
On Explaining Modeling Principles
with Modeling Examples: A Classification Catalog

Martin Gogolla
University of Bremen, Germany

gogolla@informatik.uni-bremen.de

Antonio Vallecillo
University of Malaga, Spain

av@lcc.uma.es

ABSTRACT
Examples are of central concern in teaching modeling. Typ-
ically, the general principles and concepts that have to be
communicated are explained in terms of smaller or larger
modeling examples with the hope that the examples cover
the central issues of the principles and concepts well. The
paper discusses a classification catalogue for examples along
various criteria like syntax, semantics, pragmatics, complex-
ity or evolution. The aim of the paper is to encourage the
teaching with examples exhausting the possible spectrum of
example use.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; K.3.0
[Computers and Education]: General

General Terms
Design, Languages, Documentation

Keywords
Teaching Modeling, Teaching with Examples, Example
Quality, Example Adequancy, Relationship between
Concept and Example

1. INTRODUCTION

Teaching a computer science subject means for us that gen-
eral concepts and principles have to be explained to an in-
terested audience. Such general and abstract ideas are usu-
ally made concrete by employing more or less convenient
examples. The concepts live in the world of eternal thinking
whereas the examples usually are alive in the finite world of
doing. One might take the viewpoint that the concepts rep-
resent immortal gods wheras the examples have their man-
ifestation as mere mortals.

When teaching modeling it is natural to introduce modeling
concepts used at design time (e.g., class diagrams or state

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EduSymp’12, October 01-05 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1812-9/12/10$15.00.

machines) and to manifest these concepts at runtime (e.g.,
by objects diagrams or runs through the state machine).
Here, one can observe another reification of the God-Mortal
duality: The general, abstract principles are determined at
design time whereas the manifestations at runtime ideally
obey the design time rules, or in other words, the mortals
have to obey the laws determined by the gods.

Naturally, the teacher must make the choice for the treated
concepts and principles and for the explaining examples and
their presentation order: (a) concepts and principles may be
mentioned first with explaining examples to follow, (b) the
examples may come first and the general concepts and prin-
ciples follow, or (c) concepts and principles as well as ex-
amples may be presented in interleaving order. However it
is of central concern that examples must convey the general
concepts and principles.

Our work has strong connections to other related papers.
In [3] we have explained teaching model transformations
with a larger, evolving UML/OCL example. Analogously
to our approach, [7] and [11] point to the importance of us-
ing wrong resp. negative examples in teaching. [5] empha-
sizes the use of graphical modeling languages in teaching.
[1] proposes an example for teaching refactoring techniques.
[9] explains the popular Alloy method and tool with exam-
ples. The relationship between concepts and principles on
the one hand and examples on the other hand is discussed
in [10]. In [8] component technology is introduced by means
of an example. Database modeling with SQL examples is
the topic of [4] and [2].

The rest of the paper is structured as follows. First, we
will introduce in Sect. 2 our criteria catalog. Second, we
will explain the catalog with some selected examples in
Sect. 3. The paper will be finished with concluding remarks
in Sect. 4.

2. CONCEPTS AND PRINCIPLES FOR
THE CLASSIFICATION CATALOGUE

This section introduces the different dimensions for example
classification that we are proposing. The classification cata-
logue can be used during development of a teaching unit as
a checklist to discover new examples or example variations
and to assert that the character of the example collection is
adequate to the aimed teaching purpose.

Complexity: Depending on the position of the respective
modeling concept that is to be discussed, the example
complexity may vary from less complex examples to
highly complex ones. Typically one will show introduc-
tory examples first and move to deepening examples
later.

Coverage degree of concepts and principles: All con-
cepts and principles should be covered by examples
in enough detail. Thus it makes sense to start with
overview examples giving a general idea and to pro-
ceed to detailed examples that take up elements from
the overview examples and explain all particularities
in a sufficient and neccessary level.

Relevant software development phase: Modeling pri-
marily concerns the requirement and the design phase,
although modeling can be employed in all other devel-
opment phases. Naturally, examples must be stated
for the design time, however these examples must be
taken up later and must be made concrete for the run-
time. Also there may be separate characteristics be-
tween design time complexity and runtime complexity.
A simple design time example may be illustrated with
a highly complex runtime one or the other way round.

Syntax, semantics, pragmatics trinity: The syntax,
semantics and pragmatics trinity [6] is of central con-
cern for any language, in particular modeling lan-
guages. Examples should cover all different areas, i.e.,
syntax, semantics and pragmatics. There should be
examples formulated with canonical syntactical con-
structs and examples formulated with uncommon syn-
tactical constructs. The chosen examples should ex-
plain implications of syntactical variations for deter-
mination of the semantics. Last but not least hypo-
thetical syntactical constructs that might be missing
in the currently used modeling language but which are
present in other languages could be discussed.

Criteria concerning example validity: Typically, one
will show positive, i.e., syntactically well-formed, ex-
amples for the introduced concepts and might later
also discuss negative, i.e., syntactically ill-formed, ex-
amples in order to distinguish between both cate-
gories [7, 11]. Other dualities relevant with respect
to example validity are the dualities wrong-correct and
bad-good. The wrong-correct duality refers to uses of
language features that lead to semantically adequate or
inadequate modeling situations. The bad-good duality
points to questions concerning style and experience.

Evolution: An example may be an a priori fixed example
or it may be a dynamically evolving or growing exam-
ple, with or without audience involvement [3]. An ex-
ample may be a recurring or running example whereas
in particular situations single-use examples may be ap-
propriate. Freshly introduced examples may alter with
variations of previously used examples. The example
can be fully explained at first occurrence or it may be
growing during concept and principle elaboration.

Audience appropriateness: Examples may be tuned to
be audience specific or they may be generally useful
independent of a particular context.

Abstractness: Depending on the intended aim, examples
can be understood to be abstract or they can refer to
concrete situations. A similar, but different spectrum
is span by hypothetic cases or, on the opposite side, by
real-world case studies.

Assumptions: There are safe examples that work under
all circumstances without any assumption. On the
other hand, potentially unsafe examples assume par-
ticular implicit and usually unexpressed assumptions
that have to be valid.

Example source: The examples may be taken from the
literature, they can stem from own previous work or
may be developed freshly for the teaching project un-
der consideration.

3. EXAMPLES FOR INSTANTIATING
THE CLASSIFICATION CATALOGUE

In Fig. 1 we picture the examples that we employ for il-
lustrating our ideas. The upper part shows five UML class
diagrams describing persons and parenthood relationships.
The lower part displays three definitions of the same view:
one view is formulated as a predicate in OCL, and two views
are stated as SQL views. We now sketch our example clas-
sification catalogue w.r.t. this example, we will however not
go into all interesting technical details of the examples.

Complexity: The starting UML class diagram is rather
simple insofar that there is only one class, but there
are two reflexive associations with four distinct role-
names. The final relational SQL schema concentrates
the central SQL DDL concepts, i.e., tables, attributes,
datatypes, primary keys, foreign keyes, and check con-
straints into a single table. We conclude that the ex-
ample schemas are mildly complex due to the concen-
tration of concepts.

Coverage degree of concepts and principles: If
we assume that the example has to cover the basic
UML concepts class, binary association and rolename
and their transformation into a relational database
schema, the basic concepts are covered well.

Relevant software development phase: The example
is a classical example for the design phase. The relative
mild complexity of the class diagram could be brought
to a more involved complexity for the runtime, i.e.,
the database states. Having two alternative runtime
models, i.e., one database state with some thousand
persons all participating in the parenthood links and
another database state with the same number of per-
sons, but only very few participating in parenthood
links, say only about ten links, one could nicely ex-
plain the difference between the class diagram 3 and
class diagram 5: For the second database state there
will very many null values for the representation of
missing parent links.

Syntax, semantics, pragmatics trinity: A syntactic
variation for the example class diagram would be to
discuss what happens to the semantics if a requirement
like ‘Everybody has a mother, thus we must change the

Figure 1: Different UML, OCL and SQL models in the Context of Motherhood and Fatherhood.

multiplicity from 0..1 to 1..1’ comes up during teach-
ing. Furthermore, the second SQL view definition in-
troduces all syntactically allowed SQL subquery forms
in a condensed way. The semantics of the first SQL
view definition is semantically equivalent to the sec-
ond one. A discussion about syntax and semantics of
SQL could be triggered in this example by discussing
the syntactical well-formedness and semantical impli-
cations of changing the SELECT * subexpression in the
second SQL view definition to SELECT FALSE. Gener-
ally, syntactic variations and their influence on seman-
tics are fruitful discussion items.

Criteria concerning example validity: The shown sec-
ond SQL view definition has a bad style insofar that it
realizes the same functionality, i.e., checking for grand-
parent and grandchildren pairs, in four different ways.

Evolution: The example explains the evolution of a start-
ing UML class diagram into a relational SQL schema.
It starts with a conceptual model, steps through some
intermediate schemas and ends in an implementation
model.

Audience appropriateness: The example seems to be
not very audience specific, and it should be easy to
communicate it to a large audience. Depending on the
audience, typical examples from the domain of the au-
dience are welcomed.

Abstractness: The example in Fig. 1 is rather concrete.
To give a case for a more abstract situation, the
teaching unit under consideration might introduce
the UML generalization constraint pairs overlapping-
disjoint and complete-incomplete. In order to explain
the possibiliy of combing these options in an orthogo-
nal way, an abstract example (see Fig. 2) with a gen-
eral superclass G and five subclasses A, B, C, D, E

together with the four constraint options for the sub-
class pairs {A, B}, {B, C}, {C, D} and {D, E} could
be given. Often, allowed syntactical options are better
explained with abstract examples.

Figure 2: Abstract Example.

Assumptions: An implicit assumption that is not stated
explicitly for the example is the assumption that only
bodily parenthood links should be represented. This
assumption is manifested with the multiplicity 0..1 on
the parent side of the associations.

Example source: In this case the example is a combina-
tion of a classical association found in many textbooks
and the need for explaining key SQL features, i.e., pri-
mary and foreign keys, in a very condensed way.

4. CONCLUSIONS

We think that teaching modeling and its central concepts
and principles must be accompanied by various examples.
We have proposed a criteria catalog for classifying the use
of examples in teaching modeling. The catalog can be em-
ployed as a checklist during the development of a teaching
unit in order to look for ways of integrating examples into
the teaching unit. Our criteria catalog must be validated
further and will be refined in upcoming teaching projects.
Although examples are important, it is however essential to
return from the example level to the concept and principle
level, after having discussed concepts and principles as well
as examples, and to explicitly point to the relationship be-
tween both. Thereby the connection between concepts and
examples, between gods and mortals, is strengthened.

5. REFERENCES
[1] S. Demeyer, F. V. Rysselberghe, T. Ĝırba,

J. Ratzinger, R. Marinescu, T. Mens, B. D. Bois,
D. Janssens, S. Ducasse, M. Lanza, M. Rieger,
H. Gall, and M. El-Ramly. The lan-simulation: A
refactoring teaching example. In IWPSE, pages
123–134. IEEE Computer Society, 2005.

[2] A. Fekete. Teaching transaction management with sql
examples. In J. C. Cunha, W. M. Fleischman, V. K.
Proulx, and J. Lourenço, editors, ITiCSE, pages
163–167. ACM, 2005.

[3] M. Gogolla. Teaching Touchy Transformations. In
M. Smialek, editor, MODELS Educators’
Symposium (EDUSYMP’2008), pages 13–25. Warsaw
University, ISBN 83-916444-8-0, 2008.

[4] S. Hartmann, M. Kirchberg, and S. Link. Design by
example for sql table definitions with functional
dependencies. VLDB J., 21(1):121–144, 2012.

[5] M. Main and E. B. Koffman. Graphical examples for
teaching fundamental cs1 concepts. In H. R. Arabnia,
V. A. Clincy, A. Bahrami, and A. M. G. Solo, editors,
FECS, pages 36–42. CSREA Press, 2010.

[6] A. Martinich, editor. The Philosophy of Language.
Oxford University Press, 3rd edition, 1996.

[7] J. Pang, K. A. Yun, and M. Stoner. Use wrong
examples as a tool for teaching. In H. R. Arabnia,
V. A. Clincy, and N. Tadayon, editors, FECS, pages
217–221. CSREA Press, 2008.

[8] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil,
editors. The Common Component Modeling Example:
Comparing Software Component Models [result from
the Dagstuhl research seminar for CoCoME, August
1-3, 2007]. Springer, LNCS 5153, 2008.

[9] S. Tarkan and V. Sazawal. Chief chefs of z to alloy:
Using a kitchen example to teach alloy with z. In
J. Gibbons and J. N. Oliveira, editors, TFM, pages
72–91. Springer, LNCS 5846, 2009.

[10] T. van Gog. Effects of identical example-problem and
problem-example pairs on learning. Computers &
Education, 57(2):1775–1779, 2011.

[11] Z. Zhiying. Teaching software methodology with
assistance of negative examples. In A. Abdelwahab
and G. Rommel, editors, ISCA Conference on
Intelligent Systems, pages 154–157. ISCA, 2001.

