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Abstract: Efficient model validation and verification techniques are strong in the anal-
ysis of systems describing static structures, for example, UML class diagrams and
OCL invariants. However, general UML and OCL models can involve dynamic as-
pects in form of OCL pre- and postconditions for operations. This paper describes the
automatic transformation of a UML and OCL model with invariants and pre- and post-
conditions into an equivalent model with only invariants. We call the first model (with
pre- and postconditions) the application model and the second model (with invariants
only) the filmstrip model, because a sequence of system states in the application model
becomes a single system state in the filmstrip model. This single system state can be
thought of as being a filmstrip presenting snapshots from the application model with
different logical time stamps. Pre- and postconditions from the application model be-
come invariants in the filmstrip model. Providing a proper context, the text of the pre-
and postconditions can be used in the filmstrip model nearly unchanged. The filmstrip
model can be employed for automatically constructing dynamic test scenarios and for
checking temporal properties.

1 Introduction

As a paradigm for software development model-driven engineering (MDE) is gaining

more and more attention. Models and model transformations are cornerstones in mod-

eling languages like UML and transformation languages like QVT (see [RJB04] and more

recent versions of UML at OMG). In model-based approaches, the Object Constraint Lan-

guage (OCL) [WK03, CG12] can be employed for expressing class constraints and op-

eration contracts, thus UML and OCL plays a central role in MDE. For a given UML

and OCL model it is of central interest to validate and to verify static and dynamic model

properties in the design phase before an actual implementation starts.

A variety of model validation and verification approaches is currently available [CPC+04,

Jac06, CCR07, TJ07, BW08, ABGR10, RD11]. However, these usually concentrate on

structural aspects, for example, consistency between the UML class model and OCL class

invariants. This paper puts forward an approach for the validation and verification of dy-

namic model properties which are determined by OCL operation contracts in form of pre-
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and postconditions. We propose to transform a given UML and OCL model which com-

pletely describes an application in terms of invariants and pre- and postconditions into

a model which only has invariants and which represents system dynamics by so-called

filmstrips. We call the first model the application model and the second one the filmstrip

model. Whereas in the application model system dynamics is expressed by going from

state to state with intermediate operation calls, system dynamics is characterized in the

filmstrip model by introducing explicit objects representing the application model states

and explicit objects representing the calling of an operation. The pre- and postconditions

of the operations are expressed by invariants in the filmstrip model, hence the semantics

of them is transformed into invariants – bound to the classes representing the model dy-

namics – and then the pre- and postconditions are removed from the operations. Complete

dynamic scenarios become available in a single structure.

Filmstrip models can then be validated with techniques originally designed for structural

analysis. We have recently [KG12] designed and implemented a so-called model validator

which translates UML and OCL models into relational logic [Jac06, TJ07] (which in turn

is realized through SAT solvers) and interprets found results on the level of relational logic

back in terms of UML and OCL. The model validator is part of the UML-based Specifi-

cation Environment (USE) [GBR07] developed in our group since a number of years. It

allows us now to validate properties for model dynamics. A resulting filmstrip describes

a complete run through the model and accordingly properties like the occurrence of op-

eration patterns can be checked in the filmstrip with OCL expressions. Furthermore, the

approach enables to check properties like constraint independence or consistency (under-

stood as in [GBR07]) for invariants and pre- and postconditions. We are not aware of

approaches which formally describe UML and OCL model dynamics in terms of pre- and

postconditions and which automatically construct scenarios representing system execution

runs at the modeling level.

The rest of the paper is structured as follows. In Section 2 we present the basic idea of

filmstripping in terms of a simple example. Section 3 explains the transformation from

the application model to the filmstrip model. Section 4 shows how to explore properties

of dynamic scenarios. Section 5 discusses related work, before we end with concluding

remarks and future work in Section 6.

2 The Basic Idea

Application model. We start with an ordinary UML model consisting of a class diagram

with any number of classes, attributes, associations, and operations. The class diagram is

enriched by OCL constraints in form of class invariants and operation pre- and postcon-

ditions. The invariants restrict the possible system states, i.e., the valid object diagrams.

The operation pre- and postconditions determine the valid system dynamics in form of

state transitions. Currently, we assume that a transition is induced by a single call to an

operation. We call this model the application model in order to emphasize that the com-

plete application is described in that model and in order to distinguish it from the filmstrip

model introduced later.
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Figure 1: Example application (Left) and filmstrip (Right)
model at design (Top) and run-time (Bottom).

Example. In the upper left of Fig. 1 we show the class diagram of our example application

model describing marriages and divorces of persons. In Fig. 2, the usage of OCL for

making the UML model more precise is captured: there is one operation with return value

which is defined by an OCL expression, and there are five OCL constraints for the model,

namely one invariant and for each operation without return value one precondition and one

postcondition.

The lower left of Fig. 1 shows an example scenario for the run-time development of the

application model in terms of a UML sequence diagram. In this scenario, the operation

pre- and postconditions are valid and the invariant is satisfied directly before and after

the operation calls. This can be traced by the command line protocol in Fig. 3 where in

addition to the information in the sequence diagram the constraint evaluation is explicitly

shown.
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Person::spouse():Set(Person)=

if wife->notEmpty and husband->notEmpty

then Set{wife,husband} else if wife->notEmpty

then Set{wife} else if husband->notEmpty

then Set{husband} else Set{} endif endif endif

context Person inv traditionalRoles:

(gender=#female implies wife->isEmpty)

and (gender=#male implies husband->isEmpty)

context Person::marry(aSpouse:Person)

pre unmarriedDifferentGenders:

self.spouse()->isEmpty and aSpouse.spouse()->isEmpty

and Set{self.gender,aSpouse.gender} =

Set{#female,#male}

context Person::marry(aSpouse:Person) post married:

Set{aSpouse}=self.spouse()

and Set{self}=aSpouse.spouse()

context Person::divorce() pre married:

self.spouse()->notEmpty

context Person::divorce() post unmarried:

self.spouse()->isEmpty

Figure 2: Operation definition, invariant, and pre- and postconditions in the example application
model.

Filmstrip model. A filmstrip model aims to describe a sequence of system state transi-

tions from the application model as a single object diagram: a set of application object

diagrams and operation calls in between is understood as a single filmstrip object diagram.

Each reached object diagram in the system state transition sequence becomes part of the

filmstrip object diagram in form of a snapshot object. Additionally, the operation calls be-

come operation call objects between the snapshot objects. Roughly speaking, a sequence

diagram in the application model becomes an object diagram in the filmstrip model.

The application model class diagram will be completely included in the filmstrip class dia-

gram (except the operations). Additionally, there will be classes for operation calls and for

the snapshots. Each operation from the application model induces a class in the filmstrip

model. Furthermore, associations take care for proper ordered connections between snap-

shots and operations calls, for connections between snapshots and application objects, and

for ordered connections between application objects from different states which become

part of the respective snapshot object through composition links.

Example. The class diagram of the example filmstrip model is pictured in the upper

right part of Fig. 1. The application sequence diagram becomes the object diagram dis-

played in the lower right part in which four digits always refer to a year information. For

ease of understanding, we have chosen intuitive identifiers which reflect the development

of the involved objects (automatic techniques will choose identifiers like person1 or

person42). The snapshot objects represent the system state directly before or after an

operation call. The two operation call objects correspond to the two operation calls in

the sequence diagram. Each application object, i.e., each Person object, occurs again

and is sort of reborn in each new snapshot, but possible changes in object attributes or
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use> !create charles:Person

use> !set charles.gender:=#male

use> !create diana:Person

use> !set diana.gender:=#female

use> check

checking invariant ‘Person::traditionalRoles’: OK.

use> !openter diana marry(charles)

precondition ‘unmarriedDifferentGenders’ is true

use> !insert (diana,charles) Marriage

use> !opexit

postcondition ‘married’ is true

use> check

checking invariant ‘Person::traditionalRoles’: OK.

use> !openter charles divorce()

precondition ‘married’ is true

use> !delete (charles.wife,charles) Marriage

use> !opexit

postcondition ‘unmarried’ is true

use> check

checking invariant ‘Person::traditionalRoles’: OK.

Figure 3: Command line protocol of application model example sequence diagram.

association ends become effective in the result snapshot. The rebirth is recorded through

appropriate predecessor-successor aggregation links displayed with unfilled diamonds on

the predecessor side. The filmstrip object diagrams (following throughout the paper) will

always follow the same layout principles as used in Fig. 1: Snapshot and OpC objects

are placed in the left, Person objects in the right, and Marriage links will always have

a diagonal orientation from south-west to north-east.

Temporal object properties. Because in the filmstrip object diagram a complete application

state chain is available, the temporal development of application objects together with their

attribute and association end values can be traced and inspected. Temporal properties of

operation call sequences can be checked. Assumptions about valid and invalid sequences

and properties can be expressed.

Example. In the lower right of Fig. 1 an OCL query is stated and evaluated in the pre-

sented filmstrip object diagram. The OCL query searches for Person objects which later

become married to a husband and after that become divorced by checking that the previ-

ous husband does not posses a spouse in a later snapshot. The operation incarnations

yields the ordered set of objects representing the newer materializations of the argument

Person object. For example, the expression charles1977.incarnations() =

OrderedSet{charles1981, charles1996} will hold in the example.

Automatic checking of scenarios. In the literature, various approaches for the automatic

construction of object diagrams for a given UML and OCL class diagram have been put

forward. These techniques can be employed for the filmstrip model. Now, automatically
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Application model Filmstrip model

class → 1 : 1 → application class

∗ class Snapshot

attribute → 1 : 1 → attribute

operation (no return value) → ∆ → operation call class

operation self object → ∆ → operation call class attribute

operation parameter → ∆ → operation call class attribute

operation (with return value) → 1 : 1 → operation in application class

association → 1 : 1 → application association

∗ composition (Snapshot, application class)

∗ composition (Snapshot, operation call class)

∗ composition (operation call class, Snapshot)

∗ aggregation (application class, application class)

operation definition → 1 : 1 → operation definition

class invariant → 1 : 1 → application class invariant

∗ operation self object and parameter invariants

∗ filmstrip invariants

operation precondition → ∆ → operation call class invariant

operation postcondition → ∆ → operation call class invariant

Symbol explanation: → 1 : 1 → model element is included without changes

∗ new model element is created

→ ∆ → model element is included with changes applied

Figure 4: Overview on transformation from application model to filmstrip model.

constructing a filmstrip object diagram means for the application model to construct a

sequence diagram. Thus these techniques offer ways to automatically construct scenarios

which check issues about the system dynamics.

Example. Consider again the filmstrip object diagram in the lower right of Fig. 1. This

was the representation of a valid sequence diagram in the application model where all con-

straints were satisfied. One can now either manually or automatically introduce changes,

i.e., mutants [AS05, AV10], in the filmstrip object diagram and check whether the modi-

fied object diagram still corresponds to a valid sequence diagram in the application model.

For example, if we change in the filmstrip object diagram the gender attribute values

to diana1981.gender = #male and charles1981.gender = #female and

exchange the association ends in the Marriage link, we can ask whether all OCL con-

straints in the corresponding application model sequence diagram would still be satisfied.

3 Transforming Application Models to Filmstrip Models

Transformation of application to filmstrip models. Fig. 4 gives a more systematic overview

for the transformation. It displays in the left the source, in the right the target model el-

ements, and in the middle an indication how the target and the source are related. The

model elements are classified from top to bottom into elements connected to classes, ele-

ments connected to associations, and OCL descriptions.
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Transformation of classes. Every class and attribute from the application model becomes

a class and an attribute in the filmstrip model. There is one new class Snapshot in

the filmstrip model. We assume existing name clashes (e.g., if there is already a class

Snapshot in the application model) are resolved by renaming before the transformation

begins. Each application operation without return value becomes a class in the filmstrip

model. This new operation call class obtains an attribute aSelf which is typed by the

application class (also occurring in the filmstrip model) to which the operation originally

belonged. The parameters of the operation become attributes with respective types in

the filmstrip model. The filmstrip operation call classes are arranged by generalization

relationships into an inheritance hierarchy with class OpC at the top. The operations with

return value are directly embedded into the filmstrip model.

Example. Fig. 1 shows the inheritance hierarchy of the operation call classes. The op-

eration call classes marryC and divorceC inherit from PersonOpC which in turn

inherits from OpC. The C stands for ‘call’ and the OpC for ‘operation call’. The oper-

ation spouse() with return value remains in the class Person. There is a new class

Snapshot.

Transformation of associations. All application model associations become directly part

of the filmstrip model. New compositions and aggregations show up in the filmstrip model.

Two compositions from the Snapshot class and the operation call class OpC express that

an operation call leads from an argument snapshot to a result snapshot with an intermediate

operation call. Another composition expresses that every application object from the film-

strip model will be part of exactly one Snapshot object. Last, the rebirth of application

objects in newer snapshots will be expressed by aggregation links.

Example. Fig. 1 pictures two compositions which will be used for a connection between

a snapshot to the following operation call and for a connection from an operation call to a

following result snapshot. The composition between Snapshot and Person guarantees

that a Person object lives within exactly one Snapshot. Person objects will be

connected by (pred,succ) aggregation links to their later incarnations.

context marryC inv pre_unmarriedDifferentGenders:

let aSpouse:Person=self.aSpouse in

let self:Person=self.aSelf in

self.spouse()->isEmpty and aSpouse.spouse()->isEmpty

and Set{self.gender,aSpouse.gender} = Set{#female,#male}

context marryC inv post_married:

let aSpouse:Person=self.aSpouse.succ in

let self:Person=self.aSelf.succ in

Set{aSpouse}=self.spouse() and Set{self} = aSpouse.spouse()

context divorceC inv pre_married:

let self:Person=self.aSelf in self.spouse()->notEmpty

context divorceC inv post_unmarried:

let self:Person=self.aSelf.succ in self.spouse()->isEmpty

Figure 5: Result of transforming the application model constraints into filmstrip model constraints.
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Transformation of OCL descriptions. The transformation of OCL descriptions will be

divided into the handling of (a) operation definitions for operations with return value and

invariants, (b) operation preconditions, and (c) operation postconditions.

Transformation of operation definitions and invariants. Operation definitions with OCL

for operations with return values and invariants can become part of the filmstrip model

unchanged.

Example. The definition for op. spouse() and for invariant traditionalRoles

from Fig. 2 can be directly incorporated into the filmstrip model without change in com-

parison to the application model.

Transformation of preconditions. An application model precondition is transformed into

a filmstrip model invariant. OCL operation preconditions in the application model can

use a variable self (referring to the object on which the operation is called) and the

operation parameters. These variable names have to be introduced and have to be assigned

through the OCL let construct accordingly so that the original precondition text fits to

the filmstrip invariant context.

Example. In Fig. 5 the filmstrip invariant pre unmarriedDifferentGender rep-

resents the marry precondition. The variables self and aSpouse are assigned with

let expressions so that they afterwards refer to the Person object on which the op-

eration is called and the parameter aSpouse: self=self.aSelf and aSpouse=

self.aSpouse. This redefinition of self and aSpouse allows us to use the precon-

dition text of the original application model precondition.

Transformation of postconditions. The self variable and the operation parameters have

to be modified in postconditions analogously to the precondition. But expressions in post-

conditions refer to evaluations after an operations has been executed. Therefore, the self

variable and the operation parameters have to refer to the snapshot after operation execu-

tion. This is realized by adding to the expression the role expression succ. This means to

evaluate the respective expression in the snapshot after the operation execution. Accessing

precondition values has to be done if in the postcondition the OCL modifier @pre is used.

Example. In Fig. 5 the filmstrip invariant post married represents the marry post-

condition. The variables self and aSpouse are here in the postcondition additionally

modified with the succ role so that they refer to the Person object on which the op-

eration is called and the parameter aSpouse in the snapshot after operation execution:

self=self.aSelf.succ and aSpouse=self.aSpouse.succ. If a postcondi-

tion would refer to a value at operation precondition time as in self.gender@pre=

self.gender (for example, as a postcondition for marry or for divorce in order to

require that these operations do not change the gender attribute) this would lead to an

additional use of the role pred: self.pred.gender=self.gender.

Invariants for self objects and parameters. A bunch of filmstrip-specific invariants has

to be added to the model in order to make it work properly. The values of the attribute

aSelf for the object on which the operation is called and the values of the attributes for

the operation parameters must come from the snapshot before the operation execution.
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context PersonOpC inv aSelfInPred: (1)

pred=aSelf.snapshot

context marryC inv aSpouseInPred: (2)

pred=aSpouse.snapshot

context Person inv snapshotSucc_EQ_succSnapshot: (3)

succ->notEmpty implies snapshot.succ()=succ.snapshot

context Person inv linkEndsMarriageSameSnapshot: (4)

wife->notEmpty implies snapshot=wife.snapshot

context Snapshot inv predOrSuccNotEmpty: (5)

pred->notEmpty or succ->notEmpty

context Snapshot inv sameNumberOfParts: (6)

succ->notEmpty implies person->size=succ().person->size

context Snapshot inv oneFirstOneLast: (7)

Snapshot.allInstances->select(pred->isEmpty)->size=1 and

Snapshot.allInstances->select(succ->isEmpty)->size=1

context PersonOpC inv predObjectsBecomeSuccObjects: (8)

pred.person->forAll(p | succ.person->includes(p.succ))

Figure 6: Additional OCL constraints for the filmstrip model.

Example. In Fig. 6 the first two invariants aSelfInPred and aSpouseInPred guar-

antee that (1) in a Person operation call object possessing class PeronOpC, the attribute

aSelf refers to a Person object in the pred snapshot, i.e., the argument snapshot, and

that (2) the parameter aSpouse also comes from the pred snapshot.

Filmstrip invariants. In the lower part of Fig. 6 the invariants (3)-(8) for the filmstrip model

are shown, which represent further necessary requirements. These invariants guarantee

that (3) a person’s snapshot successor coincides with a person’s successor snapshot (c.f.

order between successor and snapshot), (4) the link ends of a Marriage belong to the

same snapshot, (5) a snapshot has a predecessor or a successor, (6) each snapshot has

the same number of Person objects, (7) there is one first and one last snapshot, and

(8) predecessor objects are connected to successor objects. These invariants represent

independent requirements and are needed for the construction of valid snapshots. We do

not discuss the formal details here.

We now have explained the concepts of the transformation from the application model to

the filmstrip model. The next section will show how dynamic application model scenar-

ios (test cases handling operation calls) can be studied in terms of object diagrams for the

filmstrip model.

4 Exploring Model Properties with Scenarios

Validation for UML and OCL. The validation and verification of UML and OCL models

with invariants has been studied in a number of approaches [RG00, CPC+04, CCR07,

ABGR10, RD11]. We have recently proposed the concepts of a transformation [KG12]
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Person_min = 9

Person_max = 9

Snapshot_min = 3

Snapshot_max = 3

marryC_min = 0

marryC_max = 0

divorceC_min = 2

divorceC_max = 2

Figure 7: Generated object diagram with two divorce calls and gender frame condition.

into relational logic [Jac06] on the basis of Kodkod [TJ07]. The transformation has been

implemented and integrated as a so-called model validator within our UML and OCL tool

USE [GBR07]. Through the automatic construction of object diagrams for filmstrip mod-

els, it is possible to prove that within a given particular search space certain operation call

sequences are allowed or impossible to be executed. The approach has a decent potential to

show general properties like constraint independence or consistency by finding examples

or to show the opposite through counterexamples. Constructing a scenario where all con-

straints are valid and all operations have been executed once means to prove consistency

of the invariants and the pre- and postconditions.

Configuration. The finite search space for object diagrams has to be described by config-

urations setting lower and upper bounds for the number of objects to be considered in a

class and (optionally) for the number of links in an association, among other parameters.

Additionally, OCL constraints may be loaded for the object diagram generation in order

to achieve object diagrams with particular properties. Such loaded invariants may also be

so-called frame conditions [BMR95]. A frame condition states which elements should not

change within a transition from a source state to a target state.

Example. The object diagram in Fig. 7 is the result of calling the model validator with the

displayed configuration and by additionally loading an invariant that guarantees that the

attribute gender does not change for a single person from snapshot to snapshot, a so-

called frame condition. All application invariants and all filmstrip invariants are satisfied

in this object diagram. Basically, this object diagram corresponds in terms of the appli-

cation model to a sequence diagram with two directly following calls for the operation

divorce. This object diagram validates resp. invalidates the divorce postcondition

which is too weak: The divorce postcondition on the one hand takes care of removing

the Marriage link between person5 and person2, but on the other hand it does allow

that the divorce operation inserts an additional Marriage link between person3 and

person4 in the result snapshot of the first divorce call. Roughly speaking, this object
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diagram points to the fact that according to the pre- and postconditions of divorce a

valid implementation could remove the Marriage link specified in the precondition and

in addition insert another Marriage link, however, not a marriage for the self object

as this is excluded by the divorce postcondition.

Dynamically loaded invariants. Additional invariants may be loaded during the validation

process. These invariants are observed during the object diagram generation process as

ordinary model invariants. These loaded invariants may be used to drive the object diagram

generation into a particular direction, e.g., for specifying frame conditions or for asserting

that objects or links with particular properties exist. These invariants may also be used to

configure the (imaginary) sequence diagram from the application model, e.g., for requiring

that certain operations are called in the first place or that one operation must be followed

by another one.

Example. The invariants in Fig. 8 are the dynamically loaded invariants which we employ

for our example. The first three are frame conditions which basically state that marry and

divorce do not change the attribute gender, and that marry and divorce do not

change any Marriage link except the link specified in the precondition of the respective

operation. The next two invariants determine the order of the applied operation: the in-

variant firstCallMarry requires that the operation marry takes place first, whereas

the invariant firstCallDivorce requires divorce to happen first. The invariant

noDirectReMarry forbids scenarios where a couple directly marries again after it has

been divorced.

context PersonOpC inv noGenderChange:

pred.person->forAll(p | p.gender=p.succ.gender)

context marryC inv noSpouseChangeExcept:

let except=Set{aSelf,aSpouse} in

(pred.person-except)->forAll(p | p.spouse()=p.succ.spouse())

context divorceC inv noSpouseChangeExcept:

let except=Set{aSelf}->union(aSelf.spouse()) in

(pred.person-except)->forAll(p | p.spouse()=p.succ.spouse())

context Snapshot inv firstCallMarry:

first().succ.oclIsTypeOf(marryC)

context Snapshot inv firstCallDivorce:

first().succ.oclIsTypeOf(divorceC)

context Person inv noDirectReMarry:

spouse()->notEmpty and succ.spouse()->isEmpty implies

succ.succ.spouse()<>spouse().succ.succ->asSet

Figure 8: Dynamically loaded invariants.

Example. The four different object diagrams in Fig. 9 (please check the nitpicking differ-

ences) show validation results with the same configuration, but with different loaded in-

variants in each case. The configuration requires exactly 9 Person objects, 3 Snapshot

objects, 1 marryC object and 1 divorceC object. The two left object diagrams were

achieved by dynamically loading invariant firstCallMarry, whereas for the two right
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Figure 9: Four different generated object diagrams with three snapshots.

Figure 10: Generated larger object diagram with OCL queries exploring system state properties.
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object diagrams the invariant firstCallDivorce was added. The two upper object

diagrams had no frame condition loaded, whereas for the two lower ones all three frame

conditions were added. Note that in the two upper object diagrams gender changes

take place spontaneously whereas the gender attribute does not change in the two lower

object diagrams.

Scenario property analysis. The approach allows to construct larger object diagrams and

to check properties of operation sequences with OCL expressions. One can express with

OCL expressions expected properties of operation call sequences. In the case of unex-

pected results one can again use OCL to trace the reason for the unforeseen finding.

Example. The configuration for the object diagram in Fig. 10 required exactly 7 snapshots

and 21 persons. The configuration was liberal with respect to the operation calls and

allowed between 0 and 6 objects for marryC and divorceC. All frame conditions were

loaded and the invariant noDirectReMarry was added in order to make the object

diagram more interesting. The first OCL expression in the right checks whether after a

divorce call always a marry call follows. The second OCL expression in the right

(exchanging the two operations) checks whether after a marry call always a divorce

call follows. The result of the first one is true, the result of the second one is false. In

order to understand the result false, the third OCL expression retrieves the ‘bad guys’

which violate the specified condition. The achieved result, the marryC object marryc4

and its behavior is detailed with the following two OCL expressions.

Pseudo-Temporal OCL queries. It is possible to state complex queries on a filmstrip object

diagram. Such queries can explore the complete scenario and can systematically collect

information in the scenario execution order. We call such a query a pseudo-temporal

OCL query, because on the one hand information from different points in time from the

application model is collected. On the other hand this is (currently) not done with explicit

temporal language features but with plain OCL elements.

5 Related Work

Filmstripping: Filmstripping in connection with models is not new. As far as we know,

the notion was coined nearly twenty years ago in [DW95] and later became an ingredient

of the Catalysis approach. In that paper, a filmstrip was understood as a ‘series of super-

posed snapshots illustrating the evolution of a system’s state through [a] scenario’. Later

[GK98] took up the filmstrip idea and employed filmstrips as part of three-dimensional

visualizations within software design. Inspired by the modeling of system dynamics using

an explicit signature for Time and a reflexive (predecessor,successor) ordering on Time

as proposed in [Jac06] for relational logic and Alloy, the approach in [KG08] used the

reflexive Time ordering in a UML and OCL context and employed central ideas for film-

strips. Analogously to our current proposal, [YFR08] sketched a transformation from an

application model to a filmstrip model (called snapshot model there), however the basic

links (the aggregation links between Person objects in our examples) for representing

incarnations of application objects were not present in that approach. Filmstrips have also

been recognized as a helpful device for functional testing [Cla09].
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Validation: As already mentioned in the introduction, a number of analysis techniques

exist for UML and OCL models. One of the first approaches emphasizing the importance

of validation for UML and in particular OCL was [RG00]. [CPC+04] extended these ideas

and focussed on validating metamodels. Further approaches rely on different technological

cornerstones like logic programming and constraint solving [CCR07], relational logic and

Alloy [ABGR10] or term rewriting with Maude [RD11]. In contrast to our proposal, these

approaches either do not support full OCL (e.g., higher-order associations [ABGR10] or

recursive operation definitions [CCR07] are not supported) or do not facilitate full OCL

syntax checks [RD11]. The aim of the work in [BW08] is not semi-automatic model val-

idation, but interactive proof support for OCL. [MRR11a, MRR11b] supports analysis of

structural models by extending the language for describing object diagrams with negative

examples and by defining class diagram features directly in terms of the relational logic

language Alloy. Negative conditions in object diagrams can be expressed in our approach

in OCL. Both approaches do not handle OCL or other forms of pre- and postconditions.

Temporal OCL: We have coined the notion of pseudo-temporal OCL expression above.

However, a number of extensions of OCL allow for temporal operators. A nice detailed

comparison can be found in [KT12]. [CT01] concentrated on temporal business rules

without giving a full semantic definition. [ZG03] defined the classical linear time tem-

poral operators without going into a possible implementation. [FM04] focussed on the

integration of time bounds in connection with temporal constructs. [SE09] defined tem-

poral OCL operators intended to be used for more general metamodels than UML-like

ones. [KT12] sketched an implementation of temporal OCL on the basis of Eclipse

MDT/OCL. [ALAFR13] takes TOCL expressions and evaluates them in state transition

systems – a similar form of filmstrip models using a more relational database-like ap-

proach. [BGKS13] introduces a CTL based extension of OCL. In contrast to these ap-

proaches our pseudo-temporal OCL expressions rely on our explicit filmstrip model and

are plain OCL expressions. Future work might consider ways to disguise these plain OCL

queries in temporal clothes and could integrate ideas from the mentioned proposals.

6 Conclusion

We have proposed a transformation from an application model with pre- and postcon-

ditions to an equivalent filmstrip model in which system dynamics is explicitly repre-

sented through snapshot and operation call objects in a single object diagram. Automatic

techniques for constructing system states can be employed to validate dynamic features.

Properties like consistency between the invariants and the pre- and postconditions can be

checked in a finite system state search space. Further properties like the occurrence of

operation call patterns can be explored with OCL.

Future work has to consolidate the approach with larger cases studies. The current user

options and interface must be improved in a number of ways, for example, by offering fur-

ther solutions after a first one for a given configuration has been found. Existing proposals

for extending OCL with temporal operators can be implemented because found object di-

agrams in the filmstrip model correspond to complete execution runs in the application

286



model. The efficiency of the search process must be improved, for example, by exploring

further optimizations for the generated relational logic formulas and by utilizing options

of the underlying SAT solvers. As our approach currently only implicitly covers object

generation and destruction, this has to be studied further. Last but not least, one can ex-

tract from the found filmstrip object diagrams, where the operation pre- and postconditions

are valid, proposals for the implementation of operations in terms of atomic system state

change commands covering link generation and destruction and attribute manipulation.

References

[ABGR10] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On Chal-
lenges of Model Transformation from UML to Alloy. Software and System Modeling,
9(1):69–86, 2010.

[ALAFR13] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray. An Ap-
proach to Analyzing Temporal Properties in UML Class Models. In MoDeVVa ’13,
2013.

[AS05] Bernhard K. Aichernig and Percy Antonio Pari Salas. Test Case Generation by OCL
Mutation and Constraint Solving. In QSIC 2005, pages 64–71. IEEE Computer Soci-
ety, 2005.

[AV10] Luciano C. Ascari and Silvia Regina Vergilio. Mutation Testing Based on OCL Spec-
ifications and Aspect Oriented Programming. In Sergio F. Ochoa, Federico Meza,
Domingo Mery, and Claudio Cubillos, editors, SCCC 2010, pages 43–50. IEEE Com-
puter Society, 2010.

[BGKS13] Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl. OCL meets
CTL: Towards CTL-Extended OCL Model Checking. In OCL ’13, 2013.

[BMR95] Alexander Borgida, John Mylopoulos, and Raymond Reiter. On the Frame Problem in
Procedure Specifications. IEEE Trans. Software Eng., 21(10):785–798, 1995.

[BW08] Achim D. Brucker and Burkhart Wolff. HOL-OCL: A Formal Proof Environment
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[CCR07] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: A Tool for the Formal
Verification of UML/OCL Models using Constraint Programming. In R. E. Kurt Stire-
walt, Alexander Egyed, and Bernd Fischer, editors, ASE 2007, pages 547–548. ACM,
2007.

[CG12] Jordi Cabot and Martin Gogolla. Object Constraint Language (OCL): A Definitive
Guide. In Marco Bernardo, Vittorio Cortellessa, and Alphonso Pierantonio, editors,
Proc. 12th Int. School Formal Methods for the Design of Computer, Communication
and Software Systems: Model-Driven Engineering, pages 58–90. Springer, Berlin,
LNCS 7320, 2012.

[Cla09] Tony Clark. Model Based Functional Testing Using Pattern Directed Filmstrips. In
Dimitris Dranidis, Stephen P. Masticola, and Paul A. Strooper, editors, AST 2009,
pages 53–61. IEEE, 2009.

[CPC+04] Dan Chiorean, Mihai Pasca, Adrian Cârcu, Cristian Botiza, and Sorin Moldovan. En-
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