
Behavior Modeling with Interaction Diagrams
in a UML and OCL Tool

Martin Gogolla, Lars Hamann, Frank Hilken, Matthias Sedlmeier, Quang Dung Nguyen
University of Bremen, Germany

{gogolla,lhamann,fhilken,ms,quang}@tzi.de

ABSTRACT
This contribution discusses system modeling with UML be-
havior diagrams. We consider statecharts and both kinds of
interaction diagrams, i.e., sequence and communication dia-
grams. We present new implementation features in a UML
and OCL modeling tool: (1) Sequence diagram lifelines are
extended with states from statecharts, and (2) communica-
tion diagrams are introduced as an alternative to sequence
diagrams. We assess the introduced features and propose a
systematic set of features which should be available in both
kinds of interaction diagrams. We emphasize the role that
OCL can play for such a feature set.

Categories and Subject Descriptors
D.2.2 [Software engineering]: Design Tools and Tech-
niques—Object-oriented design methods; D.2.4 [Software
engineering]: Software/Program Verification—Validation;
F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Design, Languages, Verification

Keywords
UML, OCL, Model behavior, Statechart diagram, Interac-
tion diagram, Sequence Diagram, Communication Diagram,
Model validation, Diagram view

1. INTRODUCTION
The Unified Modeling language (UML) has become a

de-facto standard for the graphical design of IT systems.
UML [14; 16] comprises language features for structural and
behavioral modeling. The textual Object Constraint Lan-
guage (OCL) as part of UML adds precision in form of
class invariants for restricting structural aspects and pre-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
BM-FA ’14, July 22 2014, York, United Kingdom
Copyright 2014 ACM 978-1-4503-2791-6/14/07 $15.00.
http://dx.doi.org/10.1145/2630768.2630774.

and postconditions for constraining behavioral ones, among
other uses of OCL [15; 17] within UML.

This contribution focuses on UML interaction diagrams
in form of sequence and communication diagrams. We in-
troduce new features for interactions in a UML tool and
discuss how the two interaction diagrams could be handled
in uniform way.

Since about 15 years our group is developing the UML and
OCL tool USE (UML-based Specification Environment).
USE [5; 6] originally started as a kind of OCL interpreter
with class, object and sequence diagrams available in the
tool from the beginning. Other behavioral diagrams have
been added over the last years, namely statechart diagrams
in form of protocol state machines and most recently com-
munication diagrams. USE claims to be useful for validation
and verification of UML and OCL models.

The structure of the rest of this paper is as follows. Sec-
tion 2 introduces a running example. Section 3 shows the
UML metamodel for interactions and sets the context for the
interaction diagram implementation within USE. Section 4
presents new features in sequence diagrams, and Sect. 5 dis-
cusses communication diagrams. Section 6 proposes a sys-
tematic set of features that could be available in both in-
teraction diagrams. Section 7 compares our approach to
related papers. The contribution is closed in Sect. 8 with
concluding remarks and future work.

2. RUNNING EXAMPLE
This section explains a running example which is used

throughout the paper. In Fig. 1, a small, abstract version
of Toll Collect1 is shown. Toll Collect is a tolling system
for trucks on German motorways. In the figure, the follow-
ing USE features are employed: (a) a class diagram with two
classes, (b) two statecharts (two protocol state machines) for
each of the classes, (c) one object diagram, (d) one list of
commands representing a scenario (test case), and the eval-
uation of (e) the class invariants and (f) a stated OCL query
expression in the system state that is reached by executing
the command list. The reached system state is characterized
by the object diagram.

The class diagram consists of a part responsible for build-
ing up the motorway connections (basically Point, Connec-
tion, northConnect(Point), southConnect(Point)) and a
part for managing trucks and journeys (basically Truck,
Current, enter(Point), move(Point), pay(Integer)). The
model includes three OCL class invariants (restricting sys-

1www.toll-collect.de/en/home.html

Figure 1: Example model Toll Collect.

Truck::move(target:Point)
begin
self.trips:=self.trips->including(target);
self.debt:=self.debt+1;
delete (self,self.current) from Current;
insert (self,target) into Current;
end

pre currentExists:
self.current->notEmpty

pre targetReachable:
self.current.north->union(self.current.south)
->includes(target)

post debtIncreased:
self.debt@pre+1=self.debt

post tripsUpdated:
self.trips@pre->including(target)=self.trips

post currentAssigned:
target=self.current

post allTruckInvs:
numIsKey()

Figure 2: Example of operation implementation and
pre- and postconditions.

Figure 3: Command list for used interaction
diagrams.

tem structure) and a number of OCL operation contracts
in form of pre- and postconditions (restricting system be-
havior). Apart from the above used standard UML descrip-
tions, the operations are implemented in a Simple Ocl-like
Imperative programming Language (SOIL). An example for
an operation contract and an operation implementation in
SOIL [1] is shown in Fig. 2.

In Fig. 3, we show a longer command list where the sin-
gle commands either generate objects with a specified ob-
ject identity or call operations on generated objects. This
command list and the commands determined by the respec-
tive operation implementation in SOIL are used in the fol-
lowing as the basis for the discussed interaction diagrams.
This command list represents one test case, and this test
case shows the consistency of the operation contracts in the
sense that at least one scenario is possible where all oper-
ations are called (and thus all pre- and postconditions are
valid) and all invariants are valid at times when no opera-
tion is active. The considered motorway connections are a
toy example with the largest German towns Hamburg (hh),
Berlin (b), and Munich (m). A slighty larger motorway ex-
ample allowing to travel between western and eastern points
as well is shown in Fig. 7. The complete USE model is given
in the Appendix.

3. VALIDATION AND VERIFICATION
WITH USE

OCL can be employed in USE for various tasks: in
class diagrams for (a) class invariants, (b) operation con-
tracts, (c) attribute and association derivation rules, and
(d) attribute initializations; in protocol state machines for
(e) state invariants and (f) transition pre- and postcondi-
tions; furthermore for (g) ad-hoc OCL queries in object di-
agrams, and for (h) expressions within SOIL. In USE, class
diagrams and protocol machines enriched by invariants, op-
eration contracts, statechart constraints and SOIL operation
implementations determine system structure and behavior.
Sequence and communication diagrams are employed in USE
for visualizing and analyzing specified test cases in form of
scenarios. Interaction diagrams are not used for restricting
system behavior, but to document, analyze, and understand
the interactions. These diagrams are built after a com-
plete model including the SOIL operation implementation
has been constructed, and thus there is no need to include
loops or conditionals, for example, in sequence diagrams.

The overall aim of USE is to support development by rea-
soning about the model through (a) validation, i.e., checking
informal expectations against formally given properties, for
example, by stating OCL queries against a reached system
state (object diagram) and (b) verification, i.e., checking
formal properties of the model, for example by consider-
ing model consistency or the independence of invariants as
in [5]. That contribution also shows how USE supports mak-
ing deductions from the stated model on the basis of a fi-
nite search space of possible system states (object diagrams).
Such checks are realized in form of positive and negative sce-
narios which can be thought of as being test cases for the
system under consideration. Thus USE supports the devel-
opment of tests.

In OCL operations contracts, pre- and postconditions can
be general OCL formulas. In postconditions, one can refer
with @pre to attribute and association end values at pre-

condition time. Postconditions can state general require-
ments and are not restricted to the specification of changes
to attribute and association end values. Thus the actual
changes made by the operation are described in SOIL and
are checked against the contract. Concerning the protocol
state machines, concurrency is currently not supported, and
operation call sequences which do not fit to the protocol
are rejected. The definition of protocol state machines is
optional.

4. UML METAMODEL FOR
INTERACTIONS

The interactions part of the UML metamodel2 [14, p.
473ff.] was developed to visualize concrete traces of event
occurrences and in addition to allow the definition of all
possible traces of an interaction. The former can be used
in early design stages to be able to communicate with de-
signers and to some extend with stakeholders. A concrete
trace does not show alternatives or loop constructs, because
it describes a single message trace (or command trace) in the
system. Elements like alternatives or loops can be used in
later design phases to express all possible traces (c. f. [14, p.
473]). Interactions can be visualized by different diagrams.
Two of the more common ones are sequence diagrams and
communication diagrams. Both diagrams focus on slightly
different aspects of interactions. While sequence diagrams
highlight the time line of an interaction, communication di-
agrams focus on the different elements participating in an
interaction and their relationship.

Figure 4 shows an excerpt of the UML metamodel required
to briefly discuss the representation of event occurrences in-
side interaction diagrams. A more detailed presentation can,
for example, be found in [11]. On the right side of this fig-
ure, meta classes from the structural modeling part of the
UML are shown. These are needed to completely model
message occurrences. On the left side, the relevant parts of
the interaction meta classes are shown. Consider the occur-
rence of the message enter(hh) shown in the forthcoming
sequence diagram in Fig. 6 and in the (forthcoming) com-
munication diagram in Fig. 8. This part of both diagrams
can be expressed as an object diagram of the metamodel,
as it is done in Fig. 5. Again, on the right side the struc-
tural part is shown, e. g., the two classes which participate in
the message occurrence: Truck as the class of the receiving
instance3 and Point which is used as the type of the param-
eter of the operation enter. Further, both instances used in
the interaction diagrams (freds_scania and hh) are placed
there, too. On the left side, the example scenario is given
as an instance of Interaction. Since we consider the single
message occurrence enter(hh), the object diagram contains
few interaction related instances. First, the Gate gSend acts
as the source of the message occurrence. It is linked to
the interaction as a formal gate to signal the source of the

2UML metamodel novices might skip this section on first
reading and continue with the next section. UML meta-
model followers are invited to dive deep.
3In the current version of the UML metamodel, a lifeline
can only represent connectable elements like properties or
parameters. Since our tool allows a lifeline to represent a
concrete instance, this fact cannot be expressed using the
current UML metamodel. This is an open issue reported to
the OMG [4].

Figure 6: Sequence diagram with statechart states
on lifeline (some details suppressed).

event is outside of this interaction. The receiving end of
the message is represented by the instance recEnter of type
MessageOccurenceSpecification. This instance is linked
to the Lifeline named freds_scania:Truck. The payload
of the message mEnter is given by the InstanceValue argu-
ment linked to the instance hh of the class Point.

5. SEQUENCE DIAGRAMS
As USE allows the developer to employ UML protocol

machines to restrict the model behavior and to document
test scenarios with sequence diagrams, it is desirable to show
the protocol machine state of objects on sequence diagram
lifelines, when the developer thinks this may be useful. Thus
we have implemented this option for lifelines.

In Fig. 6, a fraction of the test scenario from Fig. 3 is
displayed. We have manually selected the lifeline of only
two Point objects and one Truck object and have activated
the display of states from protocol state machines. For ex-
ample, one can directly trace the development of the Truck

object and the state changing through operation calls with
init(..), enter(..), move(..), pay(..), bye(): from born

to noDebt to debt and then again to noDebt. In the case
that more money has been paid than is needed for paying
the journey, the operation bye returns the overpayment.

Figure 7: Example for motorway connections.

6. COMMUNICATION DIAGRAMS
Figure 8 shows the communication diagram representing

the messages from the test scenario in Fig. 3 and additionally
all messages that are executed within the operation calls by
the SOIL implementation. As usual in communication dia-
grams, the ordering of messages is determined by message
numbers, and sub-messages (i.e., messages that are triggered
by one message) are displayed by a structured message num-
ber with a dot as separator. For example, message 18 has the
sub-messages 18.1, 18.2, and 18.3, i.e., the enter(b) call on
the Truck object angies_benz is implemented by a link in-
sertion (18.1) in association Current, an assignment (18.2)
for attribute dept and an assignment (18.3) for attribute
trips. As usual in communication diagrams, the specifica-
tions new, transient, resp. destroyed refer to objects that
are newly introduced, newly introduced and deleted, resp.
deleted during the interaction.

The relationship to the sequence diagram in Fig. 6 has
been indicated manually by messages that are lying inside
‘clouds’. These eight ‘clouded’ messages correspond to the
eight messages in the sequence diagram.

The following five communication diagrams show selecting
views on the complete interaction from Fig. 8 where one
particular aspect is emphasized in each diagram.

1. Figure 9 restricts the messages according to a message
number interval: only the messages 9 to 15 and its
sub-messages are stated. This part of the interaction
handles the first Truck object and shows its initializa-
tion and movements.

2. Figure 10 presents a view on the complete interac-
tion along a different dimension than message num-
bers. Only messages concerning a particular message
kind are displayed, in this diagram the insertion and
deletion of links. As in UML different message kinds
are available, such a restriction can be useful. In USE

Figure 4: Relevant parts of the UML interactions metamodel.

mEnter:Message
name='enter(hh)'
visibility=#public
/qualifiedName='aScenario::enter(hh)'
messageKind=#complete
messageSort=#synchCall

gSend:Gate
name='sendEnter'
visibility=#public
/qualifiedName='aScenario::sendEnter'

valHH:InstanceValue
name=Undefined
visibility=#public
/qualifiedName=Undefined

ia:Interaction
name='aScenario'
visibility=#public
/qualifiedName='aScenario'
isLeaf=Undefined
isAbstract=false
isFinalSpecialization=false
isReentrant=Undefined

clsTruck:Class
name='Truck'
visibility=#public
/qualifiedName='Truck'
isLeaf=false
isAbstract=false
isFinalSpecialization=false

llFS:Lifeline
name='freds_scania:Truck'
visibility=#public
/qualifiedName='aScenario::freds_scania:Truck'

iFS:InstanceSpecification
name='freds_scania'
visibility=#public
/qualifiedName='freds_scania'

clsPoint:Class
name='Point'
visibility=#public
/qualifiedName='Point'
isLeaf=false
isAbstract=false
isFinalSpecialization=false

parPoint:Parameter
name='target'
visibility=#public
/qualifiedName='target'
isOrdered=false
isUnique=false
lower=1
upper=1
direction=#_in
default=Undefined

opEnter:Operation
name='enter'
visibility=#public
/qualifiedName='Truck::enter'
isLeaf=false
isStatic=false
isQuery=false
isOrdered=false
isUnique=false
lower=0
upper=1

pHH:InstanceSpecification
name='hh'
visibility=#public
/qualifiedName='hh'

recEnter:MessageOccurrenceSpecification
name='recEnter'
visibility=#public
/qualifiedName='recEnter'

classifier

classifier

instance

signature

receiveEvent

endMessageReceive

sendEvent

endMessageSend

covered

events {ordered}

type

typedElement

ownedOperation

formalGate

argument {ordered}

ownedParameter
{ordered}

Figure 5: Send message event as an instance of the UML metamodel.

we currently support the following message kinds: ob-
ject creation, object destruction, link creation, link de-
struction, attribute assignment, and operation call.

3. Figure 11 makes a selection in the communication di-
agram with the help of an OCL expression. In this
case the OCL expression picks a Truck object together
with the Point objects that are visited. The result
is typed as Set(OclAny) because objects of different
classes show up. All messages between the selected
objects are shown. This object and message selection
cannot be achieved with a message number interval or
a message kind specification.

4. Figure 12 gives a second example for an OCL selection.
Here, a Point object is selected that serves as the end
point for the trips of a first Truck and as a start point
for the trips of a second Truck. Additionally, the trucks
visiting the selected Point are shown.

5. Figure 13 is the third OCL selection in a communica-
tion diagram. Adjacent Point objects (adjacent with
respect to the underlying motorway), on which at least
two different trucks travel, are caught.

The selection features shown in the communication di-
agrams in Figs. 8, 11, 12, and 13 are currently imple-
mented (modulo some required improvements in the
user interface). The features in Figs. 9 and 10 have to
be implemented in future work.

7. SYSTEMATIC FEATURE SET FOR
VIEWS IN UML INTERACTIONS AND
FURTHER USE OF OCL

Currently, the selection features for UML sequence and
communication diagrams in our tool USE are different. This
is due to the fact that the design and implementation has
been done at different times with different people involved.
Our plan is to unify the selection features and offer a unified
view mechanism for both interaction diagrams. We cur-
rently identify the following options.

Selection focusing on objects: Objects could be se-
lected through the following possibilities:

1. Interactive hide or show for objects.

2. Objects satisfying resp. violating an OCL invariant
during interaction.

3. Objects satisfying resp. violating an ad-hoc OCL for-
mula during interaction.

Selection focusing on messages: Messages could be
selected through the following possibilities:

1. Interactive hide or show for messages.

2. Selection through an OCL object query identifying the
sending object.

3. Selection through a satisfied resp. violated OCL pre-
or postcondition.

4. Selection through a satisfied resp. violated ad-hoc
OCL formula at pre- or postcondition time during an
operation call.

5. Selection by message kind: object creation, object de-
struction, link insertion, link deletion, attribute assign-
ment, operation call.

6. Selection by message number depth.

7. Determination of a message interval defined by

(a) interactively fixed start message and end message.

(b) start OCL formula and end OCL formula.

(c) a statechart start state and a statechart end state
for a fixed object.

The OCL expressions that we employ in communication
diagrams are currently working on the last system state.
However, the communication diagram contains information
that is not selectable using plain OCL in this way, i.e., re-
moved objects and links in general. For example the OCL
expression allInstances() to select all instances of a class
will not select transient or destroyed objects, yet they are
still displayed in the communication diagram.

Consequently, to get full access to the elements in the
communication diagram, the semantics of OCL has to be
extended. First, it is desired to access the system pre- and
post states of each message to get access to all time steps
of the communication diagram. In addition, access to the
elements of a range of messages or the global sequence of
messages is helpful for the selection. Temporal extensions
for OCL often include functionality to formulate expression
about the past (see e.g. [19]) and can be considered to be
integrated.

The temporal extension of OCL would not only improve
the selection of elements in the GUI. The access to the new
properties increases the possibilities of validation tasks for-
mulated on the communication diagram. An example show-
ing a validation task, already possible with the current form
of the OCL selection is shown in Fig. 12. The query se-
lects those navigation points, at which one truck finishes
its trip and another truck begins its trip. Currently, this
query utilizes the attribute trips, which saves the points a
truck passes on the road network and thus make historical
information available in the latest system state. With the
extensions to OCL, this information is accessible without
extra attributes in the communication diagram. To do so,
the links that either are currently (in the latest system state)
and those who were connected to the points previously could
be analyzed together.

Another example is the selection of all points that are used
multiple times. The corresponding communication diagram
and the query is shown in Fig. 13. The functionality of the
expression w.r.t. historical information is analogous to the
previous example.

8. RELATED WORK
Behavior modeling with UML interactions has relation-

ships to other important approaches. A definition of the
UML interaction semantics in terms of the System Model
can be found in [2]. In [8], a comparison between software
model verification approaches using OCL and UML interac-
tion diagrams among others is performed. The work in [12]
focuses on the interaction problem in the context of aspect-
oriented programming. It explains how Aspect-UML can be

Figure 8: Communication diagram with all details displayed (‘clouded’ messages also in Fig 6).

Figure 9: Communication diagram displaying only messages 9-15.

Figure 10: Communication diagram displaying only link insertion and deletion.

Figure 11: Communication diagram with OCL selection for truck object by identity.

Figure 12: Communication diagram with OCL selection for trucks with coinciding last and first point on trip.

Figure 13: Communication diagram with OCL selection for point connection used twice.

translated into Alloy and shows how to verify aspect inter-
actions with Alloy’s model analyzer. In [13], the synthesis of
test cases from UML interaction diagrams by a systematic
interpretation of flow of controls is discussed. Improvements
to the UML interaction metamodel concerning message ar-
guments and loops are proposed and demonstrated in [18].
The approach in [10] is strongly related to the USE approach
because of the emphasis on protocol modeling. That work
is however closer to programming through the use of Java,
whereas we are closer to modeling because of using OCL.
The proposals in [3; 9] discuss test case generation from
interaction diagrams. Our approach is the only one that
employs OCL for selecting relevant parts in the interactions
under consideration. The current work differs from our pre-
vious contributions (like [5; 6]) in that we did not consider
sequence diagrams with statechart states on lifelines or com-
munication diagrams at all.

9. CONCLUSION
This contribution has discussed how to handle UML inter-

action diagrams in a model validation tool and has pointed
to the link between protocol machine and interaction dia-
grams. We have set up a desirable feature set for both kinds
of UML interaction diagrams, namely sequence and commu-
nication diagrams.

Future work has to complete our current implementation
with the missing features in both interaction diagrams. In
particular, message selection and message interval selection
seem to offer useful analysis options. We have discussed how
to extend the options for interaction analysis with temporal
OCL query features. Larger examples and case studies need
to validate the already existing and planned features for bet-
ter support of interaction diagrams that advance behavioral
modeling.

References
[1] F. Büttner and M. Gogolla. Modular Embedding

of the Object Constraint Language into a Program-
ming Language. In A. Simao and C. Morgan, edi-
tors, Proc. 14th Brazilian Symposium on Formal Meth-
ods (SBMF’2011), pages 124–139. Springer, Berlin,
LNCS 7021, 2011.

[2] D. Calegari, M. V. Cengarle, and N. Szasz. UML 2.0
Interactions with OCL/RT Constraints. In FDL, pages
167–172. IEEE, 2008.

[3] H. Y. Chen, C. Li, and T. H. Tse. Transformation of
UML Interaction Diagrams into Contract Specifications
for Object-oriented Testing. In IEEE [7], pages 1298–
1303.

[4] M. M. J. Chonoles. Issue 15123: Sequence Di-
agram and Communication Diagrams should
Support Instances as Lifelines (uml2-rtf), Mar.
2010. http://www.omg.org/issues/uml2-

rtf.html#Issue15123.

[5] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-
Based Specification Environment for Validating UML
and OCL. Science of Computer Programming, 69:27–
34, 2007.

[6] L. Hamann, O. Hofrichter, and M. Gogolla. Towards
Integrated Structure and Behavior Modeling with OCL.
In R. France, J. Kazmeier, R. Breu, and C. Atkinson,
editors, Proc. 15th Int. Conf. Model Driven Engineering
Languages and Systems (MoDELS’2012), pages 235–
251. Springer, Berlin, LNCS 7590, 2012.

[7] IEEE, editor. Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Mon-
tréal, Canada, 7-10 October 2007. IEEE, 2007.

[8] A. Knapp and J. Wuttke. Model Checking of UML
2.0 Interactions. In T. Kühne, editor, MoDELS Work-
shops, volume 4364 of Lecture Notes in Computer Sci-
ence, pages 42–51. Springer, 2006.

[9] P. D. L. Machado, J. C. A. de Figueiredo, E. F. A. Lima,
A. E. V. Barbosa, and H. S. Lima. Component-based
Integration Testing from UML Interaction Diagrams.
In IEEE [7], pages 2679–2686.

[10] A. T. McNeile and N. Simons. Protocol Modelling:
A Modelling Approach that Supports Reusable Be-
havioural Abstractions. Software and System Modeling,
5(1):91–107, 2006.

[11] Z. Micskei and H. Waeselynck. The Many Meanings
of UML2 Sequence Diagrams: A Survey. Software &
Systems Modeling, 10(4):489–514, 2011.

[12] F. Mostefaoui and J. Vachon. Design-Level Detection of
Interactions in Aspect-UML Models Using Alloy. Jour-
nal of Object Technology, 6(7):137–165, 2007.

[13] A. Nayak and D. Samanta. Model-based Test Cases
Synthesis using UML Interaction Diagrams. ACM SIG-
SOFT Software Engineering Notes, 34(2):1–10, 2009.

[14] OMG, editor. UML Superstructure 2.4.1. Object Man-
agement Group (OMG), Aug. 2011.

[15] OMG, editor. Object Constraint Language, Ver-
sion 2.3.1. OMG, 2012. OMG Document, www.omg.org.

[16] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language 2.0 Reference Manual. Addison-
Wesley, Reading, 2003.

[17] J. Warmer and A. Kleppe. The Object Constraint Lan-
guage: Precise Modeling with UML. Addison-Wesley,
2003. 2nd Edition.

[18] M.-F. Wendland, M. Schneider, and Ø. Haugen. Evo-
lution of the UML Interactions Metamodel. In A. Mor-
eira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke,
editors, MoDELS, volume 8107 of Lecture Notes in
Computer Science, pages 405–421. Springer, 2013.

[19] P. Ziemann and M. Gogolla. OCL Extended with
Temporal Logic. In M. Broy and A. Zamulin, ed-
itors, 5th Int. Conf. Perspectives of System Infor-
matics (PSI’2003), pages 351–357. Springer, Berlin,
LNCS 2890, 2003.

Appendix: Complete USE model for
Toll Collect
-- model TollCollect
model TollCollect
-- class Truck
class Truck
attributes

num:String init: ’’
trips:Sequence(Point) init: Sequence{}
debt:Integer init: 0

operations
init(aNum:String)

begin self.num:=aNum end
enter(entry:Point)

begin insert (self,entry) into Current; self.debt:=1;
self.trips:=self.trips->including(self.current) end

move(target:Point)
begin self.trips:=self.trips->including(target);
self.debt:=self.debt+1; delete (self,self.current) from Current;
insert (self,target) into Current end

pay(amount:Integer)
begin self.debt:=self.debt-amount end

bye():Integer
begin delete (self,self.current) from Current;
result:=self.debt.abs(); self.debt:=0 end

--
numIsKey():Boolean=

Truck.allInstances->forAll(self,self2|
self<>self2 implies self.num<>self2.num)

--
statemachines

psm TruckLife
states

prenatal:initial
born [num=’’]
noDebt [num<>’’ and current->isEmpty]
debt [num<>’’ and current->notEmpty]

transitions
prenatal -> born { create }
born -> noDebt { init() }
noDebt -> debt { enter() }
debt -> debt { move() }
debt -> debt { pay() }
debt -> noDebt { bye() }

end
end
-- class Point
class Point
attributes

name:String init: ’’
isJunction:Boolean derived: north->union(south)->size()>=2

operations
init(aName:String)

begin self.name:=aName end
northConnect(aNorth:Point)

begin insert (aNorth,self) into Connection end
southConnect(aSouth:Point)

begin insert (self,aSouth) into Connection end
--
northPlus():Set(Point)=Set{self}->closure(p|p.north)
southPlus():Set(Point)=Set{self}->closure(p|p.south)
--
nameIsKey():Boolean=

Point.allInstances->forAll(self,self2|
self<>self2 implies self.name<>self2.name)

noCycles():Boolean=
Point.allInstances->forAll(self|
not(self.northPlus()->includes(self)))

--
statemachines

psm PointLife
states

prenatal:initial
born [name=’’]
growing [name<>’’]

transitions
prenatal -> born { create }
born -> growing { init() }
growing -> growing { northConnect() }
growing -> growing { southConnect() }

end

end
-- association Current
association Current between

Truck[0..*] role truck
Point[0..1] role current

end
--- association Connection
association Connection between

Point[0..*] role north
Point[0..*] role south

end
-- constraints
constraints
--- invariants
context Truck inv numIsKeyInv:

numIsKey()
context Point inv nameIsKeyInv:

nameIsKey()
context Point inv noCyclesInv:

noCycles()
-- Point::init
context Point::init(aName:String)
pre freshPoint:

self.name=’’ and self.north->isEmpty and self.south->isEmpty
pre aNameOk:

aName<>’’ and aName<>null
post nameAssigned:

aName=self.name
post allPointInvs:

nameIsKey() and noCycles()
-- Point::northConnect
context Point::northConnect(aNorth:Point)
pre aNorthDefined:

aNorth.isDefined
pre freshConnection:

self.north->excludes(aNorth) and self.south->excludes(aNorth)
pre notSelfLink:

self<>aNorth
pre noCycleIntroduced:

aNorth.northPlus()->excludes(self)
post connectionAssigned:

self.north->includes(aNorth)
post allPointInvs:

nameIsKey() and noCycles()
-- Truck::init
context Point::southConnect(aSouth:Point)
pre aSouthDefined:

aSouth.isDefined
pre freshConnection:

self.south->excludes(aSouth) and self.south->excludes(aSouth)
pre notSelfLink:

self<>aSouth
pre noCycleIntroduced:

aSouth.southPlus()->excludes(self)
post connectionAssigned:

self.south->includes(aSouth)
post allPointInvs:

nameIsKey() and noCycles()
-- Truck::init
context Truck::init(aNum:String)
pre freshTruck:

self.num=’’ and self.trips=Sequence{} and self.debt=0 and
self.current->isEmpty

pre aNumOk:
aNum<>’’ and aNum<>null

post numAssigned:
aNum=self.num

post allTruckInvs:
numIsKey()

--- Truck::enter
context Truck::enter(entry:Point)
pre noDebt:

0=self.debt
pre currentEmpty:

self.current->isEmpty
pre entryOk:

entry<>null
post debtAssigned:

1=self.debt
post currentAssigned:

entry=self.current
post allTruckInvs:

numIsKey()

-- Truck::move
context Truck::move(target:Point)
pre currentExists:

self.current->notEmpty
pre targetReachable:

self.current.north->union(self.current.south)->includes(target)
post debtIncreased:

self.debt@pre+1=self.debt
post tripsUpdated:

self.trips@pre->including(target)=self.trips
post currentAssigned:

target=self.current
post allTruckInvs:

numIsKey()
--- Truck::pay
context Truck::pay(amount:Integer)
pre amountPositive:

amount>0
pre currentExists:

self.current->notEmpty
post debtReduced:

(self.debt@pre-amount)=(self.debt)
post allTruckInvs:

numIsKey()
--- Truck::bye
context Truck::bye():Integer
pre currentExists:

self.current->notEmpty
pre noDebt:

self.debt<=0
post resultEqualsOverPayment:

self.debt@pre.abs()=result
post zeroDebt:

self.debt=0
post currentEmpty:

self.current->isEmpty
post allTruckInvs:

numIsKey()
--

