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Chapter 2
UML and OCL in Conceptual Modeling

Martin Gogolla

2.1 Introduction

The development of the Entity-Relationship (ER) model syably one of the cor-
nerstones for conceptual modeling of information systerhg Unified Modeling
Language (UML) takes up central ideas from the ER model artsl fiem into a
broad software development context by proposing varioaplgcal sublanguages
and diagrams for specialized software development tasks.shid that the most
commonly used UML diagram form is the class diagram. Emstitied relationships
have their counterparts there and are called classes anciagms. Additionally,
UML class diagrams allow the developer to include behavidorm of operations.

The first versions of UML were developed in the mid 90s of thet t@entury.
UML has changed since then and is still under developmemteShany years UML
includes a textual language, the Object Constraint Lang@gL), whose main
task is to enrich the UML diagrams by textual constraintsolfiannot be expressed
otherwise. However, apart from constraining, OCL can beldisequerying UML
models as well.

The rest of this chapter is structured as follows. The firstise will introduce
the correspondence between basic ER modeling concepthieindJML counter-
parts. The next section will explain how more advanced cptuzs¢ modeling con-
cepts can be formulated in UML. The following section willeu®CL for features
not expressible in diagrammatic form. Then we turn to thedeson of Relational
databases with UML. Before we conclude, we will show how tdanmedel con-
ceptual modeling features with UML itself.

Martin Gogolla
Department of Computer Science, Database Systems Groiygrsity of Bremen, 28334 Bremen,
Germany, e-mail: gogolla@informatik.uni-bremen.de



2 Martin Gogolla

2.2 Basic Conceptual Modeling Features in UML

This section introduces the central features of UML [OMG1RBJO05] class and
object diagrams and the Object Constraint Language (OCIM@@0a, WKO03,
RG98] which is part of the UML.

2.2.1 Class and Object Diagrams

The main purpose of class diagrams within the UML is to capthe basic static
structures and operations of a system. In this subsectiowieshortly explain
the most important features in class diagrams like clagsgé®ssociations. In later
sections we discuss more advanced features.

ClassesA class is a descriptor for a set of objects sharing the sametste and
behavior. In the database context, we concentrate on thetstal aspect, although
the behavioral aspect may be represented in UML as well.dDpjeperties can be
described by attributes classified by data types$ikei ng or Bool ean. Later we
see that properties can also stem from roles in associatibith connect classes.

Supplier

SupplierMo ; Integer
Marne © String
+ zupplier

SupplierProjectPart

Cornponent
+ suppliedProject / B guppﬁedparx . parert
j Part
_ Project ProjectPart _
Projectio : Integer [ project + part Partho : Int.eger + child
Budget ; Integer Mame : String

Fig. 2.1 Example UML Class Diagram 1

Example: Fig. 2.1 follows the example from Chen’s original paper [Z8
on the ER model and shows the clasSespl i er, Proj ect, andPart to-
gether with some basic attributes including their data sypeg., we identify
Suppl i er:: Nane: StringandProject:: Budget: | nt eger.Inthiscon-
tribution, the general scheme for denoting propertiesrifaties and roles) is
Cl ass:: Property: PropertyType. Most names for entities, relationships,
and attributes are taken from Chen’s original article. OlilUand OCL exam-
ples have been realized in the tool USE [GBR05, GBRO7]. USipatis the de-
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velopment of information systems with UML and OCL by testinglidation, and
verification techniques.

Associations: An association represents a connection between a colteofio
classes and may be given a name. An association is manifiegtacet of object
connections, so-called links, sharing the same strucfubiary association can be
defined between two different classes; objects of the réispadasses play a partic-
ular role in the association; a binary association can asieined on a single class;
then objects of the class can play two different roles; submary association is
called reflexive. A ternary association involves threesolehe notion n-ary associ-
ation refers to a ternary or a higher-order associatioraiassociations are shown
with a simple line, and an n-ary association with a small rheshaped polygon.

Example: In Fig. 2.1, we identify the binary associatién oj ect Part with
roles proj ect andpart, the ternary associatioBuppl i er Proj ect Par t
with rolessuppl i er, suppl i edProj ect, andsuppl i edPart, and the re-
flexive associatiofonponent with rolespar ent andchi | d.

Objects and Links: Structural aspects in UML can also be represented in an ob-
ject diagram showing objects, links, and attribute valsa®anifestations of classes,
associations, and attributes. An object diagram showssartiation of a class di-
agram and represents the described system in a particater Sinderlining for ob-
jects and links is used in object diagrams in order to distisiy them clearly from
class diagrams.

Example: Figure 2.2 shows an object diagram for the class diagram from
Fig. 2.1. Objects, links, and attribute values fit to the ¢&s associations, and at-
tributes. The object identity is shown in the top part of thgeat rectangle to the
left of the class to which the object belongs to. Formallgréhis no connection be-
tween the object identity and attribute values. For the etardlasseSuppl i er
andPar t , we have chosen object identities which are close to butaritical with
the attributeNane, but for the clas$’r oj ect the object identities have no con-
nection to the attribute values. There are tRrooj ect objects, twoSuppl i er
objects and fivé®ar t objects. Eaclirart object represents a piece of software re-
alizing controller Ct r I ) code which is responsible for a particular portion of a car.
TheConponent links express part-whole relationships, for example Bhgi ne
Code (engi neCtrl) includes theBattery Code (batteryCtrl) and
theMbt or Code (notorCtrl).

Roles: Proper roles must be specified on a class diagram in orderaagtee
unique navigation, in particular in presence of reflexiv@agations or when two or
more associations are present between two classes. Naviga@a class diagram
means to fix two classes and to consider a path from the firss ¢tathe second
class by using associations. The roles on the opposite $idegiven class in an
association determine also properties of the given classbigating via the roles.
Therefore, in UML and OCL the opposite side roles must be wmidRecall that
properties can also come from attributes.

Example: On links, also the roles are captured. This is necessaryflexiee
associations and in other situations, for example, if tweoemtions are present
between two given classes. For example in Fig. 2.2, if we idenghe link be-
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tweencar Ct rl andengi neCrt |, without roles we could not tell which ob-
ject plays thepar ent role and which one thehi | d role. In the class dia-
gram in Fig. 2.1, the clasBr oj ect has two direct navigation possibilities to
classPart : One via associatiofr oj ect Part and the other one via associ-
ation Suppl i er Proj ect Part . One obtains therefore two properties in class
Pr oj ect returningPar t objectsProj ect: : part: Set (Part) fromassoci-
ationPr oj ect Part andProj ect: : suppliedPart: Set (Part) from as-
sociationSuppl i er Proj ect Part . In the object diagram we obtain, for ex-
ample,ford. part =Set {nptorCtrl } as well asf ord. suppl i edPart =
Set {}.

Class Diagram versus Database Schem# the database context, it is interest-
ing to remark that the connection between a class diagranitan@ject diagrams
resembles the connection between a database schema assoitsated database
states: The class diagram induces a set of object diagrasitbamatabase schema
determines a set of database states; object diagrams atthdatstates follow the
general principles formulated in the class diagram andbdas& schema, respec-
tively. Because example object diagrams have to be displagescreen or paper,
they tend to show fewer information than proper, large dadalstates. They may
however explain the principles underlying a class diagraetty well if the exam-
ples are well chosen.

2.2.2 Object Constraint Language

The UML includes a textual language that allows the develtpaavigate in class
diagrams and to formulate queries and restricting intggdnstraints for the class
diagram: The Object Constraint Language (OCL). Roughlyakjpeg from a practi-
cal perspective, the OCL may be viewed as an object-oriergesion of the Struc-
tured Query Language (SQL) originally developed for thealehal data model.
Roughly speaking from a theoretical perspective, OCL mayiewed as a variant
of first-order predicate logic with quantifiers on finite ddngonly. The central
language features in OCL are: Navigation, logical conmesticollections and col-
lection operations.

Navigation: The navigation features in OCL allow you to determine comerbc
objects in the class diagram by using the dot operatarStarting with an ex-
pressionexpr of start classC, one can apply a properfyr opC of classC re-
turning, for example, a collection of objects of cld3®y using the dot operator:
expr. propC. The expressioexpr could be a variable or a single object, for ex-
ample, or a more complicated expression. The navigatioogscan be repeated
by writing expr . pr opC. pr opD, if pr opDis a property of clasb.

Examples: Given the object diagram in Fig. 2.2, the following navigatiex-
pressions are syntactically valid in OCL and yield the statturn values and re-
turn types. OCL uses the convention that types are denotiddparenthese§ )
and values with bracefs }.
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chrysler.part =

Set{batteryCrl,notorCtrl}: Set(Part) (D)
batteryCirl. project.supplier =

Bag{ codeMart, ncCode}: Bag( Supplier) (2)
carCrl.child =

Set{engineCrl,radioCrl}:Set(Part) (3)
carCrl.child.child =

Bag{batteryCtrl,nmotorCirl}:Bag(Part) (4)
carCrl.child.child.child =

Bag{}: Bag(Part) (5)

Expressions (3) and (4) are similar insofar that expreddpamploys the dot in
one place and expression (4) in two places. The differenteeinesult type, namely
Set (Part) versusBag( Part), will be explained below.

Logical Connectives:OCL offers the usual logical connectives for conjunction
and, disjunctionor , and negatiomot as well as the implicationnpl i es and
a binary exclusive oxor . An equality check=, an inequality check>, and a
conditionali f then el se endif is provided on all types.

ford:Project chrysler:Project
ProjectMo=110 Projectto=100
Budget=13 Budget=16

Fig. 2.3 Objectsf or d andchr ysl er from Example Object Diagram 1

Examples:|If we consider the objecfsor d andchr ysl er from Fig. 2.2 being
repeated in Fig. 2.3 for ease of tracing the resulting valaasOCL engine will
deliver the following results.

ford. Budget >16 and chrysl er. Budget >16 = fal se: Bool ean
ford. Budget >16 or chrysler.Budget>16 = true: Bool ean
not (f ord. Budget >16) = fal se: Bool ean
ford. Budget >16 i nplies chrysl er. Budget >16
= fal se: Bool ean
ford. Budget >16 xor chrysl er. Budget>16 = true: Bool ean
ford=ford = true: Bool ean
ford=chrysl er = fal se: Bool ean
if ford.Budget>16 then 42 else 43 endif = 42:|nteger
if chrysler.Budget>16 then ntCode el se codeMart endif
= codeMart: Supplier

Collections: In the original OCL there were three kinds of collectionstsSe
bags, and sequences. Later ordered sets were added, whadhwet discuss here
because they are similar to sequences; a discussion of Qfectians can be found
in [BGH'10]. A possible collection element can appear at most oneesiet, and
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the insertion order in the set does not matter. An elemenapaear multiple times
in a bag, and the order in the bag collection does not matteeldment can appear
multiple times in a sequence in which the order is significant

Examples: The expressions to follow state characteristic featureth@fOCL
collections.

Set{11, 22} =Set {22, 11} = true
Bag{ 11, 22} =Bag{ 22, 11} = true
Sequence{ 11, 22} =Sequence{ 22, 11} = fal se
Set {11, 22} =Set {11, 22, 11} = true
Bag{ 11, 22} =Bag{ 11, 22, 11} = fal se
Sequence{ 11, 22} =Sequence{11, 22,11} = fal se
Set {11, 11, 22} =Set {11, 22,11} = true
Bag{ 11, 11, 22} =Bag{ 11, 22, 11} = true
Sequence{ 11, 11, 22} =Sequence{ 11, 22, 11} = fal se

We use terms of typ8et ( | nt eger) to demonstrate these features. However,
we could have used terms of tyi®8et ( Proj ect) as well, e.g..Set {f or d,
chrysl er } instead ofSet {11, 22}. Sets are insensitive to insertion order and
insertion frequency. Bags are insensitive to insertioregrout are sensitive to inser-
tion frequency. Sequences are sensitive to insertion amdmsertion frequency.

Conversions:OCL collections can be nested and converted into each @hgs
and sequences can be converted to sets withs Set () , sets and sequences to
bags with- >asBag( ) , and sets and bags to sequences withs Sequence() .
The conversion to sequences assumes an order on the eleftentgrow notation
will be explained in more detail below.

Examples:The following evaluations give an impressions of how theversion
work.

Sequence{ 11, 22, 11} - >asBag()
Bag{ 1, 11, 22} : Bag( | nt eger)

Sequence{ 11, 22, 11} - >asSet ()
Set {11, 22}: Set (| nt eger)

Bag{ 11, 22, 11} ->asSet () =
Set {11, 22}: Set (I nt eger)

Special TypeCQcl Any: Collection terms in OCL possess a type like in the fol-
lowing examples.

Sequence{ford, chrysler,ford}: Sequence(Project)
Set{42, 41, 40}: Set (Integer)

However, the special typecl Any is a supertype of all other types, a@d|l Any
can be used for collections. Therefore, the following egpi@ns are valid in OCL.

Set {’ Tal ki ng Heads’, 3.14, 42, false}: Set(Ccl Any)
Bag{Set{8, 9}, Set{ford, carCrl}}: Bag(Set(Ccl Any))
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Collection Operations: There is a large number of operations on collections
in OCL. A lot of convenience and expressibility is based uploem. The most
important operations on all collection kinds arer Al | , exi sts, sel ect,
col I ect Nest ed, col | ect,si ze,i sEnpty,incl udes, andi ncl udi ng.
The table in Fig. 2.4 gives an overview on the functionalityhe operations.

Operation Functionality

forAll realizes the universal quantification.

exi sts formulates existential quantification.

sel ect filters elements with a predicate.

col | ect Nest ed|applies a term to each collection element.

col | ect applies a term to each collection element flattening thdtresu
si ze determines the number of collection elements.

i SEnpty tests on emptiness.

i ncl udes checks whether a possible element is included in the calect
i ncl udi ng returns a collection which includes an element.

Fig. 2.4 Important collection operations

There are also special operations available only on péaticollections, e.g., the
operationat on sequences for retrieving an element by its position. élllection
operations are applied with the arrow notation already ioeatl above. Roughly
speaking, the dot notation is used when a property follows,an attribute or a role
follows, and the arrow notation is used when a collectiorragen follows.

Variables in collection operations:Most collection operations allow variables
to be declared (possibly including a type specification}, the variable may be
dropped if it is not needed.

Example: The following expressions are equivalent.

motor Ctrl. project->forAll (Budget<120) = true
nmotor Ctrl. project->forAll (p|

p. Budget <120) = true
motorCtrl . project->forAll (p: Project|

p. Budget <120) = true

Another important possibility is a feature to retrieve theté set of all current
instances of a class by appendingl | | nst ances to the class name. In order
to guarantee finite resultsal | | nst ances cannot be applied to data types like
Stringorlnteger.

Examples: With regard to collection operations, an OCL evaluator wiabtain
the following results in the above object diagram.

motor Ctrl . project->forAll (Budget <120) = true: Bool ean
chrysl er. supplier->exists(s|s.SupplierNo=99) =
fal se: Bool ean
Part. al |l I nst ances- >sel ect (Part No>=300) =
Set{batteryCirl,engineCrl,mtorCrl}:Set(Part)
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chrysler.part->collect(p|p. Nane) =
Bag{’ Battery Code’,’ Motor Code’} Bag(String)
chrysler.part->col |l ect Nested(p|p.parent) =
Bag{ Set {engi neCtrl}, Set{engineCtrl}}: Bag(Set(Part))
chrysler.part->collect(p|p.parent) =
Bag{engi neCtrl, engineCrl}:Bag(Part)
chrysler. part->col | ect Nest ed(p| p. parent) ->size() =
2. I nteger
ford. supplier->i sempty() t rue: Bool ean
chrysler.part->includes(carCirl) = fal se: Bool ean
chrysler.part->including(carCrl) =
Set{batteryCrl,carCrl,notorCrl}: Set(Part)

Argument collection/Collection operatiofjResult type
Set/Bag/Sequence([TprAll Boolean
Set/Bag/Sequence([BXxists Boolean
Set/Bag/Sequence([Belect Set/Bag/Sequence(T)
Set/Bag/Sequence([KollectNested Bag/Bag/Sequence(T’)
Set/Bag/Sequence(|pllect Bag/Bag/Sequence(T’)
Set/Bag/Sequence([Bjze Integer
Set/Bag/Sequence([I3Empty Boolean
Set/Bag/Sequence([ijicludes Boolean
Set/Bag/Sequence([ifcluding Set/Bag/Sequence(T)

Fig. 2.5 Result types of collection operations

Result types in collection operations:The result types of collection opera-
tions are shown in the table in Fig. 2.5. Most notably, therapencol | ect -
Nested(...) andcol | ect(...) change the kind of an argument collection
Set (T) to aBag(T' ) collection. The reason for this is that term inside the col-
lect may evaluate for two different collection elementdi® $ame result. In order to
reflect that the result is captured for each collection elgpibe result appears as of-
ten as a respective collection element exists. This coiem OCL resembles the
same approach in SQL: SQL queries with the additional keghgtosst i nct return
a set; plain SQL queries withodi st i nct return a bag. In OCL, the convention
is similar: Plaincol | ect (. ..) expressions return a bag; using the conversion
asSet () asincol l ect(...)->asSet () returns a set.

Example: With respect to return types in collection operations, we the fol-
lowing evaluation in whichcol | ect (. ..) is applied to a set, but it properly
returns a bag.

Set{radioCrl,motorCtrl}->
col I ect (p| p. Nanme. substring(7,10)) =
Bag{’ Code’,’ Code’ }: Bag(String)

In the above examples, we also saw this result fookl ect Nest ed term.
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chrysler.part =
Set{batteryCtrl,notorCtrl} : Set(Part)
chrysler.part->coll ect Nested(p|p.parent) =
Bag{ Set {engi neCtrl}, Set{engineCtrl}}: Bag(Set(Part))

Thus thecol | ect Nest ed(. . .) operation applied t&et ( Part) with the
inner termp. par ent , which returnsSet (Part), yieldsBag( Set (Part)).
In this example, a bag is needed in order to capture the resukctly.

Operation fl att en() : In OCL, collections can be nested. For example, one
can build bags whose elements are sets. In order to flatteaadhesllections to
unnested ones, the operatibhat t en() is available. The kind of the result col-
lection is determined by the outermost collection. For ex@nbags of sets of
something would be flattened to bags of something. For mgldiequences, an
implementation-dependent order is chosen.

Example: The next expressions demonstrate the effe¢iait t en() .

Set { Set {10, 20}, Set {30, 40} }->fl atten()
Set {10, 20, 30, 40} : Set (| nt eger)

Set {Set {10, 20}, Set {20, 30}}->fl atten()
Set {10, 20, 30}: Set (I nt eger)

Bag{ Bag{ 10, 20}, Bag{ 30, 40} }->fl atten()
Bag{ 10, 20, 30, 40} : Bag( | nt eger)

Bag{ Bag{ 10, 20}, Bag{ 20, 30}}->fl atten()
Bag{ 10, 20, 20, 30}: Bag( | nt eger)

Bag{ Set { 10, 20}, Set {30, 40}}->fl atten()
Bag{ 10, 20, 30, 40} : Bag( | nt eger)

Bag{ Set {10, 20}, Set {20, 30}}->fl atten()
Bag{ 10, 20, 20, 30}: Bag( | nt eger)

Dot shortcut: Another convenient OCL feature is the dot shortcut which al-
lows the developer an easy navigation through a class diagising multiple
roles. Speaking technically, a propegly opD may follow a dot as in the term
expr. propC. propD, although the left parexpr . pr opC yields a collection
and only a collection operation and not a property (attétartrole) would be ex-
pected. However, the terexpr . pr opC. pr opDis understood as a shortcut for
expr. propC->col | ect (x| x. propD) . The aim of this shortcut is to avoid
to explicitly write calls tocol | ect (.. .) and to simply navigate with proper-
ties (attributes or roles) as for examplesinpr . pr opC. pr opD. pr opE. The dot
shortcut is on the one hand very convenient, because it sitbes developer easy
navigation through a class diagram. On the other hand istihe distinction be-
tween a single object and an object collection insofar th@baerty can be applied
with the dot shortcut to a collection as if the collection vaasobject.

Examples: The following examples illustrate the dot shortcut and tfiects of
fl atten() incontext of the above object diagram.

chrysler.part->coll ect Nested(p|p.parent) =
Bag{ Set{ @ngi neCtrl}, Set{@ngi neCtrl}}:
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Bag( Set (Part))

chrysler.part->coll ect Nested(p|p.parent)->flatten() =

Bag{ @ngi neCtrl, @ngi neCtrl}: Bag(Part)
chrysler.part->collect(p|p.parent) =

Bag{ @ngi neCtrl, @ngi neCtrl}: Bag(Part)
chrysler.part->coll ect Nested(p|p.parent)->flatten()->

col l ect(p| p. Nane) =

Bag{’ Engi ne Code’,’ Engi ne Code’ }: Bag(Stri ng)
chrysler.part. parent. Nane =

Bag{’' Engi ne Code’,’ Engi ne Code’}: Bag(String)

Example: Above we mentioned the terncar Ctrl.child with type
Set (Part) and the termcar Ctrl . child. chil d with type Bag(Part) .
This difference in the type is essentially a consequence faocombination of
the dot shortcut and the fact thabl | ect returns a bag when applied to a set:
carCrl.child.childisshortforcarCtrl.child->collect(child)
which is a term having typBag( Part) .

Operation definitions with OCL: OCL may be used to define side-effect free
operations. You may associate a correctly typed OCL terrn antoperation name.
The term may use the declared parameters. The operatioiitidefimay be recur-
sive.

Example: In the classPr oj ect one could define an operatiqgrar t Com
petitors() returningtypeSet ( Pr oj ect) . This operation should yield the set
of those projects needing at least one common part with thsidered project. The
OCL operatiorexcl udi ng (used below) eliminates an element from a collection.

Project::partConpetitors(): Set(Project) =
sel f. part. project->excluding(self)->asSet ()

The operation is formulated within the claBs oj ect . Therefore the variable
sel f references the current object on which the operations liec:al

As an example for a recursive operation, we define in the &as$ the transi-
tive closurechi | dPI us() of the rolechi | d with the help of an auxiliary recur-
sive operation.

Part::childPlus(): Set(Part)=chil dPl usAux(self.child)
Part::chil dPl usAux(aPart Set: Set (Part)): Set (Part) =
| et oneStep: Set(Part)=aPart Set.child->asSet() in
i f oneStep->exists(p|aPart Set->excl udes(p))
t hen chi | dPl usAux(aPart Set - >uni on(oneSt ep))
el se aPart Set endif

The last example uses the following OCL features not meatoyet:| et al-
lows the developer to define sub-expressions to be usediouggslacesyni on is
another collection operation with the obvious meaning. Wipleasize that the op-
erationchi | dPI us defined in the above manner is well-defined and terminating
for all possible object diagrams. Recall, that the cRast (as any other class) has
only finitely many instances in each system state. Thergtheerecursion finally
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terminates. The maximal set which can be computdehist . al | | nst ances.
Analogously to the transitive closuchi | dPI us() , one could define the transi-
tive and reflexive closurehi | dSt ar () .

2.3 Advanced Conceptual Schema Elements in UML

This section shows how to describe conceptual schemas in tlls diagrams

without using any OCL features. In the first part, those UMassl diagram features
are introduced which are relevant for conceptual schemaseptation. In the sec-
ond part, it is discussed how to represent standard ER nmgp@dincepts with these
UML features.

2.3.1 Class Diagram Features for Conceptual Schemas

The language features in UML class diagrams introducedeabo. Classes, data-
valued attributes, associations, and roles. We now turreszribe: Object-valued,
collection-valued and compound attributes, role mukifiis, association classes,
generalizations, aggregations, compositions, and iam&si

Object-valued attributes: Attributes in UML may not only be data-valued as
above, but the attribute type may be a class as well whicksléadbject-valued
attributes. Like associations, object-valued attribaies establish a connection be-
tween classes. The object-valued attribute is however avaylable in the class in
which it is defined. The information from that attribute ig darectly present in the
attribute type class. Thus an object-valued attribute neagegarded as a unidirec-
tional association without an explicit name and where omly mle is available.

Project™orker
PercentageOfTime : Real
I

+ etnployes | Projecthiorker + project Project
Projectio : Integer
Budget : Integer

Emnployee
Etrployesho : Integer

Mame : TupleFirst: String Last: String) [1 manager Frojecthlanager  * managedProject
Age  Integer

1 supporter

EmployeeDependent

+ dependent

Dependert

Firstiame : String
A nteger

Fig. 2.6 Example UML Class Diagram 2
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chrysler:Project
ProjectMo=100

adadchrysler: ProjectWaorket
PercentageOfTime=70

project

Budget=16
., managedProject
Projectiorker
Projectianaer
employes
ada.Employee manager
J adadford: Projectaorker
Etnployeehlo=1500 - |
Mame=Tuple{First:'Ada’ Last: ' &pple'} | employves Perce;ﬂageOleme—m
Age=42 Projectorker
sUpporter manager
Erl o dert Projectianacer project
miployeebepende fard Proiect
managedProject ?A
dependert ProjectMo=110
- Budget=15
hob: Dependert cid: Dependent
Firstiame="Bok' FirstMarme="Cid'
Age=12 Age=15

Fig. 2.7 Example UML Object Diagram 2

Examples: The examples in this section will be discussed in the coraeitte
class diagram in Fig. 2.1 and the class diagram in Fig. 2.@hvbktends the for-
mer one by introducing the new clas&®l oyee, Dependent , andPr oj ect -
Wor ker , and the associatiod8pl oyeeDependent , Pr oj ect Manager , and
Proj ect Wr ker . The fact thaPr oj ect Wor ker is mentioned as a class as well
as an association will be explained below. The object diagraFig. 2.7 shows an
example state for the class diagram from Fig. 2.6. As a fatwefierence we remark
that we will come back later to the fact that ada’s projectipgnation sums up to
110 percent.

As an example for an object-valued attribute and as an alteenfor the as-
sociationPr oj ect Manager, we could extend the cla€dr oj ect by an at-
tribute manager with type Enpl oyee. This could be represented altogether as
Proj ect: : manager : Enpl oyee.

Collection-valued attributes: We have already introduced the collection kinds
set, bag, and sequence. These collection kinds can be usgakeasonstructors on
data types and classes. For building attribute types, thetnactors may be nested.

Examples: An attribute could possess a type lilget (Proj ect). As an
alternative for the associatior oj ect Manager we could have one attribute
managedPr oj ect : Set ( Proj ect) in the classenpl oyee and another at-
tribute manager : Enpl oyee in classPr oj ect . There is however an important
difference between the model with the associatomj ect Manager including
the rolestanager andmanagedPr oj ect and the model with the two attributes
manager andnmanagedPr oj ect . In the model with the association, we would
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always have that the rolesanagedPr oj ect andmanager represent the same
set of object connections, i.e., the following two OCL e)gsiens will evaluate to
true in that model:

Enpl oyee. al | | nst ances->for Al | (e|

e. managedPr oj ect - >for Al | ( p| p. manager =e))
Project.alllnstances->forAll(p|

p. manager . managedPr oj ect - >i ncl udes(p))

This is not required to hold in the model possessing the twribates. In this
case the two attributesanagedPr oj ect andmanager are independent from
each other and may represent different sets of object ctionec

Another useful application of collection-valued types acdlections over the
data types likeSet ( Sequence(String)) . A value for an attribute typed in
that way could be for example the complex valget {Sequence{’ Rone’,
"Euro’ }, Sequence{’ Tokio', ’Yen’ }}.

Compound attributes: Apart from using the collection constructd®st , Bag,
andSequence for attributes, one can employ a tuple construdtopl e. A tuple
has a set of components each possessing a component deatoinaind a compo-
nent type. The collection constructors and the tuple caogir may be nested in an
orthogonal way.

Examples: The above value for the tygeet ( Sequence(String)) could
be represented also with type

Set (Tupl e( Town: String, Currency: String))
and with the corresponding value

Set { Tupl e{ Town: * Rone’, Currency:’ Euro’},
Tupl e{ Town:’ Toki o, Currency:’ Yen' }}.

As a further example for a compound attribute usingThel e constructor, we
see in the class diagram in Fig. 2.6 the attridvere in classEnpl oyee which is
a compound attribute with typeupl e(Fi rst: String, Last:String).

Role multiplicities: Associations may be restricted by specifying multiplessti
In a binary association, the multiplicity on the other sidla given class restricts the
number of objects of the other class to which a given objecst beaconnected to.
In a simple form, the multiplicity is given as an integer int& | ow. . hi gh (with
I ow<hi gh)which expresses that every object of the given class mustibeected
to at least ow objects and at mosti gh objects of the opposite class. Thegh
specification may be given as indicating no higher bound. A single integer
denotes the interval. . i and= is short forO. . . The multiplicity specification
may consist of more than one interval.

Examples: The multiplicity 1 on the rolesuppor t er indicates that an object
of classDependent must be linked to exactly one object of cldaspl oyee via
the associatioinpl oyeeDependent .

Association classesAssociations may be viewed again as classes leading to the
concept of an association class. Association classes anshith a class rectangle
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and are connected to the association (represented by a Endomb) with a dashed
line. Association classes open the possibility of assigaittributes to associations.
Examples: The associatiorPr oj ect Wor ker is modeled also as a class:
Pr oj ect Wr ker is an association class. This makes it possible to assigatthe
tribute Per cent ageOf Ti ne to the associatio®r oj ect Wor ker . In the class
diagramPr oj ect Wor ker can be found redundantly as the class name and as the
association name. The specification as the class name wewldifficient.
Generalizations: Generalizations [SS77] are represented in UML with dirécte
lines having an unfilled small triangle pointing to the moemegral class. Usually
the more specific class inherits the properties from the rgeresral class. Gener-
alizations are known in the database context also as ISAISerarchies. In the
programming language context often the notion inheritamosvs up. Viewed from
the more general class its more specific classes are itsafipations. In general, a
class may have many specializations, and a class may hawegeaeralizations. A
set of generalizations may be restricted talbsj oi nt and a set of generalizations
may be classified asonpl et e. The classificatiodi sj oi nt means that any two
specific classes are not allowed to have a common instanedabklconpl et e
means that every instance of the general class is also amaesof at least one more
specific class. The explicit keywords/er | appi ng andi nconpl et e may be
attached to sets of generalizations for which no respeggisigiction is made.

| FermaleEmployes | | MaleEmployee |

Digjoirt Complete | — — — — 1+

Disjoint Incomplete
I

[ CapricornEtnployes
AquariuzEmployes
I
PizcesEmployes

————— -~ Owetlapping Complete

FrenchEmployee
alianEmployes

|

I

|

I
Crveerlapping Incomplete

|Grnund8taffEmpInyee || FlightStaffEmployee |

Fig. 2.8 Different Example Generalizations and Specializations L

Examples: Fig. 2.8 shows different specializations of the cl&®l oyee.
The subclassed-enal eEnpl oyee and Mal eEnpl oyee represent a dis-
joint and complete classification. The subclassespri cor nEnpl oyee,
Aquar i usEnpl oyee, andPi scesEnpl oyee classify employees according to
their birthday (December 22-January 20, January 21-Feprl@, February 20-
March 20, respectively). This classification is disjoint lucomplete. The sub-
classess oundst af f Enpl oyee andFl i ght St af f Enpl oyee in the context
of an airline company are labeled overlapping and completeause each airline
employee either works on the ground or during a flight andef@mple, a steward
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is allowed to work on the ground during boarding and of couhseng the flight.
The subclassds enchEnpl oyee andl t al i anEnpl oyee are overlapping be-
cause employees may have two citizenships, butit is incetaplecause, e.g., Swiss
employees are not taken into account.

Special care must be devoted to the classification®r | appi ng and
i nconpl et e. As already said, they represent the general case and mctiest
is made by these classifications. But the wording could impery suggest, that
an overlapmustexist and the incompletiomustoccur, although this is not the
case. Altogethemver | appi ng andi nconpl et e in the class diagram would
accept an object diagram whichds sj oi nt andconpl et e, butdi sj oi nt
andconpl et e in the class diagram would not accept an object diagram being
over | appi ng ori nconpl et e.

Cornponert Cornponent Component
= parent x parent < ; + parert i
Part Part Part
Partho : Integer | = child Partho ; Integer | = child Partho : Integer |+ child
Marrne ; String Marrne ; String Marne ; String

Fig. 2.9 Component as Association, Aggregation, and Composition

Allowed for Association o= == — Allowed for Association
Forbidden for Aggregation S— — o— Allowed for Aggregation
Forbidden for Composition O— —> 4— Forbidden for Composition

carCtrl:Part carCirl: Part truckCtrl. Part
Partilo=10 Farthlo=10 Fartrlo=20
Mame="Car Code' Mare="Car Code' Marme="Truck Code'
parent arent parent parent parernt
/] ch& /1 /)
child child chiled child /child
engineCirl:Part radioCtrl:Part endgineCirl:Part radioCirlPart
Partto=300 Partho=200 Partho=300 Partho=200
Matme='Engine Code" Mame="Radio Code' Matme="Engine Code' MNatne="Radio Cods'

parent parent
childd

hatteryCirlPart
Partho=3020
Matne="Battery Cods'

parent parent
childd

battery Cirl. Part
Partho=3020
Matne="Battery Code'

child, £ parent child

motorCirl Part motorCirl Part
Partho=3010 Partho=3010
Marme="Motar Cocde' Mare="Motor Cocde’

Fig. 2.10 Forbidden and Allowed Object Diagrams for Aggregation andn@osition
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Aggregations: Part-whole relationships [SS77] are available in UML cldss
agrams in two forms. The first form represents a loose binbetgveen the part
and the whole, the second form realizes a stronger bindiath #®rms can be un-
derstood as binary associations with additional restmsti The first form called
aggregation is drawn with a hollow rhomb on the whole side ianaoften called
white diamond. The second form called composition is dravth @ filled rhomb
on the whole side and is often called black diamond. The links object diagram
belonging to a class diagram with a part-whole relationshifst be acyclic if one
regards the links as directed edges going from the wholestpdnt. This embodies
the idea that no part can include itself as a subpart. Sudicdiks are allowed
however for arbitrary associations. Part objects from agregpation are allowed to
be shared by two whole objects whereas this is forbiddendomosition.

Examples: The class diagrams in Fig. 2.9 show on the left the assoniatio
Conponent already introduced and on the right two alternatives in Whie as-
sociation is classified as an aggregation with a white diadhaod as a composition
with a black diamond, respectively. Recall that roles aseesal in reflexive associ-
ations and therefore in reflexive part-whole relationshifere thepar ent objects
play the whole role and thehi | d objects play the part role. The two object di-
agrams in Fig. 2.10 explain the differences between adsmtjaaggregation, and
composition. The diamonds are shown as grey diamonds, acdymhich doesnot
exist in the UML. We will discuss what happens if the grey diend is substituted
by a white or black one. If the grey diamond is replaced by d@ewtiemond, the left
object diagram is forbidden, because there is a cycle in éinevphole links which
would mean that the objectar Ct r | is a part of itself. This would also hold for
the other two objects on the cycle. Recall that if we wouldehawsimple associa-
tion instead of the grey diamond, this object diagram wo@dlowed. If the grey
diamond is replaced by a white diamond, the right object rdiangis an allowed
object diagram. Here, the objecadi oCt r | is shared by the objectsar Ct r |
andt ruckCt r I . Naturally, if the grey diamond would become an associatios
right object diagram is allowed as well.

Compositions: Compositions pose further restrictions on the possibleslim
addition to the required acyclicity. Part objects from a paosition cannot be shared
by two whole objects. The table in Fig. 2.11 gives an overwevthe properties of
associations, aggregations, and compositions.

|Acyc|icity Prohibition of sharing
Associatiori - -

Aggregatio +
Compositio + +

Fig. 2.11 Overview on Properties of Associations, Aggregations, @achpositions

Examples:Let us now discuss what happens in Fig. 2.10 if the grey diahi®n
substituted in order to represent compositions. If the giagnond is replaced by a
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black diamond, the left object diagram is again forbiddetcause there is a cycle in
the part-whole links. If the grey diamond is replaced by aklkdiamond, the right
object diagram is a forbidden object diagram for composgjdecause sharing of
objects is not allowed in that case. To show also a positiamgte for compo-
sition and aggregation, we state that, if we remove the lioknfrrot or Ct r | to
car Ctrl inthe left object diagram, we get a valid object diagram famposition
and aggregation.

=<enumeration==
==enumerstion=> CivilStatuz
Gender single
female mErriecd
male divorced
widowved

Fig. 2.12 Enumerations in UML

Data types and enumeration typesUML offers a collection of predefined data
types with usual operations on them. The data types inclutdeeger, Real ,

St ring, andBool ean. Application dependent enumeration types can also be
defined in a class diagram. The enumeration type name ismMetidy the list of
allowed enumeration literals. Enumeration types can bd asattribute, operation
parameter or operation return types.

Examples: Fig. 2.12 shows two enumeration types useful in the contegtio
example. The typ€ender may represent the gender of an employee and the type
Ci vi | St at us its civil status.

Invariants: OCL allows the developer to specify invariants, i.e., ctiods
which must be true during the complete lifetime of an objext gerhaps more
precisely, at least, in moments when no activity in the ditigkes place). Such in-
variants are implicitly or explicitly universally quangfil OCL formulas introduced
with the keywordcont ext .

Example: In order to require that employees have an age of at leasn&&;auld
state the following invariant.

cont ext Enpl oyee inv Enpl oyeeAreAt Least 18: Age>=18

That constraint has an implicit variakdel f of typeEnpl oyee and is equiva-
lent to:

context self: Enpl oyee inv Enpl oyeeAr eAt Least 18:
sel f. Age>=18

Instead ofsel f we could have used any other name for the variable, e.g. the
variablee. The invariant corresponds to the following OCL formula efhimust be
true in all system states.

Enpl oyee. al | | nstances->for Al | (sel f|sel f. age>=18)
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2.3.2 Representation of Standard ER Modeling Concepts

This section explains how those basic ER modeling conceptshndo not need
OCL can be expressed in UML class diagrams. Some more adv&fitenodeling

concepts needing OCL, e.g., primary keys or computed ate#) are explained
later when also OCL is used.

PercentageOfTime : Real

EmployeeNo : Integer

Project

Age : Integer Proi . .
jectNo : Integer ) (Budget : Integer
EmployeeDependent ( ) ( )

(FirstName : String) (Age : Integer)

Fig. 2.13 Example ER Diagram

The main concepts from the ER model have a direct repregamtatUML class
diagrams. The ER diagram in Fig. 2.13 shows the ER repref@miaf what has
been shown in the UML class diagram in Fig. 2.6.

e Standard entities are represented in the ER notation arekitUML as rectan-
gles. In the ER notation, single lines are used for ordinajties and double
lines for dependent entities.

e In the ER approach, binary relationships and n-ary relatigps are shown as
rhombs with the relationship name within the rhomb. Binajationships are
pictured as lines in the UML. N-ary relationships in UML atew/n with small
rhombs. The relationship respectively association narg&én close to, but not
inside the rhomb.

e Simple ER cardinalities (called multiplicities in UML) asthe example diagram
can equivalently be shown with the UML multiplicitigs . * and 1. But be
warned: The ER notation with intervals as(if, *) is placed differently in the
ER approach and UML.

In the context of relationships, we emphasize that relatignnames are usually
mandatory in the ER approach. Association names are howtienal in the
UML in general. This fact shows that relationships play a enienportant role
in ER than associations in the UML. One reason for this mayelea & the fact
that one generates Relational schemas from relationshibsr@e needs names
for these schemas.



20 Martin Gogolla

e Standard attributes have an extra symbol in ER, but théoates are integrated
into the class rectangle in UML.

e Roles are shown in a similar way in ER and UML, although we haateexplic-
ity shown them in the ER approach.

e \Weak entities depicted in ER as double lined rectangles dbae an explicit
notation in UML, but may be expressed witHla. * multiplicity. In addition,
the owning entity could indicate ownership with a black disrd. Additional
OCL constraints which are discussed in the next sectiongei¥ern the object
identification.

e ISA hierarchies [SS77] from ER may be represented in UML wjigémeraliza-
tions and additional constraints. Union, disjoint, ovpgding, and partitioned ISA
hierarchies as discussed in the ER literature correspogdrieralizations with
constraints as shown in the table in Fig. 2.14.

ISA notion |UML notion

union complete and overlapping
disjoint complete and disjoint
overlappingincomplete and overlapping
partitioned [incomplete and disjoint

Fig. 2.14 Correspondence between ISA hierarchies and UML conssraint

e Compound and multi-valued attributes are realized in UMthwlheTupl e and
collection constructorSet , Bag, andSequence.

e Mandatory or optional participation in relationships igpeessed in UML with
multiplicities.

e Part-whole relationships [SS77] have been proposed in Baiproach with
several notations. Part-whole relationships are reptedeim UML with the
white or black diamond.

2.4 Employing OCL for Conceptual Schemas

This section will explain the use of UML extension concejfite lconstraints and
stereotypes for standard ER concepts as keys, derived amguted attributes. The
section will also show how to utilize queries which are exedwn sample database
states during database schema development.
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2.4.1 Standard ER Concepts Expressed with OCL

Keys: An identification mechanism for objects is probably a venydamental ap-
plication of OCL within conceptual modeling. In databas®gects often possess a
set of attributes which identify an object uniquely.

Example: In the running example, we assuraepl oyee objects are identified
by the attributeEnpl oyeeNo. This is expressed in OCL as follows.

cont ext el: Enpl oyee inv Enpl oyeeNol sKey:
Enpl oyee. al |  nst ances->for Al | (e2]
el<>e2 inplies el. Enpl oyeeNo<>e2. Enpl oyeeNo)

Alternatively and equivalently, we could state the implica the other way
round.

cont ext el: Enpl oyee i nv Enpl oyeeNol sKey:
Enpl oyee. al |  nst ances->for Al | (e2]
el. Enpl oyeeNo=e2. Enpl oyeeNo i npl i es el=e2)

We emphasize, that within the context of an object-orienizd model like the
one from UML, there is a difference between specifying noskalall and desig-
nating the set of all attributes as the key. AssuPaet objects are identified by the
combination of the part number and the name. Recall that reardepart number
are the only attributes of clagart .

context pl:Part inv NamePart Nol sKey:
Part.all Il nstances->forAll (p2
pl<>p2 inplies
(pl. Name<>p2. Nane or pl. Part No<>p2. Part No))

Requiring this invariant is different from giving no key sgjfication, because
with this invariantit is not possible to have two differétar t objects with the same
Par t No andNane. But this is possible in a model where no keys are specified.

In order to represent the identificationDépendent objects in the spirit of the
ER model, the key restriction for claBependent would look as follows.

cont ext di1: Dependent inv FirstNaneEnpl oyeeNol sKey:
Dependent . al | I nst ances->for Al | (d2] d1<>d2 inplies
(d1. Fi r st Name<>d2. Fi r st Nane or
dl. support er. Enpl oyeeNo<>d2. support er. Enpl oyeeNo))

As a variation, a similar requirement could be stated usimgguality on
Enpl oyee objects.

cont ext di1: Dependent inv FirstNaneEnpl oyeeNol sKey:
Dependent . al | I nst ances->for Al | (d2| dl<>d2 inplies
(dl1. Fi rst Nane<>d2. Fi r st Nanme or
dl. supporter<>d2. supporter))
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Further possibilities for conceptual modeling of keys asedssed in [Gog99].

Derived or computed attributes: We have discussed compound and multi-
valued attributes above. Another variation for attribuaes so-called derived or
computed attributes. Derived respectively computedbatteis can be realized in
OCL with an invariant or with a derivation rule within an op#on.

Example: Assume we want to record f&ar t objects the number of direct (not
indirect) children the respectiiear t object has with respect to tf@nponent
association. This could be realized with an invariant assgrolassPart has an
additional attributdNumOf Chi | dr en or as a definition for an additional operation
Nunof Chi | dren():

context Part inv NunCOf Chil drenDerived:
NunmOf Chi | dren=sel f. chil d->si ze()
Part:: NumOf Chil dren() =sel f.chil d->size()

2.4.2 Constraints and Stereotypes

General OCL invariants may be employed for conceptual niogl@h order to de-
scribe integrity constraints for a conceptual schema. UNfers to denote such
invariants in explicit form or the constraints may be indéxhas a shortcut by using
stereotypes.

Keys as stereotypesBecause certain kind of constraints appear frequently in
conceptual modeling, it makes sense to indicate this rexgstructure by indicating
the constraints only with stereotypes. A very good exampietis are keys. At
least two alternative notations for key stereotypes carmbeght of: (1) Indicating
for each attribute separately whether it contributes tokee or (2) indicating the
set of key constituents as a whole.

Example: For the running example, key specifications for selecteskelacould
look as shown in Fig. 2.15. In the claBepl oyee the key consists of the attribute
Enpl oyeeNo. For Part, the key is made oPar t No and Nare. The key for
Dependent consists ofi r st Name and the reference to the key of the supporter.

Alternative keys could be indicated similar to the above tioered key stereo-
type notation (2) in which the complete set of alternativg &#ributes would be
indicated as a whole. As a side remark, we mention that therlinohg of attributes
in UML class diagrams, which is used in some ER notations dicate keys, has
already a fixed, different meaning in UML: Underlined attriés indicate class at-
tributes which in contrast to ordinary object attributesaée properties of the
class and not properties of the single instances belongititetclass.

Stereotypes for general invariants:Due to UML's and OCL's flexibility, apart
from keys various useful patterns for invariants could baviated by stereotypes,
e.g., attribute restrictions, commutativity restrickpand existence dependencies.

e Attribute restrictions could be an alternative for enuntieratypes with the ad-
ditional advantage that respective operations would béicgipe then as well.
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Employee

EmployeeMo : Integer <<key=>
Mame : Tuple(First : String, Last : String)

Age - Integer Part
Dependent PartMo : Integer <<key=>
Marne : String <<key=>

Firsthlarme : String
Age : Integer

<ake e
Firsthlame, supporter. Employeehlo

Fig. 2.15 Keys represented as UML Stereotypes

For example, an attributeont h: | nt eger could be restricted by a stereo-
type<<l..12>>,

e Commutativity restrictions could indicate that two pathgtie class diagram are
commutative in the sense that the two paths either yieldadheegesult or that the
result of one path is included in the other. Given the comé&xst particular class
and appropriate roles, for examplegel f.rol el.rol e2=sel f.rol e3
would require that the results of the two expressions irmglthe roles co-
incide. Instead of requiring equality, one could allow tbae specifies an in-
clusion with the stereotype<subset >>. For example, within the context of
classenpl oyee, the requiremerdgel f . managedPr oj ect <<subset >>
sel f. proj ect would express that a manager works on her or his projects.

e Existence dependencies, like the oneependent objects could be specified
by providing a term indicating the master object the slajjectlwependson. E.g.,
within the context of clasBependent thetermsel f . support er withinthe
class rectangle in a special section labetedlependency>> could indicate
that for eachDependent object, a supporting employee must exists. In easy
cases like the above one, dependencies can also be showa witlitiplicity
specification.

e Apart from these application-specific constraints, the Uptbvides a standard
constraint for requiring that two or more associations edeleach other with
the keywordxor and a standard constraint expressing that one association i
included in the other by using the keywmdbset .

Transitive closure: By means of appropriate operations it is possible in UML
and OCL to define the transitive closure as a language lbuilAny property
C. : prop: Set (C) for a classC can be extended tG: : pr opPl us: Set ( C)
for yielding the transitive closure and @ : pr opSt ar : Set ( C) for yielding the
transitive and reflexive closure. One would automaticalieed the model with
appropriate operations as indicated below.
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C. . propPlus(): Set (C) =propPl usAux(sel f. prop)
C. . propPl usAux(aSet: Set (C)): Set (C) =
| et oneStep: Set (C)=aSet. prop->asSet() in
i f oneStep->exists(p|aSet->excludes(p)) then
pr opPl usAux(aSet - >uni on(oneStep)) el se aSet endif
C. :propStar(): Set (C) =propPl us()->i ncl udi ng(sel f)

This notation can be generalized to bags and sequences.
Example: The requirement that nBar t object can be connected to itself with
a chain ofConponent links in thechi | d direction could be stated as follows.

context p:Part inv Conponent Not Refl exi ve:
not (p. chi | dPl us->i ncl udes(p))

General constraints: Apart from constraints indicated with stereotypes, one can
naturally employ the invariant mechanism of OCL and defirecid, application
dependent invariants.

Examples: Above we have discussed what would happen if the association
Pr oj ect Manager would be replaced by two object-valued attributes in the par
ticipating classes. In order to only allow similar objecagliams as in the model
with the association, one would need then the following tm@riants.

cont ext Enpl oyee i nv Manager ManagesOwmnPr oj ect s:
managedPr oj ect - >f or Al | (p| p. manager =sel f)

context Project inv ProjectManagedByProj ect Manager :
manager . managedPr oj ect - >i ncl udes(sel f))

Note that in general, both directions of the constraint amicbmly one direction
has to be state.

Another example for a general constraint concerns théatePer cent age-
O Ti e inthe relationshif’r oj ect Wor ker . The sum of percentages for a single
employee should not be more than 100 percent.

cont ext Enpl oyee inv SunPercentageX Ti neLessEqual 100:
sel f. proj ect Wr ker . Per cent ageCOf Ti me- >sun( ) <=100

With respect to this constraint, the object diagram from RiJ is invalid, be-
cause the sum of ada’s project participation is 110 percent.

The above example also shows one OCL feature which we haveaveted
yet: In the context of association classes it is possibleatdgate from a partici-
pating class to the association class and also from the iaisocclass to the par-
ticipating classes. Above, the rgbe oj ect Wor ker is a property within the class
Enpl oyee having result typ&et ( Pr oj ect Wor ker) .
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2.4.3 Queries

OCL also supports the formulation of queries. Ordinary S@Qllofving the select-
from-where pattern would be formulated in OCL obeying amnatences-select-

collect pattern.
Example: Find employee numbers of employees having at least two digpgs

sel ect Enpl oyeeNo
from Enpl oyee
where exists
(select =«
from Dependent di1, Dependent d2
where d1. Enpl oyeeNo=d2. Enpl oyeeNo and
d1. Enpl oyeeNo=Enpl oyee. Enpl oyeeNo and
dl1. Fi r st Name<>d2. Fi r st Name)

Enpl oyee. al | | nst ances- >
sel ect (dependent - >
exi sts(dl, d2| d1. Fi r st Nane<>d2. Fi r st Nane) ) - >
col | ect ( Enpl oyeeNo)

Enpl oyee. al | | nst ances- >
sel ect (e: Enpl oyee| e. dependent - >
exi sts(dl, d2| d1. Fi r st Name<>d2. Fi r st Nane) ) - >
col | ect ( Enpl oyeeNo)

The SQL query, which is formulated on a Relational databelseraa, uses a sub-
query to filter the result and a select clause to indicate kvhitributes are wanted.
In OCL, one starts with aal | | nst ances expression, then one filters the ob-
jects with a select expression and finally obtains the desitieibutes with a collect
expression.

2.5 Describing Relational Schemas with UML

This section will show how Relational schemas are represdntUML. Constraints
and stereotypes will represent primary keys and foreigis key

2.5.1 Relational Schemas

Relational Schemas in UML: There are radically different alternatives for repre-
senting Relational schemas in UML: (1) One might represaahentity and each
relationship from the conceptual schema as a separate ola&®) one could use
the type constructors offered by OCL (likeipl e andSet ) and represent the en-
tire database as a single complex value. There are otheios@uvhich lie between
these extreme points. We will further follow an alternatiwewhich a Relational
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schema is represented by a class, however we will shortty etplain the other
extreme.

Projectywarker

<<fareign key>>

0 EmployeeMo : Integer <<key=>
o ProjectMo : Integer <<key=>

Employee Project
EmployeeMo : Integer <<key=> <<foreign keyo> grudjectl\.llo :t\nteger <<key=>
Firsthame : String udget : Integer

Lasthame : String
Age : Integer

Fig. 2.16 Foreign Keys represented graphically with UML Stereotypes

Example: Let us consider only the two entiti&pl oyee andPr oj ect to-
gether with their relationshipr oj ect Wor ker , and let us further assume that we
translate this into three Relational schemas. If we givepasge class for each
entity and each relationship, we achieve the representati®ig. 2.16. If we rep-
resent the three Relational schemas with a complex valuechieve the structure
in Fig. 2.17. Primary and foreign keys would have to be foreed additionally as
OCL invariants.

DB: Tupl e( Enpl oyee: Set ( Tupl e( Enpl oyeeNo: | nt eger,
Fi rst Nane: String,
Last Nane: Stri ng,
Age: | nteger)),
Proj ect: Set ( Tupl e( Proj ect No: I nt eger,
Budget : I nteger)),
Proj ect Wor ker : Set ( Tupl e( Enpl oyeeNo: | nt eger,
Proj ect No: I nteger)))

Fig. 2.17 Relational schemas as complex value

2.5.2 Constraintsfor Primary and Foreign Keys

Representing Primary Keys and Foreign Keys:Primary keys in the Relational
schema can be shown with a stereotype as primary keys in treeptual schema.
For the representation of foreign keys there are again tteoraltives, a graphical
one and a textual one. (1) In the graphical solution, thetRRelal schema possess-
ing the foreign key would point to the Relational schema irichtthe referenced
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primary key occurs. Technically, thgointing towould be a UML dependency pic-
tured in graphical form using a stereotype. (2) In the tebdohition, the Relational
schema possessing the foreign key would indicate the Rekdtschema in which
the referenced primary key occurs. On the technical letéd, would again be a
UML dependency but this time displayed in textual form.

Project¥orker

EmployeeMo : Integer <<ke y==
ProjectNo : Integer <<key=>

<<foreign ke y=>

[Employeeho] [Employes Employeeio]
Ernployee [FrojectMo] [Project. Projectio]

Project

Projecthla : Integer <<key=

Employeetlo : Integer <<key=>
b Y g Budget : Integer

FirstMame : String
LastMame : String
Age : Integer

Fig. 2.18 Foreign Keys represented textually with UML Stereotypes

Example: Figures 2.16 and 2.18 show the graphical and textual alieentor
the example. The graphical alternative has the advantagswélly showing the
connection between the Relational schemas. But the gralpt@presentation has
also the disadvantage that it becomes more complicatedwemdrst understand-
able, if the foreign key consists of more than one attribute & additionally the
foreign key references attributes in the same Relatiorredrse.

Stereotypes for primary keys and foreign keys are only shtstfor more in-
volved OCL invariants not explicitly shown, but being preseehind the visual
representation. In our example, we would have that theatigves are shortcuts for
the following OCL invariants.

cont ext el: Enpl oyee inv Enpl oyeeNol sKey:
Enpl oyee. al | | nst ances->forAl | (e2
el<>e2 inplies el. Enpl oyeeNo<>e2. Enpl oyeeNo)
context pl:Project inv ProjectNolsKey:
Project.alllnstances->forAll (p2 |
pl<>p2 inplies pl.ProjectNo<>p2. Project No)
cont ext pwl: Project Worker inv Enpl oyeeProj ect Nol sKey:
Proj ect Wrker . al | I nstances->forAl |l (pw2 |
pwl<>pw2 i nplies
(pwl. Enpl oyeeNo<>pw2. Enpl oyeeNo or
pwl. Proj ect No<>pw2. Pr oj ect No))
cont ext pw. Project Wrker inv Enpl oyeeNol sFor ei gnKey:
Enpl oyee. al | | nst ances- >exi sts(e
pw. Enpl oyeeNo=e. Enpl oyeeNo)
cont ext pw Proj ectWrker inv ProjectNol sForeignKey:
Project.alllnstances->exists(p |
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pw. Pr oj ect No=p. Pr oj ect No)

As a final remark we emphasize that foreign keysermassociations, because an
association would imply that it will be manifested by link&ieh is not true for for-
eign keys. Foreign keys are dependencies and can be refgeséth stereotypes.
We also emphasize that we represent Relational schemaasaeg! In this UML
representation, there are no associations or relatios,ahip only dependencies.

2.6 Metamodeling Data Models with UML

This section studies a UML metamodel for the Entity Relagtop (ER) and the Re-
lational data model. UML is well-suited for the descriptimimetamodels. We start
by describing the syntax of the ER data model through thedhiction of classes for
ER schemas, entities, and relationships. We also destrébsemantics of the ER
data model by introducing classes for ER states, instanoédinks. The connection
between syntax and semantics is established by assosiatpiaining that syntac-
tical objects are interpreted by corresponding semanticgcts. Analogously this
is done for the Relational data model. The CWM metamodel ilOMGO03] is to a
certain extent comparable to our approach. However thatg tbe syntax of data
models is treated, not the interpretation of database sahasnin our approach.

2.6.1 Class Diagram

Consider the class diagram in Fig. 2.19. It shows fpackagesin the left part a
solid grey and a solid black package, in the right part a dhginey and a dashed
black package. The two solid left packages model the syntakeodata models,
the two dashed right packages the semantics; the upper twkages describe the
ER data model, the lower two packages the Relational datembdke ER and the
Relational data model share some concepts, namely theipdhs middle speci-
fying data types, attributes and their semantics. We halieated the multiplicities
in the class diagram. All role names are identical to theeetye class with the
first letter of the class name converted to a lower case |adtgr, we have a role
namesdat aType andr el DBSchema. The various parts of this class diagram
will be explained below with the scenario from Fig. 2.20 anel dbject diagrams in
Figs. 2.21,2.22,2.23, and 2.24.

Syntax of the ER data model:  This part introduces the claBs&s hena, En-
tity,Rel ship,Rel end,Attri bute,andDat aType.Er Schema objects
consist ofEnt i t y andRel shi p objects which in turn may posse8stri -
but e objects typed througbat aType objects.Rel end objects represent the
connection points between tRel shi p objects and th&nt i t y objects.
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ErSyn ErSem

-

1
ErSchema | “| ErState 0.1
1 1257 1"

29

1.* 1 * 1 * * *
| Entity H Relend Iﬁ Relzhip |
0.1 1 0..1
Attrioute |
1.5 ¥
1 DataType LIS S
|
0.1 ! 0..1
.. | o
RelScI:e:na ] | ,,@1&
B |
1 | 10
RelDBSchem |- T +| ReiDBState [
RelSyn I I RelSem 1

Fig. 2.19 Class Diagram Metamodeling the ER and Relational Data Model

wife
passport:Integer

Marriage

gender:String
husband

'1981/07/29

Per son( passport : I nteger, gender: String)

Marriage( wi fe_passport : I nteger, husband_passport : | nteger, date: String)

Person | passport | gender

Marriage | w fe_passport | husband_passport | date

| 123 | 456 | *1981/07/ 29’

Fig. 2.20 Content of Example Scenario
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Semantics of the ER data model: In this part we set up the eddssSt at e,

I nst ance, Li nk, Rel endMap, At t r Map, andVal ue. The interpretation
is as follows. AnEr Schema object is interpreted by possibly maiy St at e
objects. AnEnt i ty is given semantics by a set bhst ance objects, and a
Rel shi p by a set ofLi nk objects.Dat aType objects are given life through
a set ofVal ue objects.Rel end andAt t ri but e objects are interpreted by a
set ofRel endMap objects andht t r Map object, respectively.

Syntax of the Relational data model: Here the clasResDBSchena, Rel -
Schenmm, Attri but e, andDat aType are neededRel DBSchena objects
consist of Rel Schena objects which possesétt ri but e objects typed
throughDat aType objects.

Semantics of the Relational data model: The last part aslithe classeRel -
DBSt at e, Tupl e, Att r Map, andVal ue. Rel DBSchema objects are inter-
preted by a set oRel DBSt at e objects. EachRel DBSt at e object consists
of a set ofTupl e objects which are typed byRel Schenma. Tupl e objects

in turn consist of a set ofit t r Map objects assigning &al ue object to an
At t ri but e within theTupl e.

wife
passport:integer
) Person MWarriage date: String
>
[[genderstrina - '
ender String | ,
i 2 y "hushand AN \
! | N \ !
| \ \ \ \
| N \ \
| \ N PhEr.ErSchema ) \
| \\ N name="PhEr' \ |
N
1 N v !
l‘ PersonEr Entity N witeEr Relend MartigneEr: Relship |‘
\ rame="Perzon’ \ | name="wife' name="Marrizge' |
\ ‘\_\_\‘v __'_,_-—'-"""f |
\ hushandEr: Relend !
| name="rusband' :
v - |
pazsportEr: Atribute | | genderEr: Attribute dateEr: Atribute |
name="pazspart’ name="gender’ !1am3='date' ,’
isHey=true iskey=falze ishey=false /
/
/
7/
. 7
Intecer: Datalype StringDatalvpe s . _ _ -~
name="nteger’ name="string'

Fig. 2.21 Viewing the Example Scenario as an ER Schema

Let us shortly mention the attributes and operations relifea the class diagram
but being not displayed. All classes in the (left) syntaxt garssess an attribute

nane of data typeStri ng. The classAtt ri but e has an additional boolean-
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Marriage

|

1

|

1

/ I ‘
PMErErSchema [
name="FhiEr! | :I
!

| PersonEr: Entity

| name='Person’

witeEr:Relend
name="aife'

pazsporEr: Attribute

name="passport’

31

hushand

charles

marriagelateEr: Attrhdap

iskey=true
dateFr: Aftribute
name='date’
iskey=false Sy
\
N 5 1981 07 29 Value
rame="String' AN content="1951 /0729
IntegerDataType [ 123 value
name="Integer’

content="1 23"

Fig. 2.22 Viewing the Example Scenario as an ER State

Person(passport:Integer, gender::String)

[

Marriage (wife passport: Int&ger, hushand passport:Integer,date:3tring)
A - - ~

]

y Strineg DataType
niathe="String'

dateRel Atribute | !

1
'
1
|
'
'
' |
|
|
'
|
|
|
|
|
|
'
|
l
l

niathe="ate’
iskey=falze
T
genderRel Attribute husbandRel Attribute
l'\ name="gender’ name="hushand_passport’
\ iskey=tfalze isHey=true
\
\ | passportRel Atribute weiteRel Atribute
\\ name="pazsport’ name="wife_passport’
| [iskey=true isHey=true
\\
AN PersonRelRelSchemsa MarriaceRel RelSchema
\\ name='Perzon’ //’7 name="Matrizage"

PhiRelRelDESchema
name="FhiRel’

Fig. 2.23 Viewing the Example Scenario as a Relational Schema
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Marriage | wife_ passport | hushand passport | date
—————————— B et e e e
< | 123 | 456 Is '1981/07/729"
~o - \\ A
S \ |
AN i 123 Value \ '
~ 1 \ \
/ cortert="123" \ N
Intecer: DataType So \ N
ST N
riame=\rteger’ —_—————\\———______ i 456 value | | N
\\ content="455" ; v
StrincgDataType |\ | = 1881 07 28:Walue
riarme="String' \ d cortent="1331 07/29'

\ 1
I
| \ |
deteRelaftrioute |\ \
name="date' \\ £ marriagebateRel Atrhdap

iskey=falze ‘\
\
husbandRel Attribute N
name="hushand_passport’ S [ marriageHushandPassportRel Attrbdap
isKey=true

witeRel Atribute /

name="wife_passpaort'
isKey=true /

MarriageRel RelSchema
name="harriage’

name="PhiRel

Fig. 2.24 Viewing the Example Scenario as a Relational State

valued attributé sKey indicating whether this attribute contributes to the kethef
Enti ty or theRel Schema. The class/al ue possesses the attributent ent
of data typeSt r i ng indicating the actual content of théal ue object.
Concerning operations, the classesst ance, Li nk, andTupl e have an op-
erationappl yAttr () with aState and anAttri but e parameter returning
the actualVal ue object of theAt t ri but e. The classLi nk has an operation
appl yRel end() with anEr St at e and aRel end parameter returning the ac-
tual | nst ance of the Rel end. The classe&nt ity andRel Schena possess
an operatiorkey () returning the set of its key attributes.

2.6.2 Object Diagrams

The modeling is best explained by an example. Figure 2.2@'slan example sce-
nario which is represented in Fig. 2.21 as an ER schema, ir2R28 as an ER state,
in Fig. 2.23 as a Relational schema, and in Fig. 2.24 as aiReddistate.

Syntax of the ER data model: Fig. 2.21 shows the metamodeéseptation of
the example ER schema. There is daeSchena object connected to one
Entity and oneRel shi p object. The twoRel end objects connect the
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Rel shi p with theEnt i ty. The three attributes stand in connection with the
Entity resp.Rel shi p on which they are defined and with tbat aType of
the respective attribute. We regard the upper representasi the concrete syn-
tax of the ER schema and the lower representation in form obgect diagram
as the abstract syntax.

Semantics of the ER data model: Fig. 2.22 displays on thealgfart of the ER
schema and on the right semantical objects instantiategfects from the ER
schema on the left. The semantical objects are typed bydmgklinks going
to the left: TheEr St at e is typed by anEr Schemnmg, thel nst ance by an
Entity, theLi nk by aRel shi p, theRel endMap object by aRel end ob-
ject, eachAt t r Map object by anAt t r i but e object, and eacal ue object
by aDat aType object. In order to be comprehensible, this left part does no
show the complete ER state, but only a part of the ER state.

Syntax of the Relational data model:  Fig. 2.23 represert&Rilational database
schema with two Relational schemas. The first Relationa¢rsehhas two at-
tributes, and the second one three attributes. All fivelatteis are typed by ap-
propriate data types.

Semantics of the Relational data model:  Fig. 2.24 givesifiman the Relational
database state. Only one tuple with three componentsyith.threeAt t r Map
objects, is shown. The thr&al ue objects are typed with links into the left syn-
tax part. For example, the twéal ue objectsi 123 andi _456 are connected
to theDat aType objectl nt eger .

2.6.3 Constraints

The multiplicities in the class diagram constrain the valiject diagrams and are
so-called model inherent constraints. Apart from thesestaimts, all parts in the
class diagram must be restricted by appropriate explicistaints. In the total we
obtain about fifty constraints. We do not go into the detagisehwhich can be found
in [GogO05], but show only one typical example from each offthe parts.

Syntax of the ER data model: Withino&at i t y, differentAt t ri but es have
different names.

context self:Entity inv uniqueAttributeNamesWthinEntity:
self.attribute->forAll(al, a2 |
al<>a2 inplies al. nanme<>a2.nane)

Thus we would obtain an invalid ER schema, if we changentivee attribute of
thegender Er object from’ gender’ to’ passport’ inFig.2.21.

Semantics of the ER data model: Two differdmist ances of one Entity
can be distinguished in evelyr St at e (where bothl nst ances occur) by
akeyAttributeoftheEntity.

context self:Instance inv keyMapUni que:
I nstance. al |l I nstances->forAl |l (self2 |
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sel f<>self2 and self.entity=self2.entity
implies
self.erState->i ntersection(self2.erState)->forAll (s |
self.entity. key()->exists(ka |
sel f.appl yAttr (s, ka) <>sel f2. appl yAttr(s, ka))))

One would achieve an invalid ER state, if we changectbet ent attribute of
thei _123 object from’ 123’ to’ 456’ , because there is anotHenst ance
object (not shown in Fig. 2.22), namedpar | esEr , with passport number
' 456’ andpassport is the only key attribute in the example ER schema.

Syntax of the Relational data model: The set of Kyt ri but es of a Rel -
Schenma is not empty.

context self:Rel Schema inv rel SchenmaKeyNot Enpty:
sel f. key()->not Enpty

We would get an invalid Relational schema, if we change thigey attribute of
thepassport Rel object fromtrue tof al se, because then the Relational
schema nameBer son would not have any key attributes.

Atribute | Catritap |

RelSchema k 'ﬁple 1

Fig. 2.25 Excerpt from Metamodel Class Diagram Explainogmut ati vi t yAttri but e

Semantics of the Relational data model: As shown in Fig. ,2tBB Attri -
but es connected to th&el Schena of aTupl e are identical to thét t ri -
but es connected to thé\t t r Map of the Tupl e. In other words, there are
attribute assignments for &t t r i but es of aTupl e (and for only those).

context self:Tuple inv commutativityAttribute:
sel f.rel Schema. attri bute=sel f.attrMp. attri bute->asSet

We would obtain an invalid Relational state, if we would deldgemar r i age-

W f ePassport Rel object. Then there would exist aftt ri but e with
namew f e_passport which is present in the Relational schema named
Mar r i age, but one tuple for this Relational schema would miss thebatie
assignment for the attributsi f e_passport, i.e., there would be no corre-
spondingAt t r Map object.

Our example scenario included only one ER state, namely ast&fe where
two entities and one relationship connection are presém metamodel is however
more general in the sense that not only one ER state can baldskdut it is
possible to link several ER states to a single ER schema Xeonge, the three ER
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charles

charles

wife husband
charles

(123] [female] [ 198107729 (458 | [ male ]

Fig. 2.26 Three consecutive ER states

states displayed in Fig.2.26 together with the correspan@R schema could be
represented as a single object diagram in the metamodel.

Apart from describing the data models, it is also possiblgite a metamodel
for the transformation of ER schemas into Relational datatschemas. We will
not go into details here but only refer to the detailed me@ehwhich can be found
in [Gog05]. By characterizing the syntax and semantics @ftéita models and also
the transformation itself within the same (meta-)modelamguage, one can include
equivalence criteria on the syntactical and on the senwréeel for the transfor-
mation. In particular, one can give a semantical equivaeamiterion requiring that
the ER states and the corresponding Relational statestb@same information.

2.7 Further Related Work

Relevant related work has been mentioned already in thectgp chapters. In ad-
dition, we want to point to the following books and paperstielg on the one hand
UML and conceptual modeling and on the other hand UML and tcain$ devel-
opment. Further relevant literature can be found by usireg'@omplete Search’
facility on DBLP by searching with ‘Conceptual UML Model’ &ML Database
Design’, for example.

An early approach for developing databases with obje@rbed design tech-
nigues is given in [BP98]. Comparisons between designiatafthse) schemas and
class diagrams with UML and with ORM are discussed in [Hal9R99]. Object-
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oriented and object-relational schemas described with UM other object-
oriented techniques are studied in [MVCO03, UD03, APP0O6E Work in [Amb09]
proposes a UML profile for database design, whereas in [Z&QTJWML profile for
conceptual modeling in connection with data warehouse®i&ed out.

Constraints and OCL have been used for conceptual modédlicg the early
days of UML. [DHLO1] treats the transformation of OCL corsiits into Relational
database requirements. The text book [Oli07] radicallys BEL and UML for all
facets of conceptual modeling. [RO08] discusses the impiatOF to developing
database schemas. [CGQB] is a further approach using OCL for conceptual mod-
eling which proposes special treatment of typical, scheniategrity constraints.
[CT09] emphasizes incremental development of OCL congai

2.8 Conclusions

This contribution has explained how UML can be employed foraeptual model-
ing of information systems. UML supports on the one handlalisical features of
the ER model, and on the other hand also more advanced fedikegart-whole
relationships are expressible as well. Within UML, the texiconstraint and query
language OCL is available. OCL has many similarities to SQL.

However, support for conceptual modeling within UML can beproved in a
number of directions. There are proposals around for a UMfilerfor data model-
ing, but an overall accepted solution is still missing. Sagrofile should take into
account data modeling on various abstraction levels, #ng.conceptual, the logi-
cal, and the physical level. Complete metamodeling of tldasa models respecting
syntactical and semantical aspects is another open issgere@son for the success
of the Relational model is probably the well-studied relaship between descrip-
tive languages like tuple or domain calculus and operalipe#ective languages
like Relational algebra. OCL as a central ingredient foraggiual modeling and
as a descriptive language within UML would benefit from a cledationship to an
operationally effective UML execution language.
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Appendix A: Original ER Diagram from Chen’s Paper

SUPPLIER
N

SUPP-PROJ
~PART

M P
M _<PROJ-WORK>_N
M N
EMPLOYEE PROJECT PROJ-PART PART
PROJ-
MANAGER

DEPENDENT

Fig. 2.27 Original ER Diagram from Chen’s Paper
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Supplier
SupplierMo : Integer
Projectyyorker Mame ; String
PercentageOfTime : Real + supplier
I
Projecttorker | SupplierProjectPart
* employee + project +suppliedProject = SuppliedPak
Employes Proi
ject . Part
. ProjectPart
e IR ) Projectto : Integer [+ proect +part | Partila : Integer
Mame . TuplelFirst: String Last: String) Budget : Integer Rame : String
Age : Integer + parent + child
1 supparter 1 manager . + managedProject
ProjectManzger Component
EmployveeDependent
* dependent
Dependert

Firzthatme : String
Age : Integer

Fig. 2.28 Plain UML Class Diagram Corresponding to Fig. 2.27

cont ext el: Enpl oyee inv Enpl oyeeNol sKey:
Enpl oyee. al | I nstances->forAl | (e2
el<>e2 inplies el. Enpl oyeeNo<>e2. Enpl oyeeNo)

cont ext dl1: Dependent
Dependent . al | | nst ances->for Al | (d2

(d1. Fi r st Name<>d2. Fi r st Nane or
dl. supporter. Enpl oyeeNo<>d2. support er. Enpl oyeeNo) )

above invariant anal ogously for other classes
i nv FirstNaneEnpl oyeeNol sKey:

dil<>d2 inplies

Supplier

Supplierklo : Integer ==key ==

Mame : String

SupplierProjectPart

= project

Project

Projectio : Integer <=key ==

Budget : Integer

+ supplier

= suppliedProject  « suppliedPak

Projectorker
PercentageOfTime : Real
|
Frojectyyiorker |
s employes
Employee
Employeeha : Integer ==key==
Mame : Tuple(First String Last String)
Age: Integer
I manager + managedProject
1 supporter 9 - g !
Projecthanager
EmployeeDependent
+ dependent
==yvesk ==
Dependent
FirstMame : String
Age: Integer
=zkey ==
Firzthlame
supporter | =<key ==

Part
ProjectPart Ll
*project + part Partho : Integer ==key ==
Mame : String
3 (e « child
Component

Fig. 2.29 Stereotyped UML Class Diagram Corresponding to Fig. 2.27






