concrete traces of event occurrences and in addition to allow the def-
inition of all possible traces of an interaction. The former can be used in early
design stages to be able to communicate with designers and to some extent with
stakeholders. A concrete trace does not show alternatives or loop constructs,
because it describes a single message trace (or command trace) in the system.
Elements like alternatives or loops can be used in later design phases to express
all possible traces (cf. [19, p. 473]). Interactions can be visualized by different
diagrams. Two of the more common ones are sequence diagrams and communica-
tion diagrams. Both diagrams focus on slightly different aspects of interactions.
While sequence diagrams highlight the time line of an interaction, communica-
tion diagrams focus on the different elements participating in an interaction and
their relationship.

Figure 6 shows an excerpt of the UML metamodel required to briefly discuss the
representation of event occurrences inside interaction diagrams. A more detailed
presentation can, for example, be found in [16]. On the right side of this figure,
meta classes from the structural modeling part of the UML are shown. These are
needed to completely model message occurrences. On the left side, the relevant
parts of the interaction meta classes are shown. Consider the occurrence of the
message enter(hh) shown in the following sequence diagram in Fig. 3 and in
the (following) communication diagram in Fig. 8. This part of both diagrams
can be expressed as an object diagram of the metamodel, as it is done in Fig. 7.
Again, on the right side the structural part is shown, e. g., the two classes which
participate in the message occurrence: Truck as the class of the receiving in-

2 UML metamodel novices might skip this section on first reading and continue with
the next section. UML metamodel followers are invited to dive deep.

9

Fig. 6. Relevant parts of the UML interactions metamodel.

stance3 and Point which is used as the type of the parameter of the operation
enter. Further, both instances used in the interaction diagrams (freds scania

and hh) are placed there, too. On the left side, the example scenario is given as
an instance of Interaction. Since we consider the single message occurrence
enter(hh), the object diagram contains few interaction related instances. First,
the Gate gSend acts as the source of the message occurrence. It is linked to the
interaction as a formal gate to signal that the source of the event is outside of
this interaction. The receiving end of the message is represented by the instance
recEnter of type MessageOccurenceSpecification. This instance is linked to
the Lifeline named freds scania:Truck. The payload of the message mEnter
is given by the InstanceValue argument linked to the instance hh of the class
Point.

6 Sequence Diagrams

As USE allows the developer to employ UML protocol machines to restrict the
model behavior and to document test scenarios with sequence diagrams, it is
desirable to show the protocol machine state of objects on sequence diagram
lifelines, when the developer thinks this may be useful. Thus we have imple-
mented this option for lifelines.

In Fig. 3, a fraction of the test scenario from Fig. 4 is displayed. We have manu-
ally selected the lifeline of only two Point objects and one Truck object and have
activated the display of states from protocol state machines. For example, one
can directly trace the development of the Truck object and the state changing

3 In the current version of the UML metamodel, a lifeline can only represent con-
nectable elements like properties or parameters. Since our tool allows a lifeline to
represent a concrete instance, this fact cannot be expressed using the current UML
metamodel. This is an open issue reported to the OMG [5].

10

mEnter:Message
name='enter(hh)'
visibility=#public
/qualifiedName='aScenario::enter(hh)'
messageKind=#complete
messageSort=#synchCall

gSend:Gate
name='sendEnter'
visibility=#public
/qualifiedName='aScenario::sendEnter'

valHH:InstanceValue
name=Undefined
visibility=#public
/qualifiedName=Undefined

ia:Interaction
name='aScenario'
visibility=#public
/qualifiedName='aScenario'
isLeaf=Undefined
isAbstract=false
isFinalSpecialization=false
isReentrant=Undefined

clsTruck:Class
name='Truck'
visibility=#public
/qualifiedName='Truck'
isLeaf=false
isAbstract=false
isFinalSpecialization=false

llFS:Lifeline
name='freds_scania:Truck'
visibility=#public
/qualifiedName='aScenario::freds_scania:Truck'

iFS:InstanceSpecification
name='freds_scania'
visibility=#public
/qualifiedName='freds_scania'

clsPoint:Class
name='Point'
visibility=#public
/qualifiedName='Point'
isLeaf=false
isAbstract=false
isFinalSpecialization=false

parPoint:Parameter
name='target'
visibility=#public
/qualifiedName='target'
isOrdered=false
isUnique=false
lower=1
upper=1
direction=#_in
default=Undefined

opEnter:Operation
name='enter'
visibility=#public
/qualifiedName='Truck::enter'
isLeaf=false
isStatic=false
isQuery=false
isOrdered=false
isUnique=false
lower=0
upper=1

pHH:InstanceSpecification
name='hh'
visibility=#public
/qualifiedName='hh'

recEnter:MessageOccurrenceSpecification
name='recEnter'
visibility=#public
/qualifiedName='recEnter'

classifier

classifier

instance

signature

receiveEvent

endMessageReceive

sendEvent

endMessageSend

covered

events {ordered}

type

typedElement

ownedOperation

formalGate

argument {ordered}

ownedParameter
{ordered}

Fig. 7. Send message event as an instance of the UML metamodel.

through operation calls with init(..), enter(..), move(..), pay(..), bye():
from born to noDebt to debt and then again to noDebt. In the case that more
money has been paid than is needed for paying the journey, the operation bye

returns the overpayment.

UML sequence diagrams also allow the developer to use combined fragments,
which define a combination of interaction fragments. A combined fragment con-
sists of an interaction operator, an appropriate interaction operands and, if re-
quired, so-called guards (Boolean expressions).

Altogether, the UML supports 12 interaction operators. Some of these opera-
tors could be introduced in USE by representing SOIL operations as sequence
diagrams. The alternatives and option operators, for example, could be realized
via SOIL’s conditional execution support (if-then-else). And the loop operator
could be implemented via the SOIL iteration statement (for-in-do-end).

Sequence diagrams also support interaction use elements, which allow developers
to call other interactions to simplify or reuse shared interactions. This could
be represented in SOIL with corresponding operation calls, thus covering the
reference interaction operator.

7 Communication Diagrams

Figure 8 shows the communication diagram representing the messages from the
test scenario in Fig. 4 and additionally all messages that are executed within
the operation calls by the SOIL implementation. As usual in communication
diagrams, the ordering of messages is determined by message numbers, and sub-
messages (i.e., messages that are triggered by one message) are displayed by a
structured message number with a dot as separator. For example, message 18 has

11

Fig. 8. Communication diagram with details shown (framed messages also in Fig 3).

12

Fig. 9. Communication diagram displaying only messages 9-15.

13

Fig. 10. Sequence diagram displaying only messages 9-15.

14

Fig. 11. Communication diagram displaying only link insertion and deletion.

15

Fig. 12. Communication diagram with OCL selection for truck object by identity.

16

Fig. 13. Sequence diagram corresponding to communication diagram in Fig. 12.

17

the sub-messages 18.1, 18.2, and 18.3, i.e., the enter(b) call on the Truck object
angies benz is implemented by a link insertion (18.1) in association Current,
an assignment (18.2) for attribute debt and an assignment (18.3) for attribute
trips. As usual in communication diagrams, the specifications new, transient,
resp. destroyed refer to objects that are newly introduced, newly introduced
and deleted, resp. deleted during the interaction.

The relationship to the sequence diagram in Fig. 3 has been indicated manually
by messages that are lying inside free drawn frames. These eight framed messages
correspond to the eight messages in the sequence diagram.

For a smart representation of a communication diagram in an interactive GUI,
the main objective is to provide a good overview and comprehensibility of the
diagram. Bigger communication diagrams with multiple operation calls and mes-
sages become quickly difficult to follow (see Fig. 8). To improve this situation,
some straightforward ideas have proven to be helpful:

1. Limiting the view of the diagram to a range of messages (see Fig. 9).

2. Cropping of different message types to only display those messages that are
relevant to understand the shown process (see Fig. 11).

3. Cropping of objects and links to only display those relevant in the shown
process (see Fig. 12).

4. Combinations of the above.

The communication diagram in Fig. 8 shows the complete sequence of mes-
sages (1–21), which can be roughly split into the initialization of a road network
and two navigations of trucks. Figure 9 focuses on the navigation of the first
truck only (messages 9–15) and thereby this sequence is easier to understand.

A similar effect occurs when focusing on a subset of message types. Figure 11
only shows link insertion and deletion messages in the communication diagram
and thereby increases the focus on the development of the links. A similar feature
is available for sequence diagrams, allowing to show or hide the message types
create, destroy, insert, delete and set.

Lastly, single objects and links that are not relevant to understand the current
process can be removed from the view of the diagram in favor of a better acces-
sibility, e.g., in Fig. 12 only one truck, the two points that it visits and the links
in between these objects are displayed. The other parts of the route as well as
the second truck are hidden.

Thus, to help with the selection of large quantities of objects communication
diagrams, the selection by OCL expression feature of the USE tool has been
taken over from the object diagram (see Fig. 12). With this feature, certain
objects can be shown, hidden or cropped.

18

8 Selection Mechanisms in Communication and Sequence
Diagrams

To further illustrate and compare the selection mechanisms in sequence and
communication diagrams, the following three examples demonstrate selecting
views on the complete interaction from Fig. 8 where one particular aspect is
emphasized in each example. Where appropriate, the corresponding sequence
diagram is also displayed with the same filters applied.

1. Interval selection: Figure 9 restricts the messages according to a message
number interval: only the messages 9 to 15 including their sub-messages
are stated. This part of the interaction handles the first Truck object and
shows its initialization and movements. Figure 10 shows the corresponding
sequence diagram with the same selection applied.

2. Message kind selection: Figure 11 presents a view on the complete in-
teraction along a different dimension than message numbers. Only messages
concerning a particular message kind are displayed, in this diagram the inser-
tion and deletion of links. As in UML different message kinds are available,
such a restriction can be useful. In USE we currently support the follow-
ing message kinds: object creation, object destruction, link creation, link
destruction, attribute assignment, and operation call.

3. OCL selection: Figure 12 makes a selection in the communication diagram
with the help of an OCL expression. In this case the OCL expression picks
a Truck object together with the Point objects that are visited. The result
is typed as Set(OclAny) because objects of different classes show up. All
messages between the selected objects are shown. This object and message
selection cannot be achieved with a message number interval or a message
kind specification. Figure 13 shows the corresponding sequence diagram with
the same selection applied, however set statements are hidden.

The selection mechanisms shown in the communication diagrams in Figs. 8
and 12, are currently implemented (modulo some required improvements in the
user interface). USE also supports the selection mechanisms shown in Figs. 9
and 11.

9 Systematic Selection Mechanisms for Views in UML
Interactions and Further Use of OCL

Currently, the selection mechanisms for UML sequence and communication dia-
grams in our tool USE are different. This is due to the fact that the design and
implementation has been done at different times with different people involved.
Our plan is to unify the selection mechanisms and offer a unified view mechanism
for both interaction diagrams. We currently identify the following options. An
overview in form of a generic interaction together with the object and message
dimensions and the resulting presentation options is presented in Fig. 14.

19

Fig. 14. Overview on interactions with object and message dimension.

20

Selection focusing on objects: Objects could be selected through the follow-
ing possibilities:

1. Interactive show, hide or crop for objects individually or by class.
2. Interactive multiple selection by shift key and mouse click.
3. Objects satisfying resp. violating an OCL invariant during interaction.
4. Objects satisfying resp. violating an ad-hoc OCL formula during interaction.

Selection focusing on messages: Messages could be selected through the
following possibilities:

1. Interactive show, hide or crop for messages.
2. Selection through an OCL object query identifying the sending object.
3. Selection through a satisfied resp. violated OCL pre- or postcondition.
4. Selection through a satisfied resp. violated ad-hoc OCL formula at pre- or

postcondition time during an operation call.
5. Selection by message kind: object creation, object destruction, link insertion,

link deletion, attribute assignment, operation call.
6. Selection by message number depth.
7. Determination of a message interval defined by

(a) interactively fixed start message and end message.
(b) start OCL formula and end OCL formula.
(c) a statechart start state and a statechart end state for a fixed object.

The OCL expressions that we employ in communication diagrams are currently
working on the last system state. However, the communication diagram contains
information that is not selectable using plain OCL in this way, i.e., removed
objects and links in general. For example the OCL expression allInstances()

to select all instances of a class will currently not select transient or destroyed
objects, yet they are still displayed in the communication diagram.

Consequently, to get full access to the elements in the communication diagram,
the syntax and accordingly the evaluation of OCL has to be extended. First,
it is desired to access the system’s pre- and post states of each message to get
access to all time steps of the communication diagram. In addition, access to
the elements of a range of messages or the global sequence of messages is helpful
for the selection. Temporal extensions for OCL often include functionality to
formulate expression about the past (see e.g., [25]) and can be considered to be
integrated.

The temporal extension of OCL would not only improve the selection of ele-
ments in the GUI. The access to the new properties increases the possibilities of
validation tasks formulated on the communication diagram.

10 Related Work

Behavior modeling with UML interactions has relationships to other important
approaches. A definition of the UML interaction semantics in terms of the Sys-
tem Model can be found in [3]. In [13], a comparison between software model

21

verification approaches using OCL and UML interaction diagrams among others
is performed. The work in [17] focuses on the interaction problem in the context
of aspect-oriented programming. It explains how Aspect-UML can be translated
into Alloy and shows how to verify aspect interactions with Alloy’s model an-
alyzer. In [18], the synthesis of test cases from UML interaction diagrams by a
systematic interpretation of flow of controls is discussed. Improvements to the
UML interaction metamodel concerning message arguments and loops are pro-
posed and demonstrated in [24]. The approach in [15] is strongly related to the
USE approach because of the emphasis on protocol modeling. That work is how-
ever closer to programming through the use of Java, whereas we are closer to
modeling because of using OCL. The proposals in [4, 14] discuss test case genera-
tion from interaction diagrams. Our approach is the only one that employs OCL
for selecting relevant parts in the interactions under consideration. The current
work differs from our previous contributions (like [7, 10]) in that we did not
consider sequence diagrams with statechart states on lifelines or communication
diagrams at all.

11 Conclusion

This contribution has discussed how to handle UML interaction diagrams in
a model validation tool and has pointed to the link between protocol machine
and interaction diagrams. We have set up desirable selection mechanisms for
both kinds of UML interaction diagrams, namely sequence and communication
diagrams.

Future work has to complete our current implementation with the missing fea-
tures in both interaction diagrams. In particular, message kind selection and
message interval selection seem to offer useful analysis options. We have dis-
cussed how to extend the options for interaction analysis with temporal OCL
query features. Larger examples and case studies need to validate the already
existing and planned features for better support of interaction diagrams that
advance behavioral modeling.

References

1. F. Büttner, U. Bartels, L. Hamann, O. Hofrichter, M. Kuhlmann, M. Gogolla,
L. Rabe, F. Steimke, Y. Rabenstein, and A. Stosiek. Model-Driven Standardization
of Public Authority Data Interchange. Science of Computer Programming, 89:162–
175, 2014.

2. F. Büttner and M. Gogolla. Modular Embedding of the Object Constraint Lan-
guage into a Programming Language. In A. Simao and C. Morgan, editors,
Proc. 14th Brazilian Symposium on Formal Methods (SBMF’2011), pages 124–139.
Springer, Berlin, LNCS 7021, 2011.

3. D. Calegari, M. V. Cengarle, and N. Szasz. UML 2.0 Interactions with OCL/RT
Constraints. In FDL, pages 167–172. IEEE, 2008.

22

4. H. Y. Chen, C. Li, and T. H. Tse. Transformation of UML Interaction Diagrams
into Contract Specifications for Object-oriented Testing. In IEEE [12], pages 1298–
1303.

5. M. M. J. Chonoles. Issue 15123: Sequence Diagram and Communication Diagrams
should Support Instances as Lifelines (uml2-rtf), Mar. 2010. http://www.omg.org/
issues/uml2-rtf.html#Issue15123.

6. G. Georg and R. France. An Activity Theory Language: USE Implementation.
Colorado State University, Computer Science, Technical Report CS-13-101, 2013.

7. M. Gogolla, F. Büttner, and M. Richters. USE: A UML-Based Specification En-
vironment for Validating UML and OCL. Science of Computer Programming,
69:27–34, 2007.

8. M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France. From Ap-
plication Models to Filmstrip Models: An Approach to Automatic Validation of
Model Dynamics. In H. Fill, D. Karagiannis, and U. Reimer, editors, Proc. Mod-
ellierung (MODELLIERUNG’2014), pages 273–288. GI, LNI 225, 2014.

9. M. Gogolla, M. Kuhlmann, and L. Hamann. Consistency, Independence and Con-
sequences in UML and OCL Models. In C. Dubois, editor, Proc. 3rd Int. Conf.
Test and Proof (TAP’2009), pages 90–104. Springer, Berlin, LNCS 5668, 2009.

10. L. Hamann, O. Hofrichter, and M. Gogolla. Towards Integrated Structure and
Behavior Modeling with OCL. In R. France, J. Kazmeier, R. Breu, and C. Atkin-
son, editors, Proc. 15th Int. Conf. Model Driven Engineering Languages and Sys-
tems (MoDELS’2012), pages 235–251. Springer, Berlin, LNCS 7590, 2012.

11. F. Hilken, P. Niemann, M. Gogolla, and R. Wille. Filmstripping and Unrolling:
A Comparison of Verification Approaches for UML and OCL Behavioral Models.
In M. Seidl and N. Tillmann, editors, Proc. 8th Int. Conf. Tests and Proofs (TAP
2014), pages 99–116. Springer, LNCS 8570, 2014.

12. IEEE, editor. Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, Montréal, Canada, 7-10 October 2007. IEEE, 2007.

13. A. Knapp and J. Wuttke. Model Checking of UML 2.0 Interactions. In T. Kühne,
editor, MoDELS Workshops, volume 4364 of Lecture Notes in Computer Science,
pages 42–51. Springer, 2006.

14. P. D. L. Machado, J. C. A. de Figueiredo, E. F. A. Lima, A. E. V. Barbosa,
and H. S. Lima. Component-based Integration Testing from UML Interaction
Diagrams. In IEEE [12], pages 2679–2686.

15. A. T. McNeile and N. Simons. Protocol Modelling: A Modelling Approach that
Supports Reusable Behavioural Abstractions. Software and System Modeling,
5(1):91–107, 2006.

16. Z. Micskei and H. Waeselynck. The Many Meanings of UML2 Sequence Diagrams:
A Survey. Software & Systems Modeling, 10(4):489–514, 2011.

17. F. Mostefaoui and J. Vachon. Design-Level Detection of Interactions in Aspect-
UML Models Using Alloy. Journal of Object Technology, 6(7):137–165, 2007.

18. A. Nayak and D. Samanta. Model-based Test Cases Synthesis using UML Inter-
action Diagrams. ACM SIGSOFT Software Engineering Notes, 34(2):1–10, 2009.

19. OMG, editor. UML Superstructure 2.4.1. Object Management Group (OMG),
Aug. 2011.

20. OMG, editor. Object Constraint Language, Version 2.3.1. OMG, 2012. OMG
Document, www.omg.org.

21. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language 2.0
Reference Manual. Addison-Wesley, Reading, 2003.

22. B. Selic. The Theory and Practice of Modeling Language Design. Tutorial at
MODELS 2012, http://models2012.info/, 2012.

23

23. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 2003. 2nd Edition.

24. M.-F. Wendland, M. Schneider, and Ø. Haugen. Evolution of the UML Interactions
Metamodel. In A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke,
editors, MoDELS, volume 8107 of Lecture Notes in Computer Science, pages 405–
421. Springer, 2013.

25. P. Ziemann and M. Gogolla. OCL Extended with Temporal Logic. In M. Broy and
A. Zamulin, editors, 5th Int. Conf. Perspectives of System Informatics (PSI’2003),
pages 351–357. Springer, Berlin, LNCS 2890, 2003.

Appendix: Complete USE model for Toll Collect

-- model TollCollect

model TollCollect

-- class Truck

class Truck

attributes

num:String init: ’’

trips:Sequence(Point) init: Sequence{}

debt:Integer init: 0

operations

init(aNum:String)

begin self.num:=aNum end

enter(entry:Point)

begin insert (self,entry) into Current; self.debt:=1;

self.trips:=self.trips->including(self.current) end

move(target:Point)

begin self.trips:=self.trips->including(target);

self.debt:=self.debt+1; delete (self,self.current) from Current;

insert (self,target) into Current end

pay(amount:Integer)

begin self.debt:=self.debt-amount end

bye():Integer

begin delete (self,self.current) from Current;

result:=self.debt.abs(); self.debt:=0 end

--

numIsKey():Boolean=

Truck.allInstances->forAll(self,self2|

self<>self2 implies self.num<>self2.num)

--

statemachines

psm TruckLife

states

prenatal:initial

born [num=’’]

noDebt [num<>’’ and current->isEmpty]

debt [num<>’’ and current->notEmpty]

24

transitions

prenatal -> born { create }

born -> noDebt { init() }

noDebt -> debt { enter() }

debt -> debt { move() }

debt -> debt { pay() }

debt -> noDebt { bye() }

end

end

-- class Point

class Point

attributes

name:String init: ’’

isJunction:Boolean derived: north->union(south)->size()>=2

operations

init(aName:String)

begin self.name:=aName end

northConnect(aNorth:Point)

begin insert (aNorth,self) into Connection end

southConnect(aSouth:Point)

begin insert (self,aSouth) into Connection end

--

northPlus():Set(Point)=north->closure(p|p.north)

southPlus():Set(Point)=south->closure(p|p.south)

--

nameIsKey():Boolean=

Point.allInstances->forAll(self,self2|

self<>self2 implies self.name<>self2.name)

noCycles():Boolean=

Point.allInstances->forAll(self|

not(self.northPlus()->includes(self)))

--

statemachines

psm PointLife

states

prenatal:initial

born [name=’’]

growing [name<>’’]

transitions

prenatal -> born { create }

born -> growing { init() }

growing -> growing { northConnect() }

growing -> growing { southConnect() }

end

end

25

-- association Current

association Current between

Truck[0..*] role truck

Point[0..1] role current

end

--- association Connection

association Connection between

Point[0..*] role north

Point[0..*] role south

end

-- constraints

constraints

--- invariants

context Truck inv numIsKeyInv:

numIsKey()

context Point inv nameIsKeyInv:

nameIsKey()

context Point inv noCyclesInv:

noCycles()

-- Point::init

context Point::init(aName:String)

pre freshPoint:

self.name=’’ and self.north->isEmpty and self.south->isEmpty

pre aNameOk:

aName<>’’ and aName<>null

post nameAssigned:

aName=self.name

post allPointInvs:

nameIsKey() and noCycles()

-- Point::northConnect

context Point::northConnect(aNorth:Point)

pre aNorthDefined:

aNorth.isDefined

pre freshConnection:

self.north->excludes(aNorth) and self.south->excludes(aNorth)

pre notSelfLink:

self<>aNorth

pre noCycleIntroduced:

aNorth.northPlus()->excludes(self)

post connectionAssigned:

self.north->includes(aNorth)

post allPointInvs:

nameIsKey() and noCycles()

26

-- Truck::init

context Point::southConnect(aSouth:Point)

pre aSouthDefined:

aSouth.isDefined

pre freshConnection:

self.south->excludes(aSouth) and self.south->excludes(aSouth)

pre notSelfLink:

self<>aSouth

pre noCycleIntroduced:

aSouth.southPlus()->excludes(self)

post connectionAssigned:

self.south->includes(aSouth)

post allPointInvs:

nameIsKey() and noCycles()

-- Truck::init

context Truck::init(aNum:String)

pre freshTruck:

self.num=’’ and self.trips=Sequence{} and self.debt=0 and

self.current->isEmpty

pre aNumOk:

aNum<>’’ and aNum<>null

post numAssigned:

aNum=self.num

post allTruckInvs:

numIsKey()

--- Truck::enter

context Truck::enter(entry:Point)

pre noDebt:

0=self.debt

pre currentEmpty:

self.current->isEmpty

pre entryOk:

entry<>null

post debtAssigned:

1=self.debt

post currentAssigned:

entry=self.current

post allTruckInvs:

numIsKey()

27

-- Truck::move

context Truck::move(target:Point)

pre currentExists:

self.current->notEmpty

pre targetReachable:

self.current.north->union(self.current.south)->includes(target)

post debtIncreased:

self.debt@pre+1=self.debt

post tripsUpdated:

self.trips@pre->including(target)=self.trips

post currentAssigned:

target=self.current

post allTruckInvs:

numIsKey()

--- Truck::pay

context Truck::pay(amount:Integer)

pre amountPositive:

amount>0

pre currentExists:

self.current->notEmpty

post debtReduced:

(self.debt@pre-amount)=(self.debt)

post allTruckInvs:

numIsKey()

--- Truck::bye

context Truck::bye():Integer

pre currentExists:

self.current->notEmpty

pre noDebt:

self.debt<=0

post resultEqualsOverPayment:

self.debt@pre.abs()=result

post zeroDebt:

self.debt=0

post currentEmpty:

self.current->isEmpty

post allTruckInvs:

numIsKey()

--

28

