
Initiating a Benchmark for

UML and OCL Analysis Tools

Martin Gogolla(A), Fabian Büttner(B)⋆, Jordi Cabot(B)

University of Bremen, Germany(A),
AtlanMod, École des Mines de Nantes - INRIA, LINA, France(B)

Abstract. The Object Constraint Language (OCL) is becoming more
and more popular for model-based engineering, in particular for the de-
velopment of models and model transformations. OCL is supported by
a variety of analysis tools having different scopes, aims and technologi-
cal corner stones. The spectrum ranges from treating issues concerning
formal proof techniques to testing approaches, from validation to verifi-
cation, and from logic programming and rewriting to SAT-based tech-
nologies. This paper is a first step towards a well-founded benchmark
for assessing validation and verification techniques on UML and OCL
models. The paper puts forward a set of UML and OCL models together
with particular questions for these models roughly characterized by the
notions consistency, independence, consequences, and reachability. The
paper sketches how these questions are handled by two OCL tools, USE
and EMFtoCSP. The claim of the paper is not to present a complete
benchmark right now. The paper is intended to initiate the development
of further UML and OCL models and accompanying questions within
the UML and OCL community. The OCL community is invited to check
the presented UML and OCL models with their approaches and tools
and to contribute further models and questions which emphasize the
possibilities offered by their own tools.

1 Introduction

Model-driven engineering (MDE) as a paradigm for software development is gain-
ing more and more importance. Models and model transformations are central
notions in modeling languages like UML, SysML, or EMF and transformation
languages like QVT or ATL. In these approaches, the Object Constraint Lan-
guage (OCL) can be employed for expressing constraints and operations, thus
OCL plays a central role in MDE. A variety of OCL tools is currently available,
but it is an open issue how to compare these tools and how to support devel-
opers in choosing the OCL tool appropriate for their project. This paper puts
forward a set of UML and OCL models together with particular questions for
these models. This set of models is intended to be a first version of an OCL
analysis tool benchmark to be developed within the OCL and UML community.

⋆ This research was partially funded by the Nouvelles Eq́uipes program of the Pays
de la Loire region (France).

1

The current benchmark consists of four UML and OCL models: CivilStatus (CS),
WritesReviews (WR), DisjointSubclasses (DS), and ObjectsAsIntegers (OAI).
These models employ and emphasize different UML and OCL language fea-
tures and pose different computational challenges for the analysis tools and
their underlying technologies like provers, solvers, or finders: Plain invariants
and enumerations in CS, association multiplicities in WR, classifier generaliza-
tion in DS, and recursive operation definitions with inherited association ends
and constraints in OAI. The accompanying questions can be roughly character-
ized by the partly overlapping notions consistency, independence, consequences,
and reachability: under the label ‘consistency’ we discuss whether there exist
object diagrams for the model at all, ‘independence’ concentrates on whether
the invariants are non-redundant, ‘consequences’ studies how to formally deduce
new properties from the explicitly stated ones, and ‘reachability’ focuses on how
to characterize all object diagrams of a model and how to construct an object di-
agram with stated properties. The benchmark does not expect that all questions
can be fully answered by a considered tool, but it expects that it is discussed to
what extent and in which direction an approach or tool can help to answer the
question.

The structure of the rest of this paper is as follows. The next section gives a short
introduction to OCL. Section 3 introduces the first version of our benchmark.
Four example models with accompanying questions are introduced. As a proof
of concept for the applicability of the models, Sect. 4 and Sect. 5 show how these
models and questions are handled by two concrete tools and how the models must
be fine-tuned to become processable by the respective tool, if needed. These two
tools have been selected to illustrate how the models can be used to evaluate
tools. Section 6 puts forward a list of topics that could be addressed in future
work. Section 7 discusses related work and some (not all) approaches suitable to
be subject to an OCL analysis tool benchmark. The paper is finished in Sect. 8
with concluding remarks. Furthermore, the paper is extended by an additional
document [14] in which all models are detailed in the formats .use and .ecore

and all details of the benchmark examples for the tools USE and EMFtoCSP
are made available.

2 OCL in 5 Minutes

The Object Constrains Language (OCL) is a textual, descriptive expression lan-
guage. OCL is side effect free and is mainly used for phrasing constraints and
queries in object-oriented models. Most OCL expressions rely on a class model
which is expressed in a graphical modeling language like UML, MOF or EMF.
The central concepts in OCL are objects, object navigation, collections, collec-
tion operations and boolean-valued expressions, i.e., formulas. Let us consider
these concepts in connection with the object diagram in Fig. 1 which belongs to
the class diagram in Fig. 3. This class diagram captures part of the submission
and reviewing process of conference papers. A more detailed description of the
class diagram and the corresponding constraints is given later in Section 2.2.

2

Fig. 1. Object Diagram for WR

The class diagram defines classes with attributes (and operations, not used in
this example) and associations with roles and multiplicities which restrict the
number of possible connected objects.

Objects: An OCL expression will often begin with an object literal or an object
variable. For the system state represented in the object diagram, one can
use the objects ada,bob,cyd of type Researcher and sub 17,sub 18 of
type Paper. Furthermore variables like p:Paper and r:Researcher can be
employed.

Object navigation: Object navigation is realized by using role names from as-
sociations (or object-valued attributes, not occurring in this example) which
are applied to objects or object collections. In the example, the following
navigation expressions can be stated. The first line shows the OCL expres-
sion and the second line the evaluation result and the type of the expression
and the result.

bob.manuscript

sub_17 : Paper

bob.manuscript.referee

Set{ada} : Set(Researcher)

cyd.manuscript.referee.manuscript.referee

Bag{ada} : Bag(Researcher)

sub_17.author->union(sub_17.referee)

Set{ada,bob} : Set(Researcher)

Collections: Collections can be employed in OCL to merge different elements
into a single structure containing the elements. There are four collection
kinds: sets, bags, sequences and ordered sets. Sets and ordered sets can con-
tain an elements at most once, whereas bags and sequences may contain an
element more than once. In sets and bags the element order is insignificant,
whereas sequences and ordered sets are sensitive to the element order. For

3

a given class, the operation allInstances yields the set of current objects in
the class.

Paper.allInstances

Set{sub_17,sub_18} : Set(Paper)

let P=Paper.allInstances in P.referee->union(P.author)

Bag{ada,bob,bob,cyd} : Bag(Researcher)

Paper.allInstances->sortedBy(p|p.wordCount)

Sequence{sub_18,sub_17} : Sequence(Paper)

Sequence{bob,ada,bob,cyd,ada}->asOrderedSet

OrderedSet{bob,ada,cyd} : OrderedSet(Researcher)

Collection operations: There is a number of collection operations which con-
tribute essentially to the expressibility of OCL and which are applied with
the arrow operator. Among further operations, collections can be tested
on emptiness (isEmpty, notEmpty), the number of elements can be de-
termined (size), the elements can be filtered (select, reject), elements
can be mapped to a different item (collect) or can be sorted(sortedBy),
set-theoretic operations may be employed (union, intersection), and
collections can be converted into other collection kinds (asSet, asBag,
asSequence, asOrderdSet). Above, we have already used the collection op-
erations union, sortedBy, and asOrderedSet.

Paper.allInstances->isEmpty

false : Boolean

Researcher.allInstances->size

3 : Integer

Researcher.allInstances->select(r | not r.isStudent)

Set{ada,cyd} : Set(Researcher)

Paper.allInstances->reject(p | p.studentPaper)

Set{sub_17} : Set(Paper)

Paper.allInstances->collect(p | p.author.name)

Bag{’Bob’,’cyd’} : Bag(String)

Boolean-valued expressions: Because OCL is a constraint language, boolean
expressions which formalize model properties play a central role. Apart from
typical boolean connectives (and, or, not, =, implies, xor), universal and
existential quantification are available (forAll, exists).

Researcher.allInstances->forAll(r,s | r<>s implies r.name<>s.name)

true : Boolean

Paper.allInstances->exists(p | p.studentPaper and p.wordCount>4242)

false : Boolean

4

Boolean expressions are frequently used to describe class invariants and op-
eration pre- and postconditions.

3 Benchmark for UML and OCL Models (V-2013-04-05)

This section introduces the current benchmark models. We believe these four
models offer a representative set of challenges and modeling language features.

3.1 CivilStatus (CS)

The simple class model in Fig. 2 with one class, one association, one operation
defined with OCL, and two enumerations describes the civil status of persons.
The six invariants require that (1) all attributes take defined values only, (2) the
name attribute values follow a particular format, (3) the name attribute is unique
among all persons, (4) a female person does not possess a wife, (5) a male person
does not possess a husband,1 and (6) a person has a spouse, if and only if the
civil status attribute holds the value married.

Questions: (Questions are given names in order to reference them)

ConsistentInvariants: Is the model consistent? Is there at least one object
diagram satisfying the UML class model and the explicit OCL invariants?

Independence: Are the invariants independent? Is there an invariant which is
a consequence of the conditions imposed by the UML class model and the
other invariants?

Consequences: Is it possible to show that a stated new property is a conse-
quence of the given model? As a concrete question in terms of the model, one
may ask: Is the model bigamy-free? Is it possible to have a person possessing
both a wife and a husband?

LargeState: Is it possible to automatically build valid object diagrams in a
parameterized way with a medium-sized number of objects, e.g. 10 to 30
objects and appropriate links, where all attributes take meaningful values
and all links are established in a meaningful way? For example, a female
person named Ada could be married in role wife to a male person named
Bob occupying the husband role. These larger object diagrams are intended
to explain the used model elements (like classes, attributes and associations)
and the constraints upon them by non-trivial, meaningful examples to do-
main experts not necessarily familiar with formal modeling techniques.

3.2 WritesReviews (WR)

The class model in Fig. 3 has the classes Paper and Researcher and two
associations in between. The first two invariants (1) oneManuscript and

1 We are aware of the fact that we are only dealing with ‘traditional marriages’ with
traditional roles, and not with more modern concepts like ‘common law marriages’.

5

context Person

inv attributesDefined: name<>null and civstat<>null and

gender<>null

inv nameCapitalThenSmallLetters:

let small:Set(String)=

Set{’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,

’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’} in

let capital:Set(String)=

Set{’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,

’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’} in

capital->includes(name.substring(1,1)) and

Set{2..name.size}->forAll(i |

small->includes(name.substring(i,i)))

inv nameIsUnique: Person.allInstances->forAll(self2|

self<>self2 implies self.name<>self2.name)

inv femaleHasNoWife: gender=#female implies wife->isEmpty

inv maleHasNoHusband: gender=#male implies husband->isEmpty

inv hasSpouse_EQ_civstatMarried: (spouse()<>null)=(civstat=#married)

Fig. 2. Class Diagram and Invariants for CS

6

context Researcher inv oneManuscript:

self.manuscript->size=1

context Researcher inv oneSubmission:

self.submission->size=1

context Researcher inv noSelfReviews:

self.submission->excludes(self.manuscript)

context Paper inv paperLength:

self.wordCount < 10000

context Paper inv authorsOfStudentPaper:

self.studentPaper=self.author->exists(x | x.isStudent)

context Paper inv noStudentReviewers:

self.referee->forAll(r | not r.isStudent)

context Paper inv limitsOnStudentPapers:

Paper.allInstances->exists(p | p.studentPaper) and

Paper.allInstances->select(p | p.studentPaper)->size < 5

Fig. 3. Class Diagram and Invariants for WR

(2) oneSubmission basically sharpen the 0..1 multiplicities to 1..1 multiplic-
ities. In order to discuss alternative models, these two invariants will later be
switched off for the construction of object diagrams. The next five invariants
require that (3) a paper cannot be refereed by one of its authors, (4) the paper
must obey a given length by restricting the attribute wordCount, (5) one of the
authors of a studentPaper must be a student, (6) students are not allowed to

7

review papers, and (7) there must be at least one student paper, but no more
than 4 student papers are allowed (assumed that there are Paper objects at all).

Questions:

InstantiateNonemptyClass: Can the model be instantiated with non-empty
populations for all classes?

InstantiateNonemptyAssoc: Can the model be instantiated with non-empty
populations for all classes and all associations?

InstantiateInvariantIgnore: Can the model be instantiated if the invariants
oneManuscript and oneSubmission are ignored?

3.3 DisjointSubclasses (DS)

context b:B inv disjointBC: C.allInstances->forAll(c|b<>c)

Fig. 4. Class Diagram and Invariants for WR

The class model in Fig. 4 shows an example for multiple inheritance. Class D

inherits from class B and class C. Class B and class C are required to be disjoint
by the stated invariant.

Questions:

InstantiateDisjointInheritance: Can all classes be populated? Is it possible
to build objects for class D?

InstantiateMultipleInheritance: Can class D be populated if the constraint
disjointBC is ignored?

A light extension of this benchmark model might add attributes a, b, c, and
d to all classes having the type Integer. A hypothetical example constraint for
class D might then require self.d=2*self.a. It would be interesting to see
whether a tool syntactically allows to reference the attribute a from class D.

8

3.4 ObjectsAsIntegers (OAI)

The class model in Fig. 5 introduces one abstract superclass Int and three
concrete subclasses Neg, Zero, and Pos. Objects of class Zero are intended to
represent the integer 0, objects of class Neg are intended to represent a negative
integer in the shape of a normal form (...((0-1)-1)...)-1, and objects of class
Pos are intended to represent a positive integer in the shape of a normal form
(...((0+1)+1)...)+1. The abstract class Int possesses one association which
is inherited to the subclasses. The recursively defined operations predPlus()

and succPlus() in class Int compute the (non-reflexive) transitive closure of
the association ends pred and succ. The operations predPlusOnSet(...) and
succPlusOnSet(...) are internal helper operations not intended to be called
from outside the class. The invariants require that (1) the PredSucc links are
acyclic, (2) a Zero object is not linked to another Zero object, (3) a Zero object
is not linked to both a Neg and a Pos object, (4) a Neg object is not linked to
a Pos object, and (5) a Neg object is linked to a Zero object by employing the
succ association end. Pos objects are restricted analogously to Neg objects.

The upper object diagram in Fig. 6 shows a valid system state for OAI, the lower
one an invalid system state with some invariants violated. For example, invariant
zeroNotLinkedToNegAndPos is violated in the left connected component of the
lower object diagram. The upper object diagram displays the object representa-
tion of the integer sequence −2,−1, 0, +1, +2, +1. Every connected component
of the object diagram corresponds to an integer. The lower object diagram has
two connected components, where both components taken in isolation already
violate the model invariants, but obey the class diagram multiplicities.

Questions:

ObjectRepresentsInteger: Is it true that any connected component of a valid
object diagram for the model either corresponds to the term zero or to a term
of the form succn(zero) with n > 0 or to a term of the form predn(zero)?

IntegerRepresentsObject: Is it true that any term of the form zero or of the
form succn(zero) or of the form predn(zero) corresponds to a valid object
diagram for the model?

A slight extension of the current benchmark might ask a tool to find a minimal
constraint subset (or all constraint subsets) such that the same invariants are
implied as above.

4 Handling the Benchmark in USE

USE is a tool that allows modelers to check and test UML and OCL models. It
allows model validation and verification based of enumeration and SAT-based
techniques. USE allows the developer to construct object diagrams with a spe-
cialized language called ASSL (A Snapshot Sequence Language). All details can
be traced from the provided additional material [14].

9

context Int

inv acyclicPredSucc:

predPlus()->union(succPlus())->excludes(self)

context Zero

inv zeroNotLinkedToZero:

not predPlus()->union(succPlus())->exists(i|

i.oclIsTypeOf(Zero))

inv zeroNotLinkedToNegAndPos:

not predPlus()->union(succPlus())->exists(n,p|

n.oclIsTypeOf(Neg) and p.oclIsTypeOf(Pos))

context Neg

inv negNotLinkedToPos:

not predPlus()->union(succPlus())->exists(p|

p.oclIsTypeOf(Pos))

inv negLinkedToZeroBySucc:

succPlus()->exists(z|z.oclIsTypeOf(Zero))

context Pos

inv posNotLinkedToNeg:

not predPlus()->union(succPlus())->exists(n|

n.oclIsTypeOf(Neg))

inv posLinkedToZeroByPred:

predPlus()->exists(z|z.oclIsTypeOf(Zero))

Fig. 5. Class Diagram and Invariants for WR

10

Fig. 6. Example Object Diagrams for OAI

4.1 CivilStatus (CS)

For the CS example, there are three procedures which aim to construct ob-
ject diagrams: (1) generateWorld(numFemale:Integer, numMale:Integer,

numMarriage:Integer) can build object diagrams satisfying all constraints
and object diagrams violating particular constraints, (2) largerWorld(num-

Female:Integer, numMale:Integer, numMarriage:Integer) can build larger
object diagrams (up to 26 female persons and 26 male persons with at most 26
marriages) satisfying all constraints, and (3) attemptBigamy() tries to construct
an object diagram including bigamy.

ConsistentInvariants: The consistency of the invariants in combination
with the class diagram model inherent constraints is shown by a calling
generateWorld(1,1,1) with all invariants activated.

Independence: The independence of the six invariants is shown by six calls to
generateWorld(1,1,1) where before each single call exactly one invariant
is negated and the other invariants are activated.

Consequences: The fact that the model is bigamy-free is demonstrated by
a call to attemptBigamy(). In that procedure a large number of possible
object diagrams with three persons and all possible assignments of roles
and attribute values is considered and checked. No object diagram showing
bigamy is found.

LargeState: A larger object diagram is constructed by the call larger-

World(5,7,4) which constructs a system state with five female persons,
seven male persons, and four marriages.

11

4.2 WritesReviews (WR)

For the WR example, one ASSL procedure is provided: generateWorld(num-
Pap:Integer, numRes:Integer, fillAttr:Boolean). The parameters deter-
mine the number of papers, the number of researchers, and whether the object
attributes should be filled with actual values.

InstantiateNonemptyClass,InstantiateNonemptyAssoc: A call to gene-

rateWorld(4,4,false) yields the answer that no valid object diagram can
be constructed. The attribute values are not taken into account. This shows
that the multiplicities cannot be satisfied in the considered search space.

InstantiateInvariantIgnore: If the two invariants oneManuscript and
oneSubmission are deactivated, a valid object diagram can be constructed
by calling generateWorld(1,4,true). The attributes take meaningful val-
ues in the constructed object diagram.

4.3 DisjointSubclasses (DS)

For the model DS the ASSL procedure generateWorld(noA:Integer,

noB:Integer, noC:Integer, noD:Integer) is employed.

InstantiateDisjointInheritance: A call to generateWorld(1,1,1,1) with
invariant disjointBC activated does not yield a valid object diagram.

InstantiateMultipleInheritance: Calling generateWorld(1,1,1,1) with
invariant disjointBC deactivated does return a valid object diagram, natu-
rally with all objects of class D being also objects in class B and class C.

4.4 ObjectsAsIntegers (OAI)

For the model OAI, the ASSL procedure generateWorld(intNum:Integer,

predSuccNum:Integer) constructs an object diagram with intNum objects for
class Int and predSuccNum links between these Int objects. The constructed
object diagram does not necessarily obey the invariants, but the results can be
looked at being test cases for human inspection.

ObjectRepresentsInteger: We have generated various test cases with the
above ASSL procedure and found no counter examples for the stated ques-
tion resp. claim. However, we do not have solid formal arguments that the
claim is valid.

IntegerRepresentsObject: One can formulate an ASSL procedure generate-
Int(i:Integer) that constructs the appropriate object diagram of class
Int: Exactly one Zero object will be created; if i < 0, the respective number
of Neg objects will be created and linked to the single Zero object in a correct
way; if i > 0, the procedure will create Pos objects, analogously.

12

5 Handling the Benchmark in EMFtoCSP

Consistency checking and model instantiation are performed transparently in
EMFtoCSP by internally creating a constraint satisfaction problem (CSP) that
is satisfiable iff the model plus the OCL constraints satisfy the given correctness
property. The user has to specify ranges for the class and association extents and
for the attribute domains. All details are provided in the additional material [14].

5.1 CivilStatus (CS)

For running the CivilStatus checks, the range 0..5 was used for the Person
class and the range 0..25 for the Marriage association. The string length of the
name attribute was set to 0..10 (EMFtoCSP supports the String datatype
and its operations [6]). We omitted the invariants attributesDefined and
nameCapitalThenSmallLetters. The first holds implicitly because of the search
space configuration, the second currently cannot be parsed by the EMFtoCSP
front-end.

ConsistentInvariants: The consistency of the invariants in combination with
the class diagram inherent constraints is shown by running EMFtoCSP with
the described search bounds, selecting ‘weak satisfiability’ as the verification
property, yielding a valid object diagram as proof.

Independence: The independence of the four considered invariants is shown
by verifying four modified versions of CivilStatus, where one of the invari-
ants is negated in each run. Using the described search bounds, each run
yields an instance that is valid w.r.t. the modified version.

Consequences: The fact that the model is bigamy-free is demonstrated by
amending CivilStatus with a constraint notIsBigamyFree that requires
an instance with bigamy and then showing the unsatisfiability of that model
using the described search bounds.

LargeState: Adding an invariant niceInstance to CivilStatus restricts the
names to a meaningful set and the gender to be consistent with the name
(e.g., name = ’Ada’ implies gender = 1). We set the search bounds to 7
persons and 3 marriages and EMFtoCSP yields a valid instance.

5.2 WritesReviews (WR)

For running the WritesReviews checks, 0..5 was used for both classes and 0..25

for both associations, the string lengths were set to 0..10 and the range of
wordCount to 0..10000.

InstantiateNonemptyClass: Checking ‘weak consistency’ shows that the
model and the constraints are unsatisfiable within the above search bounds.

InstantiateNonemptyAssoc: Checking ‘strong consistency’ shows that the
model and the constraints are unsatisfiable within the above search bounds.

InstantiateInvariantIgnore: Checking ‘weak consistency’ on a modified ver-
sion of WritesReviews, in which both oneManuscript and oneSubmission

are commented out, yields a satisfying instance.

13

5.3 DisjointSubclasses (DS)

The front-end of EMFtoCSP does currently not support multiple inheritance, al-
though the UML/OCL constraint library that is used in the background provides
all necessary predicates.

5.4 ObjectsAsIntegers (OAI)

EMFtoCSP does currently not solve models with recursive operations.

6 Discussion

The benchmark as presented in this paper is a first step in the definition of
a complete set of UML and OCL models that the modeling community could
accept as valid. More importantly, the community could start to compare and to
improve current MDE approaches and tools, similar to what other communities
in Software Engineering are already doing.

The models that we have discussed give a taste of the difficulties that anybody
working on a new OCL analysis technique should consider. Nevertheless, our
long term goal is the complete specification of a full benchmark model suite cov-
ering all known challenging verification and validation scenarios. The need for
such a benchmark was one of the outcomes of the last OCL Workshop. However,
the notion ‘challenging scenario’ is not universal and debatable, in the sense
that depending on the formalism used by a given tool a scenario may be easy or
extremely demanding. With proposing this benchmark and its hopefully com-
ing evolution, we want developers to evaluate the existing approaches, realize
which are the strengths and drawbacks of each one, and choose a tool or an ap-
proach according to their specific needs. Speaking generally, for an OCL analysis
tool benchmark there are challenges in two dimensions: (a) challenges related to
the complexity of OCL (i.e., the complete and accurate handling of OCL) and
(b) challenges related to the computational complexity of the underlying prob-
lem. Both should be treated in the benchmark.

Based on our own experience we believe that at least the following scenarios
should be covered by models in the benchmark:

1. Mostly local constraints: models with many constraints but where all con-
straints are local, i.e., they only involve a single class or a cluster of closely
related classes.

2. Mostly global constraints: models with many constraints but where all con-
straints are global, i.e., they usually involve a large percentage of the classes
in the model, e.g. a constraint forcing all classes in the model to have the
same number of instances.

3. Models with tractable constraints, i.e., constraints that can be solved ‘triv-
ially’ by simple propagation steps.

14

4. Models with hard, non-tractable constraints, e.g., representations of NP-hard
problems.

5. Highly symmetric problems, i.e., that require symmetry breaking to effi-
ciently detect unsatisfiability.

6. Intensive use of Integer arithmetic allowing large ranges for integer values
and employing heavily arithmetic and operation like inequality.

7. Intensive use of Real arithmetic.
8. Intensive use of String values and operations on strings. So far, String at-

tributes are mostly ignored [6] or simply regarded as integers which prohibits
the verification of OCL expressions including String operations other than
equality and inequality.

9. Many redundant constraints: is the approach able to detect the redundancies
and benefit from them to speed up the evaluation?

10. Sparse models: instances with comparably few links offer optimization op-
portunities that could be exploited by tools.

11. Support for recursive operations, e.g. in form of fixpoint detection or static
unfolding.

12. Intensive use of the ‘full’ semantic of OCL (like the undefined value or col-
lection semantics); this poses a challenge for the lifting to two-valued logics.

13. Problems that have large instances (with many objects).

Alternative models for each of these scenarios should be part of the benchmark
to cover different goals in the evaluation. For instance, when evaluating the
correctness of the results provided by a given tool we should execute satisfiable
and unsatisfiable versions of each model and when evaluating its performance
and scalability we should feed the tool increasingly larger versions of the same
model.

We hope that as soon as these benchmarks become available the interested com-
munity (from developers of tools to tool users) will start applying them on a
variety of tools and approaches, which will allow us to clarify and better under-
stand the differences among the plethora of approaches and tools for OCL solving
that are now available. However, we have to keep in mind that as discussed in
the previous section, the results of the benchmark have to be interpreted with
care. A bad score of a tool for a given model can be attributed to different rea-
sons, from a simple syntax problem (maybe the tool does not support one of the
OCL operations used in an expression even if this operation is not a key part of
the benchmark) to a limitation of the tool or a limitation of the underlying tool
formalism. This difference is important too. In a further step, we want to able
not only to compare the tools themselves but to use the benchmark to study
the limits of frequently used provers, solvers or finders when applied to the OCL
realm.

7 Potential Tools to be Considered and Related Work

We have conducted the benchmark with the tools USE [15] and UMLtoCSP
resp. EMFtoCSP [7, 16]. Other validation and verification tools for OCL which

15

are possible candidates to be examined under the benchmark are UML2Alloy [2],
the planned USE extension arising from [19], the ITP/OCL tool [12], mOdCL [21]
and MOMENT-OCL[4]. Furthermore, the OCL tools OCLE, ROCLET, and
OCTOPUS would be benchmark candidates, but the projects seem to be in-
active since years (http://lci.cs.ubbcluj.ro/ocle/, http://www.roclet.org [dead
link], http://octopus.sourceforge.net/).

There is variety of other validation approaches for OCL based on SMT [13, 25]
or SAT [23]. Description logics has been used as a basis for OCL expressions and
constraints [20, 8] and for querying UML class diagram models [9].

On the prover side HOL-OCL combines Isabelle with UML and OCL [5], the
Key project attempted theorem proving in connection with the commercial UML
tool Together [3], and encoding of OCL into PVS was studied in [18]. We would
expect that completeness problems as appearing in OAI (‘Does the set of all
object diagrams of the model correspond to the integers?’) could be handled
more adequately in proof-oriented approaches. An application of a combination
of proof and test techniques in connection with OCL was described in a case
study [22]. Elements from that work might be considered for future versions of
the benchmark.

Testing approaches aiming at tool support were put forward in [10, 1]. The bench-
mark might also be applicable for code generation as in Dresden OCL [17]
or MDT/OCL [24]. Last, the feature model for model development environ-
ments [11] could be connected to the benchmark.

8 Conclusion

The approach proposed here is only first step towards a more complete bench-
mark. We concentrated on four models with eleven questions and claims. We
already have a sufficient coverage of OCL and questions, but more models and
items are needed. We would be happy if other groups would contribute. We think
more elaboration on complexity questions should be done in order to answer, for
example, questions attacking the extent to which a tool can produce and deal
with larger states or assert properties in larger states. A classification of ques-
tions and items suitable for proof techniques or for test techniques seems to be
needed as well.

Acknowledgments

The comments of the referees have helped to improve the paper. Many thanks
to the other developers of USE and EMFtoCSP. Without their work this contri-
bution would not have been possible.

16

References

1. Bernhard K. Aichernig and Percy Antonio Pari Salas. Test Case Generation by
OCL Mutation and Constraint Solving. In QSIC, pages 64–71. IEEE Computer
Society, 2005.

2. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On Chal-
lenges of Model Transformation from UML to Alloy. Software and System Model-
ing, 9(1):69–86, 2010.

3. Bernhard Beckert, Martin Giese, Reiner Hähnle, Vladimir Klebanov, Philipp
Rümmer, Steffen Schlager, and Peter H. Schmitt. The KeY system 1.0 (Deduc-
tion Component). In Frank Pfenning, editor, CADE, LNCS 4603, pages 379–384.
Springer, 2007.

4. Artur Boronat and José Meseguer. Algebraic Semantics of OCL-Constrained Meta-
model Specifications. In Manuel Oriol and Bertrand Meyer, editors, TOOLS (47),
LNBIP 33, pages 96–115. Springer, 2009.

5. Achim D. Brucker and Burkhart Wolff. HOL-OCL: A Formal Proof Environ-
ment for UML/OCL. In José Luiz Fiadeiro and Paola Inverardi, editors, FASE,
LNCS 4961, pages 97–100. Springer, 2008.

6. Fabian Büttner and Jordi Cabot. Lightweight String Reasoning for OCL. In An-
tonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Störrle, and Dim-
itrios S. Kolovos, editors, ECMFA, LNCS 7349, pages 244–258. Springer, 2012.

7. Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: A Tool for the Formal
Verification of UML/OCL Models using Constraint Programming. In R. E. Kurt
Stirewalt, Alexander Egyed, and Bernd Fischer, editors, ASE, pages 547–548.
ACM, 2007.

8. Marco Cadoli, Diego Calvanese, Giuseppe De Giacomo, and Toni Mancini. Fi-
nite Model Reasoning on UML Class Diagrams Via Constraint Programming. In
Roberto Basili and Maria Teresa Pazienza, editors, AI*IA, LNCS 4733, pages 36–
47. Springer, 2007.

9. Andrea Cal̀ı, Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Querying UML
Class Diagrams. In Lars Birkedal, editor, FoSSaCS, LNCS 7213, pages 1–25.
Springer, 2012.

10. Kalou Cabrera Castillos, Frédéric Dadeau, Jacques Julliand, and Safouan Taha.
Measuring Test Properties Coverage for Evaluating UML/OCL Model-Based Tests.
In Burkhart Wolff and Fatiha Zäıdi, editors, ICTSS, LNCS 7019, pages 32–47.
Springer, 2011.

11. Joanna Dobroslawa Chimiak-Opoka and Birgit Demuth. A Feature Model for an
IDE4OCL. ECEASST, 36, 2010.

12. Manuel Clavel and Marina Egea. ITP/OCL: A Rewriting-Based Validation Tool
for UML+OCL Static Class Diagrams. In Michael Johnson and Varmo Vene,
editors, AMAST, volume 4019 of LNCS 4019, pages 368–373. Springer, 2006.

13. Manuel Clavel, Marina Egea, and Miguel Angel Garćıa de Dios. Checking Unsatis-
fiability for OCL Constraints. Electronic Communications of the EASST, 24:1–13,
2009.

14. Martin Gogolla, Fabian Büttner, and Jordi Cabot. Initiating a Bench-
mark for UML and OCL Analysis Tools: Additional Material. Tech-
nical report, University of Bremen, 2013. http://www.db.informatik.uni-
bremen.de/publications/intern/GBC2013addon.pdf.

15. Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based Spec-
ification Environment for Validating UML and OCL. Science of Computer Pro-
gramming, 69:27–34, 2007.

17

16. Carlos A. Gonzalez, Fabian Büttner, Robert Clariso, and Jordi Cabot. EMFtoCSP:
A Tool for the Lightweight Verification of EMF Models. In Stefania Gnesi, Ste-
fan Gruner, Nico Plat, and Bernhard Rumpe, editors, Proc. ICSE 2012 Workshop
Formal Methods in Software Engineering: Rigorous and Agile Approaches (Form-
SERA), 2012.

17. Heinrich Hußmann, Birgit Demuth, and Frank Finger. Modular Architecture for
a Toolset Supporting OCL. Sci. Comput. Program., 44(1):51–69, 2002.

18. Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef Hooman, Mark
van der Zwaag, Tamarah Arons, and Hillel Kugler. Formalizing UML Models and
OCL Constraints in PVS. Electr. Notes Theor. Comput. Sci., 115:39–47, 2005.

19. Azzam Maraee and Mira Balaban. Efficient Reasoning About Finite Satisfiability of
UML Class Diagrams with Constrained Generalization Sets. In David H. Akehurst,
Régis Vogel, and Richard F. Paige, editors, ECMDA-FA, LNCS 4530, pages 17–31.
Springer, 2007.

20. Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente. OCL-
Lite: Finite Reasoning on UML/OCL Conceptual Schemas. Data Knowl. Eng.,
73:1–22, 2012.

21. Manuel Roldán and Francisco Durán. Dynamic Validation of OCL Constraints
with mOdCL. ECEASST, 44, 2011.

22. Miriam Schleipen. A Concept for Conformance Testing of AutomationML Models
by Means of Formal Proof using OCL. In ETFA, pages 1–5. IEEE, 2010.

23. Robert Wille, Mathias Soeken, and Rolf Drechsler. Debugging of Inconsistent
UML/OCL Models. In Wolfgang Rosenstiel and Lothar Thiele, editors, DATE,
pages 1078–1083. IEEE, 2012.

24. Edward D. Willink. Re-Engineering Eclipse MDT/OCL for Xtext. ECEASST, 36,
2010.

25. Kenro Yatake and Toshiaki Aoki. SMT-Based Enumeration of Object Graphs
from UML Class Diagrams. ACM SIGSOFT Software Engineering Notes, 37(4):1–
8, 2012.

18

Initiating a Benchmark for UML and OCL Analysis Tools:
Additional Material

Martin Gogolla, Fabian Büttner, Jordi Cabot
University of Bremen, INRIA / Ecole des Mines de Nantes

1. Current Benchmark Models (Version 2013-02-01)

1.1 CivilStatus (CS) 2
1.2 WritesReviews (WR) 3
1.3 DisjointSubclasses (DS) 4
1.4 ObjectsAsIntegers (OAI) 5

2. Details of Benchmark Analysis with USE

2.1 CivilStatus (CS) 7
2.2 WritesReviews (WR) 17
2.3 DisjointSubclasses (DS) 19
2.4 ObjectsAsIntegers (OAI) 21

3. Details of Benchmark Analysis with EMFtoCSP

3.1 CivilStatus (CS) 24
3.2 WritesReviews (WR) 27
3.3 DisjointSubclasses (DS) 29
3.4 ObjectsAsIntegers (OAI) 30

1

1. Current Benchmark Models (Version 2013-02-01)

1.1 CivilStatus (CS)

model civilStatus
enum CivilStatus {single, married, divorced, widowed}
enum Gender {female, male}
class Person
attributes
 name:String
 civstat:CivilStatus
 gender:Gender
operations
 spouse():Person=
 if gender=#female then husband else
 if gender=#male then wife else null endif endif
constraints
 inv attributesDefined: name<>null and civstat<>null and
 gender<>null
 inv nameCapitalThenSmallLetters:
 let small:Set(String)=
 Set{'a','b','c','d','e','f','g','h','i','j','k','l','m',
 'n','o','p','q','r','s','t','u','v','w','x','y','z'} in
 let capital:Set(String)=
 Set{'A','B','C','D','E','F','G','H','I','J','K','L','M',
 'N','O','P','Q','R','S','T','U','V','W','X','Y','Z'} in
 capital->includes(name.substring(1,1)) and
 Set{2..name.size}->forAll(i |
 small->includes(name.substring(i,i)))

2

 inv nameIsUnique: Person.allInstances->forAll(self2|
 self<>self2 implies self.name<>self2.name)
 inv femaleHasNoWife: gender=#female implies wife->isEmpty
 inv maleHasNoHusband: gender=#male implies husband->isEmpty
 inv hasSpouse_EQ_civstatMarried: (spouse()<>null)=(civstat=#married)
end
association Marriage between
 Person [0..1] role wife
 Person [0..1] role husband
end

1.2 WritesReviews (WR)

model writesReviews
class Paper
attributes
 title:String
 wordCount:Integer
 studentPaper:Boolean
end
class Researcher
attributes
 name:String
 isStudent:Boolean
end

3

association Writes between
 Researcher[1..2] role author
 Paper[0..1] role manuscript
end
association Reviews between
 Researcher[3] role referee
 Paper[0..1] role submission
end
constraints
context Researcher inv oneManuscript:
 self.manuscript->size=1
context Researcher inv oneSubmission:
 self.submission->size=1
context Researcher inv noSelfReviews:
 self.submission->excludes(self.manuscript)
context Paper inv paperLength:
 self.wordCount < 10000
context Paper inv authorsOfStudentPaper:
 self.studentPaper=self.author->exists(x | x.isStudent)
context Paper inv noStudentReviewers:
 self.referee->forAll(r | not r.isStudent)
context Paper inv limitsOnStudentPapers:
 Paper.allInstances->exists(p | p.studentPaper) and
 Paper.allInstances->select(p | p.studentPaper)->size < 5

1.3 DisjointSubclasses (DS)

model disjointSubclasses
class A
end
class B < A
end
class C < A
end
class D < B,C
end
constraints
context b:B inv disjointBC: C.allInstances->forAll(c|b<>c)

4

1.4 ObjectsAsIntegers (OAI)

5

model ObjectsAsInteger
abstract class Int
operations
predPlus():Set(Int)=
 predPlusOnSet(Set{pred}->excluding(null))
predPlusOnSet(s:Set(Int)):Set(Int)=
 let oneStep=s.pred->excluding(null)->asSet in
 if oneStep->exists(i|s->excludes(i))
 then predPlusOnSet(s->union(oneStep)) else s endif
succPlus():Set(Int)=
 succPlusOnSet(Set{succ}->excluding(null))
succPlusOnSet(s:Set(Int)):Set(Int)=
 let oneStep=s.succ->excluding(null)->asSet in
 if oneStep->exists(i|s->excludes(i))
 then succPlusOnSet(s->union(oneStep)) else s endif
constraints
 inv acyclicPredSucc:
 predPlus()->union(succPlus())->excludes(self)
end
association PredSucc between
 Int[0..1] role pred
 Int[0..1] role succ
end
class Zero < Int
constraints
 inv zeroNotLinkedToZero:
 not predPlus()->union(succPlus())->exists(i|
 i.oclIsTypeOf(Zero))
 inv zeroNotLinkedToNegAndPos:
 not predPlus()->union(succPlus())->exists(n,p|
 n.oclIsTypeOf(Neg) and p.oclIsTypeOf(Pos))
end
class Neg < Int
constraints
 inv negNotLinkedToPos:
 not predPlus()->union(succPlus())->exists(p|
 p.oclIsTypeOf(Pos))
 inv negLinkedToZeroBySucc:
 succPlus()->exists(z|z.oclIsTypeOf(Zero))
end
class Pos < Int
constraints
 inv posNotLinkedToNeg:
 not predPlus()->union(succPlus())->exists(n|
 n.oclIsTypeOf(Neg))
 inv posLinkedToZeroByPred:
 predPlus()->exists(z|z.oclIsTypeOf(Zero))
end

6

2. Details of Benchmark Analysis with USE

2.1 CivilStatus (CS)

--
procedure generateWorld(numFemale:Integer, numMale:Integer,
 numMarriage:Integer)
var females:Sequence(Person), males:Sequence(Person),
 f:Person, m:Person;
begin
females:=CreateN(Person,[numFemale]);
males:=CreateN(Person,[numMale]);
for i:Integer in [Sequence{1..numFemale}] begin
 [females->at(i)].name:=
 Try([Sequence{'Ada','Bel','ada','bel','Sam','Vic',null}]);
 [females->at(i)].civstat:=
 Try([Sequence{#single,#married,#divorced,#widowed}]);
 [females->at(i)].gender:=Try([Sequence{#female,#male}]); end;
for i:Integer in [Sequence{1..numMale}] begin
 [males->at(i)].name:=
 Try([Sequence{'Ali','Bob','ali','bob','Sam','Vic',null}]);
 [males->at(i)].civstat:=
 Try([Sequence{#single,#married,#divorced,#widowed,null}]);
 [males->at(i)].gender:=Try([Sequence{#female,#male,null}]); end;
for i:Integer in [Sequence{1..numMarriage}] begin
 f:=Try([females->select(p|p.husband->isEmpty)]);
 m:=Try([males->select(p|p.wife->isEmpty)]);
 Insert(Marriage,[f],[m]); end;
end;
--

7

procedure largerWorld(numFemale:Integer, numMale:Integer,
numMarriage:Integer)
-- numMarriage<=numFemale<=26, numMarriage<=numMale<=26
var females:Sequence(Person), males:Sequence(Person),
 f:Person, m:Person;
begin
females:=CreateN(Person,[numFemale]);
males:=CreateN(Person,[numMale]);
for i:Integer in [Sequence{1..numFemale}] begin
 [females->at(i)].name:=Any([Sequence{'Ada','Bel','Cam','Day',
 'Eva','Flo','Gen','Hao','Ina','Jen','Kia','Lan','Mae','Nan','Oki',
 'Pam','Quao','Rae','Sen','Tip','Una','Vea','Wan','Xia','Yan','Zoe'}
 ->reject(n|Person.allInstances->exists(p|p.name=n))]);
 [females->at(i)].civstat:=[#single];
 [females->at(i)].gender:=[#female]; end;
for i:Integer in [Sequence{1..numMale}] begin
 [males->at(i)].name:=Any([Sequence{'Ali','Bob','Cyd','Dan',
 'Eli','Fox','Gil','Hal','Ike','Jan','Kim','Leo','Max','Nam','Ole',
 'Pat','Quin','Rex','Sam','Tom','Ulf','Vic','Wei','Xan','Yul','Zan'}
 ->reject(n|Person.allInstances->exists(p|p.name=n))]);
 [males->at(i)].civstat:=[#single];
 [males->at(i)].gender:=[#male]; end;
for i:Integer in [Sequence{1..numMarriage}] begin
 f:=Any([females->reject(p|p.husband.isDefined)]);
 m:=Any([males->reject(p|p.wife.isDefined)]);
 [f].civstat:=[#married]; [m].civstat:=[#married];
 Insert(Marriage,[f],[m]); end;
end;
--
procedure attemptBigamy()
var p:Person, w:Person, h:Person, thePersons:Sequence(Person);
-- w -wife---husb- p -wife---husb- h
begin
thePersons:=CreateN(Person,[3]);
for i:Integer in [Sequence{1..3}] begin
 [thePersons->at(i)].name:=Try([Sequence{'Alex','Bobby','Chris'}]);
 [thePersons->at(i)].civstat:=
 Try([Sequence{#single,#married,#divorced,#widowed}]);
 [thePersons->at(i)].gender:=Try([Sequence{#female,#male}]); end;
p:=Try([thePersons]);
w:=Try([thePersons->excluding(p)]);
h:=Try([thePersons->excluding(p)->excluding(w)]);
Insert(Marriage,[w],[p]); Insert(Marriage,[p],[h]);
end;
--

8

use> open civilStatus.use
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 #######
use> gen result
 Random number generator was initialized with 1119.
 Checked 68 snapshots in 0,219s (311 snapshots/s).
 Checked 215 times in 0,219s (982 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 147 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Ada'
 !@Person1.civstat := CivilStatus::married
 !@Person1.gender := Gender::female
 !@Person2.name := 'Ali'
 !@Person2.civstat := CivilStatus::married
 !@Person2.gender := Gender::male
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Person::attributesDefined': OK.
 checking invariant (2) `Person::femaleHasNoWife': OK.
 checking invariant (3) `Person::hasSpouse_EQ_civstatMarried': OK.
 checking invariant (4) `Person::maleHasNoHusband': OK.
 checking invariant (5) `Person::nameCapitalThenSmallLetters': OK.
 checking invariant (6) `Person::nameIsUnique': OK.
 checked 6 invariants in 0.015s, 0 failures.
use> reset
use> gen flags Person::attributesDefined +n
use> gen flags Person::femaleHasNoWife -d
use> gen flags Person::hasSpouse_EQ_civstatMarried -d
use> gen flags Person::maleHasNoHusband -d
use> gen flags Person::nameCapitalThenSmallLetters -d
use> gen flags Person::nameIsUnique -d
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 #######
use> gen result
 Random number generator was initialized with 178.
 Checked 57 snapshots in 0,093s (613 snapshots/s).
 Checked 213 times in 0,093s (2.290 checks/s).

9

 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 156 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Ada'
 !@Person1.civstat := CivilStatus::married
 !@Person1.gender := Gender::female
 !@Person2.name := 'Ali'
 !@Person2.civstat := CivilStatus::single
 !@Person2.gender := Undefined
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Person::attributesDefined': FAILED.
 -> false : Boolean
 checking invariant (2) `Person::femaleHasNoWife': OK.
 checking invariant (3) `Person::hasSpouse_EQ_civstatMarried': OK.
 checking invariant (4) `Person::maleHasNoHusband': OK.
 checking invariant (5) `Person::nameCapitalThenSmallLetters': OK.
 checking invariant (6) `Person::nameIsUnique': OK.
 checked 6 invariants in 0.031s, 1 failure.
use> reset
use> gen flags Person::attributesDefined -d
use> gen flags Person::femaleHasNoWife +n
use> gen flags Person::hasSpouse_EQ_civstatMarried -d
use> gen flags Person::maleHasNoHusband -d
use> gen flags Person::nameCapitalThenSmallLetters -d
use> gen flags Person::nameIsUnique -d
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 #######
use> gen result
 Random number generator was initialized with 5792.
 Checked 65 snapshots in 0,110s (591 snapshots/s).
 Checked 211 times in 0,110s (1.918 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 146 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Ada'

10

 !@Person1.civstat := CivilStatus::married
 !@Person1.gender := Gender::female
 !@Person2.name := 'Ali'
 !@Person2.civstat := CivilStatus::single
 !@Person2.gender := Gender::female
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Person::attributesDefined': OK.
 checking invariant (2) `Person::femaleHasNoWife': FAILED.
 -> false : Boolean
 checking invariant (3) `Person::hasSpouse_EQ_civstatMarried': OK.
 checking invariant (4) `Person::maleHasNoHusband': OK.
 checking invariant (5) `Person::nameCapitalThenSmallLetters': OK.
 checking invariant (6) `Person::nameIsUnique': OK.
 checked 6 invariants in 0.016s, 1 failure.
use> reset
use> gen flags Person::attributesDefined -d
use> gen flags Person::femaleHasNoWife -d
use> gen flags Person::hasSpouse_EQ_civstatMarried +n
use> gen flags Person::maleHasNoHusband -d
use> gen flags Person::nameCapitalThenSmallLetters -d
use> gen flags Person::nameIsUnique -d
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 #######
use> gen result
 Random number generator was initialized with 3516.
 Checked 2 snapshots in 0,016s (125 snapshots/s).
 Checked 2 times in 0,016s (125 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 0 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Ada'
 !@Person1.civstat := CivilStatus::single
 !@Person1.gender := Gender::female
 !@Person2.name := 'Ali'
 !@Person2.civstat := CivilStatus::single
 !@Person2.gender := Gender::male
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check

11

 checking structure...
 checking invariants...
 checking inv (1) `Person::attributesDefined': OK.
 checking inv (2) `Person::femaleHasNoWife': OK.
 checking inv (3) `Person::hasSpouse_EQ_civstatMarried': FAILED.
 -> false : Boolean
 checking inv (4) `Person::maleHasNoHusband': OK.
 checking inv (5) `Person::nameCapitalThenSmallLetters': OK.
 checking inv (6) `Person::nameIsUnique': OK.
 checked 6 invariants in 0.031s, 1 failure.
use> reset
use> gen flags Person::attributesDefined -d
use> gen flags Person::femaleHasNoWife -d
use> gen flags Person::hasSpouse_EQ_civstatMarried -d
use> gen flags Person::maleHasNoHusband +n
use> gen flags Person::nameCapitalThenSmallLetters -d
use> gen flags Person::nameIsUnique -d
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 #######
use> gen result
 Random number generator was initialized with 5061.
 Checked 36 snapshots in 0,047s (766 snapshots/s).
 Checked 110 times in 0,047s (2.340 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 74 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Ada'
 !@Person1.civstat := CivilStatus::single
 !@Person1.gender := Gender::male
 !@Person2.name := 'Ali'
 !@Person2.civstat := CivilStatus::married
 !@Person2.gender := Gender::male
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Person::attributesDefined': OK.
 checking invariant (2) `Person::femaleHasNoWife': OK.
 checking invariant (3) `Person::hasSpouse_EQ_civstatMarried': OK.
 checking invariant (4) `Person::maleHasNoHusband': FAILED.
 -> false : Boolean
 checking invariant (5) `Person::nameCapitalThenSmallLetters': OK.
 checking invariant (6) `Person::nameIsUnique': OK.

12

 checked 6 invariants in 0.016s, 1 failure.
use> reset
use> gen flags Person::attributesDefined -d
use> gen flags Person::femaleHasNoWife -d
use> gen flags Person::hasSpouse_EQ_civstatMarried -d
use> gen flags Person::maleHasNoHusband -d
use> gen flags Person::nameCapitalThenSmallLetters +n
use> gen flags Person::nameIsUnique -d
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 #######
use> gen result
 Random number generator was initialized with 3251.
 Checked 36 snapshots in 0,078s (462 snapshots/s).
 Checked 245 times in 0,078s (3.141 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 209 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Ada'
 !@Person1.civstat := CivilStatus::married
 !@Person1.gender := Gender::female
 !@Person2.name := 'ali'
 !@Person2.civstat := CivilStatus::married
 !@Person2.gender := Gender::male
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking inv (1) `Person::attributesDefined': OK.
 checking inv (2) `Person::femaleHasNoWife': OK.
 checking inv (3) `Person::hasSpouse_EQ_civstatMarried': OK.
 checking inv (4) `Person::maleHasNoHusband': OK.
 checking inv (5) `Person::nameCapitalThenSmallLetters': FAILED.
 -> false : Boolean
 checking inv (6) `Person::nameIsUnique': OK.
 checked 6 invariants in 0.031s, 1 failure.
use> reset
use> gen flags Person::attributesDefined -d
use> gen flags Person::femaleHasNoWife -d
use> gen flags Person::hasSpouse_EQ_civstatMarried -d
use> gen flags Person::maleHasNoHusband -d
use> gen flags Person::nameCapitalThenSmallLetters -d

13

use> gen flags Person::nameIsUnique +n
use> gen start civilStatus.assl generateWorld(1,1,1)
 Progress of first Try in ASSL-Procedure (7 combinations):
 |--|
 ###################################
use> gen result
 Random number generator was initialized with 7632.
 Checked 20 snapshots in 0,328s (61 snapshots/s).
 Checked 3.635 times in 0,328s (11.082 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.
 Barriers blocked 3.615 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Person('Person1')
 !new Person('Person2')
 !@Person1.name := 'Sam'
 !@Person1.civstat := CivilStatus::married
 !@Person1.gender := Gender::female
 !@Person2.name := 'Sam'
 !@Person2.civstat := CivilStatus::married
 !@Person2.gender := Gender::male
 !insert (@Person1,@Person2) into Marriage
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Person::attributesDefined': OK.
 checking invariant (2) `Person::femaleHasNoWife': OK.
 checking invariant (3) `Person::hasSpouse_EQ_civstatMarried': OK.
 checking invariant (4) `Person::maleHasNoHusband': OK.
 checking invariant (5) `Person::nameCapitalThenSmallLetters': OK.
 checking invariant (6) `Person::nameIsUnique': FAILED.
 -> false : Boolean
 checked 6 invariants in 0.015s, 1 failure.
use> open civilStatus.use
use> gen load bigamy.invs
 Added invariants:
 Person::bigamy
use> gen start civilStatus.assl attemptBigamy()
 Progress of first Try in ASSL-Procedure (3 combinations):
 |--|
 ##
use> gen result
 Random number generator was initialized with 5954.
 Checked 18.432 snapshots in 1,107s (16.650 snapshots/s).
 Checked 29.184 times in 1,107s (26.363 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 3 barriers.

14

 Barriers blocked 10.752 times.
 Result: No valid state found.
--

15

16

use> open civilStatus.use
use> gen start civilStatus.assl largerWorld(5,7,4)
use> gen result
use> gen result accept

2.2 WritesReviews (WR)

procedure generateWorld(numPap:Integer,numRes:Integer,fillAttr:Boolean)
var papers:Sequence(Paper), researchers:Sequence(Researcher);
begin
papers:=CreateN(Paper,[numPap]);
researchers:=CreateN(Researcher,[numRes]);
Try(Writes,[researchers],[papers]);
Try(Reviews,[researchers],[papers]);
if [fillAttr] then begin
 for i:Integer in [Sequence{1..numPap}] begin
 [papers->at(i)].title:=Try([Sequence{'MDA','OCL','UML'}]);
 [papers->at(i)].wordCount:=Try([Sequence{9000,10000,11000}]);
 [papers->at(i)].studentPaper:=Try([Sequence{false,true}]);
 end;
 for i:Integer in [Sequence{1..numRes}] begin
 [researchers->at(i)].name:=Try([Sequence{'Ada','Bob','Cyd'}]);
 [researchers->at(i)].isStudent:=Try([Sequence{false,true}]);
 end;
 end;
end;

17

use> open writesReviews.use
use> -- Paper::authorsOfStudentPaper
use> -- Paper::limitsOnStudentPapers
use> -- Paper::noStudentReviewers
use> -- Paper::paperLength
use> -- Researcher::noSelfReviews
use> -- Researcher::oneManuscript
use> -- Researcher::oneSubmission
use> gen start writesReviews.assl generateWorld(4,4,false)
 Progress of first Try in ASSL-Procedure (625 combinations):
 |--|
 ##use> gen result
 Random number generator was initialized with 7327.
 Checked 20.736 snapshots in 3,822s (5.425 snapshots/s).
 Checked 160.369 times in 3,822s (41.959 checks/s).
 Made 0 try cuts.
 Ignored at least 16.682.127 useless link combinations.
 Added 3 barriers.
 Barriers blocked 139.633 times.
 Result: No valid state found.
use> gen result accept
 No commands available.
use> reset
use> -- Paper::authorsOfStudentPaper
use> -- Paper::limitsOnStudentPapers
use> -- Paper::noStudentReviewers
use> -- Paper::paperLength
use> -- Researcher::noSelfReviews
use> gen flags Researcher::oneManuscript +d
use> gen flags Researcher::oneSubmission +d
use> gen start writesReviews.assl generateWorld(1,4,true)
 Progress of first Try in ASSL-Procedure (16 combinations):
 |--|
 ######use> gen result
 Random number generator was initialized with 6192.
 Checked 537.842 snapshots in 3,495s (153.889 snapshots/s).
 Checked 537.849 times in 3,495s (153.891 checks/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 1 barriers.
 Barriers blocked 7 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Paper('Paper1')
 !new Researcher('Researcher1')
 !new Researcher('Researcher2')
 !new Researcher('Researcher3')
 !new Researcher('Researcher4')
 !insert (@Researcher4,@Paper1) into Writes
 !insert (@Researcher3,@Paper1) into Reviews

18

 !insert (@Researcher2,@Paper1) into Reviews
 !insert (@Researcher1,@Paper1) into Reviews
 !@Paper1.title := 'MDA'
 !@Paper1.wordCount := 9000
 !@Paper1.studentPaper := true
 !@Researcher1.name := 'Ada'
 !@Researcher1.isStudent := false
 !@Researcher2.name := 'Ada'
 !@Researcher2.isStudent := false
 !@Researcher3.name := 'Ada'
 !@Researcher3.isStudent := false
 !@Researcher4.name := 'Ada'
 !@Researcher4.isStudent := true
use> gen result accept
 Generated result (system state) accepted.

2.3 DisjointSubclasses (DS)

procedure generateWorld(noA:Integer,noB:Integer,noC:Integer,noD:Integer)
var a_s:Sequence(A), b_s:Sequence(B), c_s:Sequence(C), d_s:Sequence(D);
begin
a_s:=CreateN(A,[noA]);
b_s:=CreateN(B,[noB]);
c_s:=CreateN(C,[noC]);
d_s:=CreateN(D,[noD]);
end;
use> open disjointSubclasses.use
use> gen disjointSubclasses.assl generateWorld(1,1,1,0)
use> gen result
 Random number generator was initialized with 4117.
 Checked 1 snapshots in 0,000s (NaN snapshots/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.

19

 Added 0 barriers.
 Barriers blocked 0 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new A('A1')
 !new B('B1')
 !new C('C1')
use> gen result accept
 Generated result (system state) accepted.
use> reset
use> gen start disjointSubclasses.assl generateWorld(1,1,1,1)
use> gen result
 Random number generator was initialized with 3866.
 Checked 1 snapshots in 0,000s (NaN snapshots/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 0 barriers.
 Barriers blocked 0 times.
 Result: No valid state found.
use> gen result accept
 No commands available.
use> reset
use> gen flags B::disjointBC +d
use> gen start disjointSubclasses.assl generateWorld(1,1,1,1)
use> gen result
 Random number generator was initialized with 1939.
 Checked 1 snapshots in 0,000s (NaN snapshots/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 0 barriers.
 Barriers blocked 0 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new A('A1')
 !new B('B1')
 !new C('C1')
 !new D('D1')
use> gen result accept
 Generated result (system state) accepted.
use> ?D.allInstances
 Set{@D1} : Set(D)
use> ?C.allInstances
 Set{@C1,@D1} : Set(C)
use> ?B.allInstances
 Set{@B1,@D1} : Set(B)
use> ?A.allInstances
 Set{@A1,@B1,@C1,@D1} : Set(A)

20

2.4 ObjectsAsIntegers (OAI)

procedure generateWorld(intNum:Integer,predSuccNum:Integer)
var ints:Sequence(Int), aux:Int,
 nzp:Integer, pInt:Int, sInt:Int;
begin
ints:=[Sequence{}];
for i:Integer in [Sequence{1..intNum}] begin
 nzp:=Any([Sequence{-1,0,+1}]);
 if [nzp=-1] then begin
 aux:=Create(Neg); ints:=[ints->append(aux)]; end;
 if [nzp=0] then begin
 aux:=Create(Zero); ints:=[ints->append(aux)]; end;
 if [nzp=+1] then begin
 aux:=Create(Pos); ints:=[ints->append(aux)]; end;
 end;
for i:Integer in [Sequence{1..predSuccNum}] begin
 pInt:=Any([ints->select(i|i.succ->isEmpty)]);
 sInt:=Any([ints->select(i|i.pred->isEmpty)]);
 Insert(PredSucc,[pInt],[sInt]);
 end;
end;
--
use> open objectsAsIntegers.use
use> gen flags Int::acyclicPredSucc +d
use> gen flags Neg::negLinkedToZeroBySucc +d
use> gen flags Neg::negNotLinkedToPos +d
use> gen flags Pos::posLinkedToZeroByPred +d
use> gen flags Pos::posNotLinkedToNeg +d
use> gen flags Zero::zeroNotLinkedToNegAndPos +d
use> gen flags Zero::zeroNotLinkedToZero +d
use> gen start -r 4900 objectsAsIntegers.assl generateWorld(3,2)
use> gen result
 Random number generator was initialized with 4900.
 Checked 1 snapshots in 0,016s (63 snapshots/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 0 barriers.
 Barriers blocked 0 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Neg('Neg1')
 !new Neg('Neg2')
 !new Zero('Zero1')
 !insert (@Neg2,@Zero1) into PredSucc
 !insert (@Neg1,@Neg2) into PredSucc
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...

21

 checking invariants...
 checking invariant (1) `Int::acyclicPredSucc': OK.
 checking invariant (2) `Neg::negLinkedToZeroBySucc': OK.
 checking invariant (3) `Neg::negNotLinkedToPos': OK.
 checking invariant (4) `Pos::posLinkedToZeroByPred': OK.
 checking invariant (5) `Pos::posNotLinkedToNeg': OK.
 checking invariant (6) `Zero::zeroNotLinkedToNegAndPos': OK.
 checking invariant (7) `Zero::zeroNotLinkedToZero': OK.
 checked 7 invariants in 0.016s, 0 failures.
use> reset
use> gen flags Int::acyclicPredSucc +d
use> gen flags Neg::negLinkedToZeroBySucc +d
use> gen flags Neg::negNotLinkedToPos +d
use> gen flags Pos::posLinkedToZeroByPred +d
use> gen flags Pos::posNotLinkedToNeg +d
use> gen flags Zero::zeroNotLinkedToNegAndPos +d
use> gen flags Zero::zeroNotLinkedToZero +d
use> gen start -r 9590 objectsAsIntegers.assl generateWorld(3,2)
use> gen result
 Random number generator was initialized with 9590.
 Checked 1 snapshots in 0,016s (63 snapshots/s).
 Made 0 try cuts.
 Ignored at least 0 useless link combinations.
 Added 0 barriers.
 Barriers blocked 0 times.
 Result: Valid state found.
 Commands to produce the valid state:
 !new Neg('Neg1')
 !new Neg('Neg2')
 !new Zero('Zero1')
 !insert (@Zero1,@Neg1) into PredSucc
 !insert (@Neg2,@Zero1) into PredSucc
use> gen result accept
 Generated result (system state) accepted.
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Int::acyclicPredSucc': OK.
 checking invariant (2) `Neg::negLinkedToZeroBySucc': FAILED.
 -> false : Boolean
 checking invariant (3) `Neg::negNotLinkedToPos': OK.
 checking invariant (4) `Pos::posLinkedToZeroByPred': OK.
 checking invariant (5) `Pos::posNotLinkedToNeg': OK.
 checking invariant (6) `Zero::zeroNotLinkedToNegAndPos': OK.
 checking invariant (7) `Zero::zeroNotLinkedToZero': OK.
 checked 7 invariants in 0.015s, 1 failure.

22

23

3 Details of Benchmark Analysis with EMFtoCSP

3.1 CivilStatus (CS)

CivilStatus.ecore:

package CivilStatus {

class Person {

attribute name : String;

-- 1 = #single, 2 = #married, 3 = #divorced, 4 = #widowed

attribute civstat : Integer;

-- 1 = #female, 2 = #male

attribute gender : Integer;

property wife#husband : Person[0..1];

property husband#wife : Person[0..1];

invariant nameIsUnique: Person.allInstances()->forAll(self2 : Person |

self <> self2 implies self.name <> self2.name);

invariant femaleHasNoWife: gender = 1 implies wife.oclAsSet()->isEmpty();

invariant maleHasNoHusband: gender = 2 implies husband.oclAsSet()->isEmpty();

invariant hasSpouse_EQ_civstatMarried:

if gender = 1

then husband

else if gender = 2 then wife else null endif

endif.oclAsSet()->notEmpty() = (civstat = 2);

}

}

Remarks: The example requires some ‘syntactic desugaring’ in EMFtoCSP: (1) Representation of enumera-
tions as integers; (2) explicit unfolding of query operations; (3) explicit use of ‘oclAsSet()’ when applying collec-
tion operations to object-valued properties (with 0..1 multiplicities). Ecore does not have association names; the
association names are generated by EMFtoECL from the role names (e.g., Marriage becomes husband wife).

Checking ConsistentInvariants

24

Checking Independence

CivilStatusNotNameIsUnique.ecore:

package CivilStatusNotNameIsUnique {

class Person {

-- other attributes, properties, and invariants as in CivilStatus.ecore

-- invariant nameIsUnique: Person.allInstances()->forAll(self2 : Person |

self <> self2 implies self.name <> self2.name);

invariant notNameIsUnique: not (Person.allInstances()->forAll(self2 : Person |

self <> self2 implies self.name <> self2.name));

}

}

CivilStatusNotFemaleHasNoWife.ecore:

package CivilStatusNotFemaleHasNoWife {

class Person {

-- other attributes, properties, and invariants as in CivilStatus.ecore

--invariant femaleHasNoWife: gender = 1 implies wife.oclAsSet()->isEmpty();

invariant notFemaleHasNoWife: not (gender = 1 implies wife.oclAsSet()->isEmpty());

}

}

CivilStatusNotMaleHasNoHusband.ecore:

package CivilStatusNotMaleHasNoHusband {

class Person {

-- other attributes, properties, and invariants as in CivilStatus.ecore

-- invariant maleHasNoHusband: gender = 2 implies husband.oclAsSet()->isEmpty();

invariant notMaleHasNoHusband: not (gender = 2 implies husband.oclAsSet()->isEmpty());

}

}

25

CivilStatusNotHasSpouseEqCivstatMarried.ecore:

package CivilStatusNotHasSpouseEqCivstatMarried {

class Person {

-- other attributes, properties, and invariants as in CivilStatus.ecore

-- invariant hasSpouse_EQ_civstatMarried:

-- if gender = 1

-- then husband

-- else if gender = 2 then wife else null endif

-- endif.oclAsSet()->notEmpty() = (civstat = 2);

invariant notHasSpouse_EQ_civstatMarried:

not (if gender = 1

then husband

else if gender = 2 then wife else null endif

endif.oclAsSet()->notEmpty() = (civstat = 2));

}

}

Checking Consequences

CivilStatusBigamy.ecore:

package CivilStatusBigamy {

class Person {

-- other attributes, properties, and invariants as in CivilStatus.ecore

invariant notIsBigamyFree:

not (not (husband->oclAsSet()->notEmpty() and

wife.oclAsSet()->notEmpty()));

}

}

26

Checking LargeState

CivilStatusLargeState.ecore:

package CivilStatusLargeState {

class Person {

-- other attributes, properties, and invariants as in CivilStatus.ecore

invariant niceInstance:

(name = ’Ada’ or name = ’Ali’ or name = ’Bel’ or name = ’Bob’ or

name = ’Dan’ or name = ’Sam’ or name = ’Vic’) and

(name = ’Ada’ implies gender = 1) and

(name = ’Ali’ implies gender = 2) and

(name = ’Bel’ implies gender = 1) and

(name = ’Bob’ implies gender = 2);

}

}

3.2 WritesReviews

WritesReviews.ecore:

27

package WritesReviews {

class Paper {

attribute title : String;

attribute wordCount : Integer;

attribute studentPaper : Boolean;

property referee#submission : Researcher[3..3];

property author#manuscript : Researcher[1..2];

invariant AuthorsOfStudentPaper:

self.studentPaper = self.author->exists(x|x.isStudent);

invariant LimitsOnStudentPapers:

Paper.allInstances()->exists(p|p.studentPaper) and

Paper.allInstances()->select(p|p.studentPaper)->size() < 5;

invariant PaperLength:

self.wordCount < 10000;

invariant NoStudentReviewers:

referee->forAll(r| not r.isStudent);

}

class Researcher

{

attribute name : String;

attribute isStudent : Boolean;

property submission#referee : Paper[?];

property manuscript#author : Paper[?];

invariant oneManuscript:

manuscript.oclAsSet()->size() = 1;

invariant oneSubmission:

submission.oclAsSet()->size() = 1;

invariant noSelfReviews:

submission.oclAsSet()->excludes(manuscript);

}

}

Checking ConsistentMultiplicity

Checking InstantiateNonemptyClass

Checking InstantiateNonemptyAssoc

28

Checking InstantiateInvariantIgnore

WritesReviewsIgnoreOneManuscriptAndOneSubmission.ecore:

package WritesReviewsIgnoreOneManuscriptAndOneSubmission {

class Paper {

-- as in WritesReviews.ecore

}

class Researcher

{

-- other attributes, properties, and invariants as in WritesReviews.ecore

--invariant oneManuscript:

-- manuscript.oclAsSet()->size() = 1;

--invariant oneSubmission:

-- submission.oclAsSet()->size() = 1;

}

}

3.3 DisjointSubclasses (DS)

Not applicable. Multiple inheritance is currently not accepted by EMFtoCSP (although the formal approach
behind EMFtoCSP supports it).

29

3.4 ObjectsAsIntegers (OAI)

Not applicable. Recursive operations are currently not accepted by EMFtoCSP (although the formal approach
behind EMFtoCSP supports it).

30

	paper.pdf
	GBC2013addon.EXT
	GBC2013addon.pdf
	appendix

