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Chapter 2
UML and OCL in Conceptual Modeling

Martin Gogolla

2.1 Introduction

The development of the Entity-Relationship (ER) model is probably one of the cor-
nerstones for conceptual modeling of information systems.The Unified Modeling
Language (UML) takes up central ideas from the ER model and puts them into a
broad software development context by proposing various graphical sublanguages
and diagrams for specialized software development tasks. It is said that the most
commonly used UML diagram form is the class diagram. Entities and relationships
have their counterparts there and are called classes and associations. Additionally,
UML class diagrams allow the developer to include behavior in form of operations.

The first versions of UML were developed in the mid 90s of the last century.
UML has changed since then and is still under development. Since many years UML
includes a textual language, the Object Constraint Language (OCL), whose main
task is to enrich the UML diagrams by textual constraints which cannot be expressed
otherwise. However, apart from constraining, OCL can be used for querying UML
models as well.

The rest of this chapter is structured as follows. The first section will introduce
the correspondence between basic ER modeling concepts and their UML counter-
parts. The next section will explain how more advanced conceptual modeling con-
cepts can be formulated in UML. The following section will use OCL for features
not expressible in diagrammatic form. Then we turn to the description of Relational
databases with UML. Before we conclude, we will show how to metamodel con-
ceptual modeling features with UML itself.

Martin Gogolla
Department of Computer Science, Database Systems Group, University of Bremen, 28334 Bremen,
Germany, e-mail: gogolla@informatik.uni-bremen.de
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2 Martin Gogolla

2.2 Basic Conceptual Modeling Features in UML

This section introduces the central features of UML [OMG10b, RBJ05] class and
object diagrams and the Object Constraint Language (OCL) [OMG10a, WK03,
RG98] which is part of the UML.

2.2.1 Class and Object Diagrams

The main purpose of class diagrams within the UML is to capture the basic static
structures and operations of a system. In this subsection wewill shortly explain
the most important features in class diagrams like classes and associations. In later
sections we discuss more advanced features.

Classes:A class is a descriptor for a set of objects sharing the same structure and
behavior. In the database context, we concentrate on the structural aspect, although
the behavioral aspect may be represented in UML as well. Object properties can be
described by attributes classified by data types likeString orBoolean. Later we
see that properties can also stem from roles in associationswhich connect classes.

Fig. 2.1 Example UML Class Diagram 1

Example: Fig. 2.1 follows the example from Chen’s original paper [Che76]
on the ER model and shows the classesSupplier, Project, andPart to-
gether with some basic attributes including their data types, e.g., we identify
Supplier::Name:String andProject::Budget:Integer. In this con-
tribution, the general scheme for denoting properties (attributes and roles) is
Class::Property:PropertyType. Most names for entities, relationships,
and attributes are taken from Chen’s original article. Our UML and OCL exam-
ples have been realized in the tool USE [GBR05, GBR07]. USE supports the de-
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velopment of information systems with UML and OCL by testing, validation, and
verification techniques.

Associations:An association represents a connection between a collection of
classes and may be given a name. An association is manifestedby a set of object
connections, so-called links, sharing the same structure.A binary association can be
defined between two different classes; objects of the respective classes play a partic-
ular role in the association; a binary association can also be defined on a single class;
then objects of the class can play two different roles; such abinary association is
called reflexive. A ternary association involves three roles. The notion n-ary associ-
ation refers to a ternary or a higher-order association. Binary associations are shown
with a simple line, and an n-ary association with a small rhomb-shaped polygon.

Example: In Fig. 2.1, we identify the binary associationProjectPart with
roles project and part, the ternary associationSupplierProjectPart
with rolessupplier, suppliedProject, andsuppliedPart, and the re-
flexive associationComponent with rolesparent andchild.

Objects and Links: Structural aspects in UML can also be represented in an ob-
ject diagram showing objects, links, and attribute values as manifestations of classes,
associations, and attributes. An object diagram shows an instantiation of a class di-
agram and represents the described system in a particular state. Underlining for ob-
jects and links is used in object diagrams in order to distinguish them clearly from
class diagrams.

Example: Figure 2.2 shows an object diagram for the class diagram from
Fig. 2.1. Objects, links, and attribute values fit to the classes, associations, and at-
tributes. The object identity is shown in the top part of the object rectangle to the
left of the class to which the object belongs to. Formally, there is no connection be-
tween the object identity and attribute values. For the example classesSupplier
andPart, we have chosen object identities which are close to but not identical with
the attributeName, but for the classProject the object identities have no con-
nection to the attribute values. There are twoProject objects, twoSupplier
objects and fivePart objects. EachPart object represents a piece of software re-
alizing controller (Ctrl) code which is responsible for a particular portion of a car.
TheComponent links express part-whole relationships, for example, theEngine
Code (engineCtrl) includes theBattery Code (batteryCtrl) and
theMotor Code (motorCtrl).

Roles: Proper roles must be specified on a class diagram in order to guarantee
unique navigation, in particular in presence of reflexive associations or when two or
more associations are present between two classes. Navigation in a class diagram
means to fix two classes and to consider a path from the first class to the second
class by using associations. The roles on the opposite side of a given class in an
association determine also properties of the given class bynavigating via the roles.
Therefore, in UML and OCL the opposite side roles must be unique. Recall that
properties can also come from attributes.

Example: On links, also the roles are captured. This is necessary in reflexive
associations and in other situations, for example, if two associations are present
between two given classes. For example in Fig. 2.2, if we consider the link be-
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Fig. 2.2 Example Object Diagram 1 (and other USE functionality)
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tweencarCtrl andengineCrtl, without roles we could not tell which ob-
ject plays theparent role and which one thechild role. In the class dia-
gram in Fig. 2.1, the classProject has two direct navigation possibilities to
classPart: One via associationProjectPart and the other one via associ-
ation SupplierProjectPart. One obtains therefore two properties in class
Project returningPart objects:Project::part:Set(Part) from associ-
ationProjectPart andProject::suppliedPart:Set(Part) from as-
sociationSupplierProjectPart. In the object diagram we obtain, for ex-
ample,ford.part = Set{motorCtrl} as well asford.suppliedPart =
Set{}.

Class Diagram versus Database Schema:In the database context, it is interest-
ing to remark that the connection between a class diagram andits object diagrams
resembles the connection between a database schema and its associated database
states: The class diagram induces a set of object diagrams and the database schema
determines a set of database states; object diagrams and database states follow the
general principles formulated in the class diagram and database schema, respec-
tively. Because example object diagrams have to be displayed on screen or paper,
they tend to show fewer information than proper, large database states. They may
however explain the principles underlying a class diagram pretty well if the exam-
ples are well chosen.

2.2.2 Object Constraint Language

The UML includes a textual language that allows the developer to navigate in class
diagrams and to formulate queries and restricting integrity constraints for the class
diagram: The Object Constraint Language (OCL). Roughly speaking from a practi-
cal perspective, the OCL may be viewed as an object-orientedversion of the Struc-
tured Query Language (SQL) originally developed for the Relational data model.
Roughly speaking from a theoretical perspective, OCL may beviewed as a variant
of first-order predicate logic with quantifiers on finite domains only. The central
language features in OCL are: Navigation, logical connectives, collections and col-
lection operations.

Navigation: The navigation features in OCL allow you to determine connected
objects in the class diagram by using the dot operator ‘.’. Starting with an ex-
pressionexpr of start classC, one can apply a propertypropC of classC re-
turning, for example, a collection of objects of classD by using the dot operator:
expr.propC. The expressionexpr could be a variable or a single object, for ex-
ample, or a more complicated expression. The navigation process can be repeated
by writingexpr.propC.propD, if propD is a property of classD.

Examples: Given the object diagram in Fig. 2.2, the following navigation ex-
pressions are syntactically valid in OCL and yield the stated return values and re-
turn types. OCL uses the convention that types are denoted with parentheses( )
and values with braces{ }.
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chrysler.part =
Set{batteryCtrl,motorCtrl}:Set(Part) (1)

batteryCtrl.project.supplier =
Bag{codeMart,mcCode}:Bag(Supplier) (2)

carCtrl.child =
Set{engineCtrl,radioCtrl}:Set(Part) (3)

carCtrl.child.child =
Bag{batteryCtrl,motorCtrl}:Bag(Part) (4)

carCtrl.child.child.child =
Bag{}:Bag(Part) (5)

Expressions (3) and (4) are similar insofar that expression(3) employs the dot in
one place and expression (4) in two places. The difference inthe result type, namely
Set(Part) versusBag(Part), will be explained below.

Logical Connectives:OCL offers the usual logical connectives for conjunction
and, disjunctionor, and negationnot as well as the implicationimplies and
a binary exclusive orxor. An equality check=, an inequality check<>, and a
conditionalif then else endif is provided on all types.

Fig. 2.3 Objectsford andchrysler from Example Object Diagram 1

Examples:If we consider the objectsford andchrysler from Fig. 2.2 being
repeated in Fig. 2.3 for ease of tracing the resulting values, an OCL engine will
deliver the following results.

ford.Budget>16 and chrysler.Budget>16 = false:Boolean
ford.Budget>16 or chrysler.Budget>16 = true:Boolean
not(ford.Budget>16) = false:Boolean
ford.Budget>16 implies chrysler.Budget>16
= false:Boolean

ford.Budget>16 xor chrysler.Budget>16 = true:Boolean
ford=ford = true:Boolean
ford=chrysler = false:Boolean
if ford.Budget>16 then 42 else 43 endif = 42:Integer
if chrysler.Budget>16 then mcCode else codeMart endif
= codeMart:Supplier

Collections: In the original OCL there were three kinds of collections: Sets,
bags, and sequences. Later ordered sets were added, which wedo not discuss here
because they are similar to sequences; a discussion of OCL collections can be found
in [BGH+10]. A possible collection element can appear at most once ina set, and
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the insertion order in the set does not matter. An element canappear multiple times
in a bag, and the order in the bag collection does not matter. An element can appear
multiple times in a sequence in which the order is significant.

Examples: The expressions to follow state characteristic features ofthe OCL
collections.

Set{11,22} =Set{22,11} = true
Bag{11,22} =Bag{22,11} = true
Sequence{11,22} =Sequence{22,11} = false
---------------------------------------------
Set{11,22} =Set{11,22,11} = true
Bag{11,22} =Bag{11,22,11} = false
Sequence{11,22} =Sequence{11,22,11} = false
---------------------------------------------
Set{11,11,22} =Set{11,22,11} = true
Bag{11,11,22} =Bag{11,22,11} = true
Sequence{11,11,22}=Sequence{11,22,11} = false

We use terms of typeSet(Integer) to demonstrate these features. However,
we could have used terms of typeSet(Project) as well, e.g.,Set{ford,
chrysler} instead ofSet{11, 22}. Sets are insensitive to insertion order and
insertion frequency. Bags are insensitive to insertion order, but are sensitive to inser-
tion frequency. Sequences are sensitive to insertion orderand insertion frequency.

Conversions:OCL collections can be nested and converted into each other.Bags
and sequences can be converted to sets with->asSet(), sets and sequences to
bags with->asBag(), and sets and bags to sequences with->asSequence().
The conversion to sequences assumes an order on the elements. The arrow notation
will be explained in more detail below.

Examples:The following evaluations give an impressions of how the conversion
work.

Sequence{11,22,11}->asBag() =
Bag{1,11,22}:Bag(Integer)

Sequence{11,22,11}->asSet() =
Set{11,22}:Set(Integer)

Bag{11,22,11}->asSet() =
Set{11,22}:Set(Integer)

Special TypeOclAny: Collection terms in OCL possess a type like in the fol-
lowing examples.

Sequence{ford,chrysler,ford}: Sequence(Project)
Set{42,41,40}: Set(Integer)

However, the special typeOclAny is a supertype of all other types, andOclAny
can be used for collections. Therefore, the following expressions are valid in OCL.

Set{’Talking Heads’, 3.14, 42, false}: Set(OclAny)
Bag{Set{8, 9}, Set{ford, carCtrl}}: Bag(Set(OclAny))
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Collection Operations: There is a large number of operations on collections
in OCL. A lot of convenience and expressibility is based uponthem. The most
important operations on all collection kinds areforAll, exists, select,
collectNested, collect, size, isEmpty, includes, andincluding.
The table in Fig. 2.4 gives an overview on the functionality of the operations.

Operation Functionality
forAll realizes the universal quantification.
exists formulates existential quantification.
select filters elements with a predicate.
collectNested applies a term to each collection element.
collect applies a term to each collection element flattening the result.
size determines the number of collection elements.
isEmpty tests on emptiness.
includes checks whether a possible element is included in the collection.
including returns a collection which includes an element.

Fig. 2.4 Important collection operations

There are also special operations available only on particular collections, e.g., the
operationat on sequences for retrieving an element by its position. All collection
operations are applied with the arrow notation already mentioned above. Roughly
speaking, the dot notation is used when a property follows, i.e., an attribute or a role
follows, and the arrow notation is used when a collection operation follows.

Variables in collection operations:Most collection operations allow variables
to be declared (possibly including a type specification), but the variable may be
dropped if it is not needed.

Example: The following expressions are equivalent.

motorCtrl.project->forAll(Budget<120) = true
motorCtrl.project->forAll(p|
p.Budget<120) = true

motorCtrl.project->forAll(p:Project|
p.Budget<120) = true

Another important possibility is a feature to retrieve the finite set of all current
instances of a class by appending.allInstances to the class name. In order
to guarantee finite results.allInstances cannot be applied to data types like
String or Integer.

Examples:With regard to collection operations, an OCL evaluator would obtain
the following results in the above object diagram.

motorCtrl.project->forAll(Budget<120) = true:Boolean
chrysler.supplier->exists(s|s.SupplierNo=99) =
false:Boolean

Part.allInstances->select(PartNo>=300) =
Set{batteryCtrl,engineCtrl,motorCtrl}:Set(Part)
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chrysler.part->collect(p|p.Name) =
Bag{’Battery Code’,’Motor Code’} : Bag(String)

chrysler.part->collectNested(p|p.parent) =
Bag{Set{engineCtrl},Set{engineCtrl}}:Bag(Set(Part))

chrysler.part->collect(p|p.parent) =
Bag{engineCtrl,engineCtrl}:Bag(Part)

chrysler.part->collectNested(p|p.parent)->size() =
2:Integer

ford.supplier->isEmpty() = true:Boolean
chrysler.part->includes(carCtrl) = false:Boolean
chrysler.part->including(carCtrl) =
Set{batteryCtrl,carCtrl,motorCtrl}:Set(Part)

Argument collection Collection operationResult type
Set/Bag/Sequence(T)forAll Boolean
Set/Bag/Sequence(T)exists Boolean
Set/Bag/Sequence(T)select Set/Bag/Sequence(T)
Set/Bag/Sequence(T)collectNested Bag/Bag/Sequence(T’)
Set/Bag/Sequence(T)collect Bag/Bag/Sequence(T’)
Set/Bag/Sequence(T)size Integer
Set/Bag/Sequence(T)isEmpty Boolean
Set/Bag/Sequence(T)includes Boolean
Set/Bag/Sequence(T)including Set/Bag/Sequence(T)

Fig. 2.5 Result types of collection operations

Result types in collection operations:The result types of collection opera-
tions are shown in the table in Fig. 2.5. Most notably, the operationcollect-
Nested(...) andcollect(...) change the kind of an argument collection
Set(T) to aBag(T’) collection. The reason for this is that term inside the col-
lect may evaluate for two different collection elements to the same result. In order to
reflect that the result is captured for each collection element, the result appears as of-
ten as a respective collection element exists. This convention in OCL resembles the
same approach in SQL: SQL queries with the additional keyworddistinct return
a set; plain SQL queries withoutdistinct return a bag. In OCL, the convention
is similar: Plaincollect(...) expressions return a bag; using the conversion
asSet() as incollect(...)->asSet() returns a set.

Example: With respect to return types in collection operations, we see the fol-
lowing evaluation in whichcollect(...) is applied to a set, but it properly
returns a bag.

Set{radioCtrl,motorCtrl}->
collect(p|p.Name.substring(7,10)) =

Bag{’Code’,’Code’}:Bag(String)

In the above examples, we also saw this result for acollectNested term.
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chrysler.part =
Set{batteryCtrl,motorCtrl} : Set(Part)

chrysler.part->collectNested(p|p.parent) =
Bag{Set{engineCtrl},Set{engineCtrl}}:Bag(Set(Part))

Thus thecollectNested(...) operation applied toSet(Part) with the
inner termp.parent, which returnsSet(Part), yieldsBag(Set(Part)).
In this example, a bag is needed in order to capture the resultcorrectly.

Operation flatten(): In OCL, collections can be nested. For example, one
can build bags whose elements are sets. In order to flatten nested collections to
unnested ones, the operationflatten() is available. The kind of the result col-
lection is determined by the outermost collection. For example, bags of sets of
something would be flattened to bags of something. For building sequences, an
implementation-dependent order is chosen.

Example: The next expressions demonstrate the effect offlatten().

Set{Set{10,20},Set{30,40}}->flatten() =
Set{10,20,30,40}:Set(Integer)

Set{Set{10,20},Set{20,30}}->flatten() =
Set{10,20,30}:Set(Integer)

Bag{Bag{10,20},Bag{30,40}}->flatten() =
Bag{10,20,30,40}:Bag(Integer)

Bag{Bag{10,20},Bag{20,30}}->flatten() =
Bag{10,20,20,30}:Bag(Integer)

Bag{Set{10,20},Set{30,40}}->flatten() =
Bag{10,20,30,40}:Bag(Integer)

Bag{Set{10,20},Set{20,30}}->flatten() =
Bag{10,20,20,30}:Bag(Integer)

Dot shortcut: Another convenient OCL feature is the dot shortcut which al-
lows the developer an easy navigation through a class diagram using multiple
roles. Speaking technically, a propertypropD may follow a dot as in the term
expr.propC.propD, although the left partexpr.propC yields a collection
and only a collection operation and not a property (attribute or role) would be ex-
pected. However, the termexpr.propC.propD is understood as a shortcut for
expr.propC->collect(x|x.propD). The aim of this shortcut is to avoid
to explicitly write calls tocollect(...) and to simply navigate with proper-
ties (attributes or roles) as for example inexpr.propC.propD.propE. The dot
shortcut is on the one hand very convenient, because it allows the developer easy
navigation through a class diagram. On the other hand it blurs the distinction be-
tween a single object and an object collection insofar that aproperty can be applied
with the dot shortcut to a collection as if the collection wasan object.

Examples:The following examples illustrate the dot shortcut and the effects of
flatten() in context of the above object diagram.

chrysler.part->collectNested(p|p.parent) =
Bag{Set{@engineCtrl},Set{@engineCtrl}}:
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Bag(Set(Part))
chrysler.part->collectNested(p|p.parent)->flatten() =
Bag{@engineCtrl,@engineCtrl}:Bag(Part)

chrysler.part->collect(p|p.parent) =
Bag{@engineCtrl,@engineCtrl}:Bag(Part)

chrysler.part->collectNested(p|p.parent)->flatten()->
collect(p|p.Name) =
Bag{’Engine Code’,’Engine Code’}:Bag(String)

chrysler.part.parent.Name =
Bag{’Engine Code’,’Engine Code’}:Bag(String)

Example: Above we mentioned the termcarCtrl.child with type
Set(Part) and the termcarCtrl.child.child with type Bag(Part).
This difference in the type is essentially a consequence from a combination of
the dot shortcut and the fact thatcollect returns a bag when applied to a set:
carCtrl.child.child is short forcarCtrl.child->collect(child)
which is a term having typeBag(Part).

Operation definitions with OCL: OCL may be used to define side-effect free
operations. You may associate a correctly typed OCL term with an operation name.
The term may use the declared parameters. The operation definition may be recur-
sive.

Example: In the classProject one could define an operationpartCom-
petitors() returning typeSet(Project). This operation should yield the set
of those projects needing at least one common part with the considered project. The
OCL operationexcluding (used below) eliminates an element from a collection.

Project::partCompetitors():Set(Project) =
self.part.project->excluding(self)->asSet()

The operation is formulated within the classProject. Therefore the variable
self references the current object on which the operations is called.

As an example for a recursive operation, we define in the classPart the transi-
tive closurechildPlus() of the rolechild with the help of an auxiliary recur-
sive operation.

Part::childPlus():Set(Part)=childPlusAux(self.child)
Part::childPlusAux(aPartSet:Set(Part)):Set(Part)=
let oneStep:Set(Part)=aPartSet.child->asSet() in
if oneStep->exists(p|aPartSet->excludes(p))

then childPlusAux(aPartSet->union(oneStep))
else aPartSet endif

The last example uses the following OCL features not mentioned yet:let al-
lows the developer to define sub-expressions to be used in various places;union is
another collection operation with the obvious meaning. We emphasize that the op-
erationchildPlus defined in the above manner is well-defined and terminating
for all possible object diagrams. Recall, that the classPart (as any other class) has
only finitely many instances in each system state. Therefore, the recursion finally
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terminates. The maximal set which can be computed isPart.allInstances.
Analogously to the transitive closurechildPlus(), one could define the transi-
tive and reflexive closurechildStar().

2.3 Advanced Conceptual Schema Elements in UML

This section shows how to describe conceptual schemas in UMLclass diagrams
without using any OCL features. In the first part, those UML class diagram features
are introduced which are relevant for conceptual schema representation. In the sec-
ond part, it is discussed how to represent standard ER modeling concepts with these
UML features.

2.3.1 Class Diagram Features for Conceptual Schemas

The language features in UML class diagrams introduced above are: Classes, data-
valued attributes, associations, and roles. We now turn to describe: Object-valued,
collection-valued and compound attributes, role multiplicities, association classes,
generalizations, aggregations, compositions, and invariants.

Object-valued attributes: Attributes in UML may not only be data-valued as
above, but the attribute type may be a class as well which leads to object-valued
attributes. Like associations, object-valued attributesalso establish a connection be-
tween classes. The object-valued attribute is however onlyavailable in the class in
which it is defined. The information from that attribute is not directly present in the
attribute type class. Thus an object-valued attribute may be regarded as a unidirec-
tional association without an explicit name and where only one role is available.

Fig. 2.6 Example UML Class Diagram 2
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Fig. 2.7 Example UML Object Diagram 2

Examples:The examples in this section will be discussed in the contextof the
class diagram in Fig. 2.1 and the class diagram in Fig. 2.6 which extends the for-
mer one by introducing the new classesEmployee,Dependent, andProject-
Worker, and the associationsEmployeeDependent,ProjectManager, and
ProjectWorker. The fact thatProjectWorker is mentioned as a class as well
as an association will be explained below. The object diagram in Fig. 2.7 shows an
example state for the class diagram from Fig. 2.6. As a forward reference we remark
that we will come back later to the fact that ada’s project participation sums up to
110 percent.

As an example for an object-valued attribute and as an alternative for the as-
sociationProjectManager, we could extend the classProject by an at-
tribute manager with type Employee. This could be represented altogether as
Project::manager:Employee.

Collection-valued attributes: We have already introduced the collection kinds
set, bag, and sequence. These collection kinds can be used astype constructors on
data types and classes. For building attribute types, the constructors may be nested.

Examples: An attribute could possess a type likeSet(Project). As an
alternative for the associationProjectManager we could have one attribute
managedProject:Set(Project) in the classEmployee and another at-
tributemanager:Employee in classProject. There is however an important
difference between the model with the associationProjectManager including
the rolesmanager andmanagedProject and the model with the two attributes
manager andmanagedProject. In the model with the association, we would
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always have that the rolesmanagedProject andmanager represent the same
set of object connections, i.e., the following two OCL expressions will evaluate to
true in that model:

Employee.allInstances->forAll(e|
e.managedProject->forAll(p|p.manager=e))

Project.allInstances->forAll(p|
p.manager.managedProject->includes(p))

This is not required to hold in the model possessing the two attributes. In this
case the two attributesmanagedProject andmanager are independent from
each other and may represent different sets of object connections.

Another useful application of collection-valued types arecollections over the
data types likeSet(Sequence(String)). A value for an attribute typed in
that way could be for example the complex valueSet{Sequence{’Rome’,
’Euro’}, Sequence{’Tokio’, ’Yen’}}.

Compound attributes: Apart from using the collection constructorsSet, Bag,
andSequence for attributes, one can employ a tuple constructorTuple. A tuple
has a set of components each possessing a component descriminator and a compo-
nent type. The collection constructors and the tuple constructor may be nested in an
orthogonal way.

Examples: The above value for the typeSet(Sequence(String)) could
be represented also with type

Set(Tuple(Town:String,Currency:String))

and with the corresponding value

Set{Tuple{Town:’Rome’, Currency:’Euro’},
Tuple{Town:’Tokio’, Currency:’Yen’}}.

As a further example for a compound attribute using theTuple constructor, we
see in the class diagram in Fig. 2.6 the attributeName in classEmployee which is
a compound attribute with typeTuple(First:String, Last:String).

Role multiplicities: Associations may be restricted by specifying multiplicities.
In a binary association, the multiplicity on the other side of a given class restricts the
number of objects of the other class to which a given object may be connected to.
In a simple form, the multiplicity is given as an integer interval low..high (with
low≤high) which expresses that every object of the given class must beconnected
to at leastlow objects and at mosthigh objects of the opposite class. Thehigh
specification may be given as* indicating no higher bound. A single integeri
denotes the intervali..i and* is short for0..*. The multiplicity specification
may consist of more than one interval.

Examples:The multiplicity1 on the rolesupporter indicates that an object
of classDependent must be linked to exactly one object of classEmployee via
the associationEmployeeDependent.

Association classes:Associations may be viewed again as classes leading to the
concept of an association class. Association classes are shown with a class rectangle
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and are connected to the association (represented by a line or a rhomb) with a dashed
line. Association classes open the possibility of assigning attributes to associations.

Examples: The associationProjectWorker is modeled also as a class:
ProjectWorker is an association class. This makes it possible to assign theat-
tributePercentageOfTime to the associationProjectWorker. In the class
diagram,ProjectWorker can be found redundantly as the class name and as the
association name. The specification as the class name would be sufficient.

Generalizations:Generalizations [SS77] are represented in UML with directed
lines having an unfilled small triangle pointing to the more general class. Usually
the more specific class inherits the properties from the moregeneral class. Gener-
alizations are known in the database context also as ISA (IS-A) hierarchies. In the
programming language context often the notion inheritanceshows up. Viewed from
the more general class its more specific classes are its specializations. In general, a
class may have many specializations, and a class may have many generalizations. A
set of generalizations may be restricted to bedisjoint and a set of generalizations
may be classified ascomplete. The classificationdisjointmeans that any two
specific classes are not allowed to have a common instance. The labelcomplete
means that every instance of the general class is also an instance of at least one more
specific class. The explicit keywordsoverlapping andincomplete may be
attached to sets of generalizations for which no respectiverestriction is made.

Fig. 2.8 Different Example Generalizations and Specializations inUML

Examples: Fig. 2.8 shows different specializations of the classEmployee.
The subclassesFemaleEmployee and MaleEmployee represent a dis-
joint and complete classification. The subclassesCapricornEmployee,
AquariusEmployee, andPiscesEmployee classify employees according to
their birthday (December 22-January 20, January 21-February 19, February 20-
March 20, respectively). This classification is disjoint but incomplete. The sub-
classesGroundStaffEmployee andFlightStaffEmployee in the context
of an airline company are labeled overlapping and complete,because each airline
employee either works on the ground or during a flight and, forexample, a steward
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is allowed to work on the ground during boarding and of courseduring the flight.
The subclassesFrenchEmployee andItalianEmployee are overlapping be-
cause employees may have two citizenships, but it is incomplete because, e.g., Swiss
employees are not taken into account.

Special care must be devoted to the classificationsoverlapping and
incomplete. As already said, they represent the general case and no restriction
is made by these classifications. But the wording could improperly suggest, that
an overlapmustexist and the incompletionmustoccur, although this is not the
case. Altogether,overlapping andincomplete in the class diagram would
accept an object diagram which isdisjoint andcomplete, but disjoint
andcomplete in the class diagram would not accept an object diagram being
overlapping or incomplete.

Fig. 2.9 Component as Association, Aggregation, and Composition

Fig. 2.10 Forbidden and Allowed Object Diagrams for Aggregation and Composition
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Aggregations:Part-whole relationships [SS77] are available in UML classdi-
agrams in two forms. The first form represents a loose bindingbetween the part
and the whole, the second form realizes a stronger binding. Both forms can be un-
derstood as binary associations with additional restrictions. The first form called
aggregation is drawn with a hollow rhomb on the whole side andis often called
white diamond. The second form called composition is drawn with a filled rhomb
on the whole side and is often called black diamond. The linksin an object diagram
belonging to a class diagram with a part-whole relationshipmust be acyclic if one
regards the links as directed edges going from the whole to the part. This embodies
the idea that no part can include itself as a subpart. Such cyclic links are allowed
however for arbitrary associations. Part objects from an aggregation are allowed to
be shared by two whole objects whereas this is forbidden for composition.

Examples: The class diagrams in Fig. 2.9 show on the left the association
Component already introduced and on the right two alternatives in which the as-
sociation is classified as an aggregation with a white diamond and as a composition
with a black diamond, respectively. Recall that roles are essential in reflexive associ-
ations and therefore in reflexive part-whole relationships. Here theparent objects
play the whole role and thechild objects play the part role. The two object di-
agrams in Fig. 2.10 explain the differences between association, aggregation, and
composition. The diamonds are shown as grey diamonds, a symbol which doesnot
exist in the UML. We will discuss what happens if the grey diamond is substituted
by a white or black one. If the grey diamond is replaced by a white diamond, the left
object diagram is forbidden, because there is a cycle in the part-whole links which
would mean that the objectcarCtrl is a part of itself. This would also hold for
the other two objects on the cycle. Recall that if we would have a simple associa-
tion instead of the grey diamond, this object diagram would be allowed. If the grey
diamond is replaced by a white diamond, the right object diagram is an allowed
object diagram. Here, the objectradioCtrl is shared by the objectscarCtrl
andtruckCtrl. Naturally, if the grey diamond would become an association, the
right object diagram is allowed as well.

Compositions: Compositions pose further restrictions on the possible links in
addition to the required acyclicity. Part objects from a composition cannot be shared
by two whole objects. The table in Fig. 2.11 gives an overviewon the properties of
associations, aggregations, and compositions.

Acyclicity Prohibition of sharing
Association – –
Aggregation + –
Composition + +

Fig. 2.11 Overview on Properties of Associations, Aggregations, andCompositions

Examples:Let us now discuss what happens in Fig. 2.10 if the grey diamond is
substituted in order to represent compositions. If the greydiamond is replaced by a
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black diamond, the left object diagram is again forbidden, because there is a cycle in
the part-whole links. If the grey diamond is replaced by a black diamond, the right
object diagram is a forbidden object diagram for compositions, because sharing of
objects is not allowed in that case. To show also a positive example for compo-
sition and aggregation, we state that, if we remove the link from motorCtrl to
carCtrl in the left object diagram, we get a valid object diagram for composition
and aggregation.

Fig. 2.12 Enumerations in UML

Data types and enumeration types:UML offers a collection of predefined data
types with usual operations on them. The data types includeInteger, Real,
String, andBoolean. Application dependent enumeration types can also be
defined in a class diagram. The enumeration type name is followed by the list of
allowed enumeration literals. Enumeration types can be used as attribute, operation
parameter or operation return types.

Examples:Fig. 2.12 shows two enumeration types useful in the context of our
example. The typeGender may represent the gender of an employee and the type
CivilStatus its civil status.

Invariants: OCL allows the developer to specify invariants, i.e., conditions
which must be true during the complete lifetime of an object (or perhaps more
precisely, at least, in moments when no activity in the object takes place). Such in-
variants are implicitly or explicitly universally quantified OCL formulas introduced
with the keywordcontext.

Example: In order to require that employees have an age of at least 18, one could
state the following invariant.

context Employee inv EmployeeAreAtLeast18: Age>=18

That constraint has an implicit variableself of typeEmployee and is equiva-
lent to:

context self:Employee inv EmployeeAreAtLeast18:
self.Age>=18

Instead ofself we could have used any other name for the variable, e.g. the
variablee. The invariant corresponds to the following OCL formula which must be
true in all system states.

Employee.allInstances->forAll(self|self.age>=18)
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2.3.2 Representation of Standard ER Modeling Concepts

This section explains how those basic ER modeling concepts which do not need
OCL can be expressed in UML class diagrams. Some more advanced ER modeling
concepts needing OCL, e.g., primary keys or computed attributes, are explained
later when also OCL is used.

Budget : Integer

Employee Project

EmployeeDependent

ProjectWorker

ProjectManager

EmployeeNo : Integer

Age : Integer

Name

First : String

Last : String

PercentageOfTime : Real

ProjectNo : Integer

Age : IntegerFirstName : String

1

M N

1 N

Dependent

Fig. 2.13 Example ER Diagram

The main concepts from the ER model have a direct representation in UML class
diagrams. The ER diagram in Fig. 2.13 shows the ER representation of what has
been shown in the UML class diagram in Fig. 2.6.

• Standard entities are represented in the ER notation and in the UML as rectan-
gles. In the ER notation, single lines are used for ordinary entities and double
lines for dependent entities.

• In the ER approach, binary relationships and n-ary relationships are shown as
rhombs with the relationship name within the rhomb. Binary relationships are
pictured as lines in the UML. N-ary relationships in UML are shown with small
rhombs. The relationship respectively association name isgiven close to, but not
inside the rhomb.

• Simple ER cardinalities (called multiplicities in UML) as in the example diagram
can equivalently be shown with the UML multiplicities0..* and1. But be
warned: The ER notation with intervals as in(0,*) is placed differently in the
ER approach and UML.
In the context of relationships, we emphasize that relationship names are usually
mandatory in the ER approach. Association names are howeveroptional in the
UML in general. This fact shows that relationships play a more important role
in ER than associations in the UML. One reason for this may be seen in the fact
that one generates Relational schemas from relationships and one needs names
for these schemas.
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• Standard attributes have an extra symbol in ER, but the attributes are integrated
into the class rectangle in UML.

• Roles are shown in a similar way in ER and UML, although we havenot explic-
itly shown them in the ER approach.

• Weak entities depicted in ER as double lined rectangles do not have an explicit
notation in UML, but may be expressed with a1..* multiplicity. In addition,
the owning entity could indicate ownership with a black diamond. Additional
OCL constraints which are discussed in the next section willgovern the object
identification.

• ISA hierarchies [SS77] from ER may be represented in UML withgeneraliza-
tions and additional constraints. Union, disjoint, overlapping, and partitioned ISA
hierarchies as discussed in the ER literature correspond togeneralizations with
constraints as shown in the table in Fig. 2.14.

ISA notion UML notion
union complete and overlapping
disjoint complete and disjoint
overlappingincomplete and overlapping
partitioned incomplete and disjoint

Fig. 2.14 Correspondence between ISA hierarchies and UML constraints

• Compound and multi-valued attributes are realized in UML with theTuple and
collection constructorsSet, Bag, andSequence.

• Mandatory or optional participation in relationships is expressed in UML with
multiplicities.

• Part-whole relationships [SS77] have been proposed in the ER approach with
several notations. Part-whole relationships are represented in UML with the
white or black diamond.

2.4 Employing OCL for Conceptual Schemas

This section will explain the use of UML extension concepts like constraints and
stereotypes for standard ER concepts as keys, derived and computed attributes. The
section will also show how to utilize queries which are executed on sample database
states during database schema development.
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2.4.1 Standard ER Concepts Expressed with OCL

Keys: An identification mechanism for objects is probably a very fundamental ap-
plication of OCL within conceptual modeling. In databases,objects often possess a
set of attributes which identify an object uniquely.

Example: In the running example, we assumeEmployee objects are identified
by the attributeEmployeeNo. This is expressed in OCL as follows.

context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2|

e1<>e2 implies e1.EmployeeNo<>e2.EmployeeNo)

Alternatively and equivalently, we could state the implication the other way
round.

context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2|

e1.EmployeeNo=e2.EmployeeNo implies e1=e2)

We emphasize, that within the context of an object-orienteddata model like the
one from UML, there is a difference between specifying no keys at all and desig-
nating the set of all attributes as the key. AssumePart objects are identified by the
combination of the part number and the name. Recall that nameand part number
are the only attributes of classPart.

context p1:Part inv NamePartNoIsKey:
Part.allInstances->forAll(p2|

p1<>p2 implies
(p1.Name<>p2.Name or p1.PartNo<>p2.PartNo))

Requiring this invariant is different from giving no key specification, because
with this invariant it is not possible to have two differentPart objects with the same
PartNo andName. But this is possible in a model where no keys are specified.

In order to represent the identification ofDependent objects in the spirit of the
ER model, the key restriction for classDependent would look as follows.

context d1:Dependent inv FirstNameEmployeeNoIsKey:
Dependent.allInstances->forAll(d2| d1<>d2 implies
(d1.FirstName<>d2.FirstName or
d1.supporter.EmployeeNo<>d2.supporter.EmployeeNo))

As a variation, a similar requirement could be stated using inequality on
Employee objects.

context d1:Dependent inv FirstNameEmployeeNoIsKey:
Dependent.allInstances->forAll(d2| d1<>d2 implies

(d1.FirstName<>d2.FirstName or
d1.supporter<>d2.supporter))
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Further possibilities for conceptual modeling of keys are discussed in [Gog99].
Derived or computed attributes: We have discussed compound and multi-

valued attributes above. Another variation for attributesare so-called derived or
computed attributes. Derived respectively computed attributes can be realized in
OCL with an invariant or with a derivation rule within an operation.

Example: Assume we want to record forPart objects the number of direct (not
indirect) children the respectivePart object has with respect to theComponent
association. This could be realized with an invariant assuming classPart has an
additional attributeNumOfChildren or as a definition for an additional operation
NumOfChildren():

context Part inv NumOfChildrenDerived:
NumOfChildren=self.child->size()

Part::NumOfChildren()=self.child->size()

2.4.2 Constraints and Stereotypes

General OCL invariants may be employed for conceptual modeling in order to de-
scribe integrity constraints for a conceptual schema. UML offers to denote such
invariants in explicit form or the constraints may be indicated as a shortcut by using
stereotypes.

Keys as stereotypes:Because certain kind of constraints appear frequently in
conceptual modeling, it makes sense to indicate this recurring structure by indicating
the constraints only with stereotypes. A very good example for this are keys. At
least two alternative notations for key stereotypes can be thought of: (1) Indicating
for each attribute separately whether it contributes to thekey, or (2) indicating the
set of key constituents as a whole.

Example: For the running example, key specifications for selected classes could
look as shown in Fig. 2.15. In the classEmployee the key consists of the attribute
EmployeeNo. For Part, the key is made ofPartNo andName. The key for
Dependent consists ofFirstName and the reference to the key of the supporter.

Alternative keys could be indicated similar to the above mentioned key stereo-
type notation (2) in which the complete set of alternative key attributes would be
indicated as a whole. As a side remark, we mention that the underlining of attributes
in UML class diagrams, which is used in some ER notations to indicate keys, has
already a fixed, different meaning in UML: Underlined attributes indicate class at-
tributes which in contrast to ordinary object attributes describe properties of the
class and not properties of the single instances belonging to the class.

Stereotypes for general invariants:Due to UML’s and OCL’s flexibility, apart
from keys various useful patterns for invariants could be provided by stereotypes,
e.g., attribute restrictions, commutativity restrictions, and existence dependencies.

• Attribute restrictions could be an alternative for enumeration types with the ad-
ditional advantage that respective operations would be applicable then as well.
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Fig. 2.15 Keys represented as UML Stereotypes

For example, an attributemonth:Integer could be restricted by a stereo-
type<<1..12>>.

• Commutativity restrictions could indicate that two paths in the class diagram are
commutative in the sense that the two paths either yield the same result or that the
result of one path is included in the other. Given the contextof a particular class
and appropriate roles, for example,self.role1.role2=self.role3
would require that the results of the two expressions involving the roles co-
incide. Instead of requiring equality, one could allow thatone specifies an in-
clusion with the stereotype<<subset>>. For example, within the context of
classEmployee, the requirementself.managedProject <<subset>>
self.project would express that a manager works on her or his projects.

• Existence dependencies, like the one forDependent objects could be specified
by providing a term indicating the master object the slave object depends on. E.g.,
within the context of classDependent the termself.supporterwithin the
class rectangle in a special section labeled<<dependency>> could indicate
that for eachDependent object, a supporting employee must exists. In easy
cases like the above one, dependencies can also be shown witha multiplicity
specification.

• Apart from these application-specific constraints, the UMLprovides a standard
constraint for requiring that two or more associations exclude each other with
the keywordxor and a standard constraint expressing that one association is
included in the other by using the keywordsubset.

Transitive closure: By means of appropriate operations it is possible in UML
and OCL to define the transitive closure as a language built-in. Any property
C::prop:Set(C) for a classC can be extended toC::propPlus:Set(C)
for yielding the transitive closure and toC::propStar:Set(C) for yielding the
transitive and reflexive closure. One would automatically extend the model with
appropriate operations as indicated below.
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C::propPlus():Set(C)=propPlusAux(self.prop)
C::propPlusAux(aSet:Set(C)):Set(C)=
let oneStep:Set(C)=aSet.prop->asSet() in
if oneStep->exists(p|aSet->excludes(p)) then

propPlusAux(aSet->union(oneStep)) else aSet endif
C::propStar():Set(C)=propPlus()->including(self)

This notation can be generalized to bags and sequences.
Example: The requirement that noPart object can be connected to itself with

a chain ofComponent links in thechild direction could be stated as follows.

context p:Part inv ComponentNotReflexive:
not(p.childPlus->includes(p))

General constraints:Apart from constraints indicated with stereotypes, one can
naturally employ the invariant mechanism of OCL and define special, application
dependent invariants.

Examples: Above we have discussed what would happen if the association
ProjectManager would be replaced by two object-valued attributes in the par-
ticipating classes. In order to only allow similar object diagrams as in the model
with the association, one would need then the following two invariants.

context Employee inv ManagerManagesOwnProjects:
managedProject->forAll(p|p.manager=self)

context Project inv ProjectManagedByProjectManager:
manager.managedProject->includes(self))

Note that in general, both directions of the constraint and not only one direction
has to be state.

Another example for a general constraint concerns the attributePercentage-
OfTime in the relationshipProjectWorker. The sum of percentages for a single
employee should not be more than 100 percent.

context Employee inv SumPercentageOfTimeLessEqual100:
self.projectWorker.PercentageOfTime->sum()<=100

With respect to this constraint, the object diagram from Fig. 2.7 is invalid, be-
cause the sum of ada’s project participation is 110 percent.

The above example also shows one OCL feature which we have notcovered
yet: In the context of association classes it is possible to navigate from a partici-
pating class to the association class and also from the association class to the par-
ticipating classes. Above, the roleprojectWorker is a property within the class
Employee having result typeSet(ProjectWorker).
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2.4.3 Queries

OCL also supports the formulation of queries. Ordinary SQL following the select-
from-where pattern would be formulated in OCL obeying an allInstances-select-
collect pattern.

Example: Find employee numbers of employees having at least two dependents.

select EmployeeNo
from Employee
where exists

(select *
from Dependent d1, Dependent d2
where d1.EmployeeNo=d2.EmployeeNo and

d1.EmployeeNo=Employee.EmployeeNo and
d1.FirstName<>d2.FirstName)

Employee.allInstances->
select(dependent->

exists(d1,d2|d1.FirstName<>d2.FirstName))->
collect(EmployeeNo)

Employee.allInstances->
select(e:Employee|e.dependent->

exists(d1,d2|d1.FirstName<>d2.FirstName))->
collect(EmployeeNo)

The SQL query, which is formulated on a Relational database schema, uses a sub-
query to filter the result and a select clause to indicate which attributes are wanted.
In OCL, one starts with anallInstances expression, then one filters the ob-
jects with a select expression and finally obtains the desired attributes with a collect
expression.

2.5 Describing Relational Schemas with UML

This section will show how Relational schemas are represented in UML. Constraints
and stereotypes will represent primary keys and foreign keys.

2.5.1 Relational Schemas

Relational Schemas in UML:There are radically different alternatives for repre-
senting Relational schemas in UML: (1) One might represent each entity and each
relationship from the conceptual schema as a separate class, or (2) one could use
the type constructors offered by OCL (likeTuple andSet) and represent the en-
tire database as a single complex value. There are other solutions which lie between
these extreme points. We will further follow an alternativein which a Relational
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schema is represented by a class, however we will shortly also explain the other
extreme.

Fig. 2.16 Foreign Keys represented graphically with UML Stereotypes

Example: Let us consider only the two entitiesEmployee andProject to-
gether with their relationshipProjectWorker, and let us further assume that we
translate this into three Relational schemas. If we give a separate class for each
entity and each relationship, we achieve the representation in Fig. 2.16. If we rep-
resent the three Relational schemas with a complex value, weachieve the structure
in Fig. 2.17. Primary and foreign keys would have to be formulated additionally as
OCL invariants.

DB:Tuple(Employee:Set(Tuple(EmployeeNo:Integer,
FirstName:String,
LastName:String,
Age:Integer)),

Project:Set(Tuple(ProjectNo:Integer,
Budget:Integer)),

ProjectWorker:Set(Tuple(EmployeeNo:Integer,
ProjectNo:Integer)))

Fig. 2.17 Relational schemas as complex value

2.5.2 Constraints for Primary and Foreign Keys

Representing Primary Keys and Foreign Keys:Primary keys in the Relational
schema can be shown with a stereotype as primary keys in the conceptual schema.
For the representation of foreign keys there are again two alternatives, a graphical
one and a textual one. (1) In the graphical solution, the Relational schema possess-
ing the foreign key would point to the Relational schema in which the referenced
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primary key occurs. Technically, thispointing towould be a UML dependency pic-
tured in graphical form using a stereotype. (2) In the textual solution, the Relational
schema possessing the foreign key would indicate the Relational schema in which
the referenced primary key occurs. On the technical level, this would again be a
UML dependency but this time displayed in textual form.

Fig. 2.18 Foreign Keys represented textually with UML Stereotypes

Example: Figures 2.16 and 2.18 show the graphical and textual alternative for
the example. The graphical alternative has the advantage ofvisually showing the
connection between the Relational schemas. But the graphical representation has
also the disadvantage that it becomes more complicated and even not understand-
able, if the foreign key consists of more than one attribute and if additionally the
foreign key references attributes in the same Relational schema.

Stereotypes for primary keys and foreign keys are only shortcuts for more in-
volved OCL invariants not explicitly shown, but being present behind the visual
representation. In our example, we would have that the stereotypes are shortcuts for
the following OCL invariants.

context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2 |

e1<>e2 implies e1.EmployeeNo<>e2.EmployeeNo)
context p1:Project inv ProjectNoIsKey:
Project.allInstances->forAll(p2 |

p1<>p2 implies p1.ProjectNo<>p2.ProjectNo)
context pw1:ProjectWorker inv EmployeeProjectNoIsKey:
ProjectWorker.allInstances->forAll(pw2 |

pw1<>pw2 implies
(pw1.EmployeeNo<>pw2.EmployeeNo or
pw1.ProjectNo<>pw2.ProjectNo))

context pw:ProjectWorker inv EmployeeNoIsForeignKey:
Employee.allInstances->exists(e |

pw.EmployeeNo=e.EmployeeNo)
context pw:ProjectWorker inv ProjectNoIsForeignKey:
Project.allInstances->exists(p |
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pw.ProjectNo=p.ProjectNo)

As a final remark we emphasize that foreign keys arenotassociations, because an
association would imply that it will be manifested by links which is not true for for-
eign keys. Foreign keys are dependencies and can be represented with stereotypes.
We also emphasize that we represent Relational schemas as classes. In this UML
representation, there are no associations or relationships, but only dependencies.

2.6 Metamodeling Data Models with UML

This section studies a UML metamodel for the Entity Relationship (ER) and the Re-
lational data model. UML is well-suited for the descriptionof metamodels. We start
by describing the syntax of the ER data model through the introduction of classes for
ER schemas, entities, and relationships. We also describe the semantics of the ER
data model by introducing classes for ER states, instances,and links. The connection
between syntax and semantics is established by associations explaining that syntac-
tical objects are interpreted by corresponding semanticalobjects. Analogously this
is done for the Relational data model. The CWM metamodel from[OMG03] is to a
certain extent comparable to our approach. However there, only the syntax of data
models is treated, not the interpretation of database schemas as in our approach.

2.6.1 Class Diagram

Consider the class diagram in Fig. 2.19. It shows fourpackages: In the left part a
solid grey and a solid black package, in the right part a dashed grey and a dashed
black package. The two solid left packages model the syntax of the data models,
the two dashed right packages the semantics; the upper two packages describe the
ER data model, the lower two packages the Relational data model. The ER and the
Relational data model share some concepts, namely the partsin the middle speci-
fying data types, attributes and their semantics. We have indicated the multiplicities
in the class diagram. All role names are identical to the respective class with the
first letter of the class name converted to a lower case letter, e.g., we have a role
namesdataType andrelDBSchema. The various parts of this class diagram
will be explained below with the scenario from Fig. 2.20 and the object diagrams in
Figs. 2.21, 2.22, 2.23, and 2.24.

Syntax of the ER data model: This part introduces the classesErSchema, En-
tity,Relship,Relend,Attribute, andDataType.ErSchema objects
consist ofEntity andRelship objects which in turn may possessAttri-
bute objects typed throughDataType objects.Relend objects represent the
connection points between theRelship objects and theEntity objects.
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Fig. 2.19 Class Diagram Metamodeling the ER and Relational Data Model

----------+---------------+------------------+--------------

Person | passport | gender
--------+----------+----------

| 123      | ’female’
| 456      | ’male’

Marriage | wife_passport | husband_passport | date

| 123           | 456              | ’1981/07/29’

diana charlesMarriage

123 ’female’ 456 ’male’’1981/07/29’

wife husband

Person Marriage

passport:Integer

gender:String

date:String

husband

wife

Person(passport:Integer,gender:String)

Marriage(wife_passport:Integer,husband_passport :Integer,date:String)

Fig. 2.20 Content of Example Scenario
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Semantics of the ER data model: In this part we set up the classes ErState,
Instance, Link, RelendMap, AttrMap, andValue. The interpretation
is as follows. AnErSchema object is interpreted by possibly manyErState
objects. AnEntity is given semantics by a set ofInstance objects, and a
Relship by a set ofLink objects.DataType objects are given life through
a set ofValue objects.Relend andAttribute objects are interpreted by a
set ofRelendMap objects andAttrMap object, respectively.

Syntax of the Relational data model: Here the classesRelDBSchema, Rel-
Schema, Attribute, andDataType are needed.RelDBSchema objects
consist of RelSchema objects which possessAttribute objects typed
throughDataType objects.

Semantics of the Relational data model: The last part utilizes the classesRel-
DBState, Tuple, AttrMap, andValue. RelDBSchema objects are inter-
preted by a set ofRelDBState objects. EachRelDBState object consists
of a set ofTuple objects which are typed by aRelSchema. Tuple objects
in turn consist of a set ofAttrMap objects assigning aValue object to an
Attribute within theTuple.

Fig. 2.21 Viewing the Example Scenario as an ER Schema

Let us shortly mention the attributes and operations relevant for the class diagram
but being not displayed. All classes in the (left) syntax part possess an attribute
name of data typeString. The classAttribute has an additional boolean-
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Fig. 2.22 Viewing the Example Scenario as an ER State

Fig. 2.23 Viewing the Example Scenario as a Relational Schema
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Fig. 2.24 Viewing the Example Scenario as a Relational State

valued attributeisKey indicating whether this attribute contributes to the key ofthe
Entity or theRelSchema. The classValue possesses the attributecontent
of data typeString indicating the actual content of theValue object.

Concerning operations, the classesInstance, Link, andTuple have an op-
erationapplyAttr() with a State and anAttribute parameter returning
the actualValue object of theAttribute. The classLink has an operation
applyRelend() with anErState and aRelend parameter returning the ac-
tual Instance of theRelend. The classesEntity andRelSchema possess
an operationkey() returning the set of its key attributes.

2.6.2 Object Diagrams

The modeling is best explained by an example. Figure 2.20 shows an example sce-
nario which is represented in Fig. 2.21 as an ER schema, in Fig. 2.22 as an ER state,
in Fig. 2.23 as a Relational schema, and in Fig. 2.24 as a Relational state.

Syntax of the ER data model: Fig. 2.21 shows the metamodel representation of
the example ER schema. There is oneErSchema object connected to one
Entity and oneRelship object. The twoRelend objects connect the
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Relship with theEntity. The three attributes stand in connection with the
Entity resp.Relship on which they are defined and with theDataType of
the respective attribute. We regard the upper representation as the concrete syn-
tax of the ER schema and the lower representation in form of anobject diagram
as the abstract syntax.

Semantics of the ER data model: Fig. 2.22 displays on the lefta part of the ER
schema and on the right semantical objects instantiating the objects from the ER
schema on the left. The semantical objects are typed by horizontal links going
to the left: TheErState is typed by anErSchema, theInstance by an
Entity, theLink by aRelship, theRelendMap object by aRelend ob-
ject, eachAttrMap object by anAttribute object, and eachValue object
by a DataType object. In order to be comprehensible, this left part does not
show the complete ER state, but only a part of the ER state.

Syntax of the Relational data model: Fig. 2.23 represents the Relational database
schema with two Relational schemas. The first Relational schema has two at-
tributes, and the second one three attributes. All five attributes are typed by ap-
propriate data types.

Semantics of the Relational data model: Fig. 2.24 gives a part from the Relational
database state. Only one tuple with three components, i.e.,with threeAttrMap
objects, is shown. The threeValue objects are typed with links into the left syn-
tax part. For example, the twoValue objectsi 123 andi 456 are connected
to theDataType objectInteger.

2.6.3 Constraints

The multiplicities in the class diagram constrain the validobject diagrams and are
so-called model inherent constraints. Apart from these constraints, all parts in the
class diagram must be restricted by appropriate explicit constraints. In the total we
obtain about fifty constraints. We do not go into the details here, which can be found
in [Gog05], but show only one typical example from each of thefour parts.

Syntax of the ER data model: Within oneEntity, differentAttributes have
different names.

context self:Entity inv uniqueAttributeNamesWithinEntity:
self.attribute->forAll(a1,a2 |

a1<>a2 implies a1.name<>a2.name)

Thus we would obtain an invalid ER schema, if we change thename attribute of
thegenderEr object from’gender’ to ’passport’ in Fig. 2.21.

Semantics of the ER data model: Two differentInstances of one Entity
can be distinguished in everyErState (where bothInstances occur) by
a keyAttribute of theEntity.

context self:Instance inv keyMapUnique:
Instance.allInstances->forAll(self2 |
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self<>self2 and self.entity=self2.entity
implies
self.erState->intersection(self2.erState)->forAll(s |
self.entity.key()->exists(ka |

self.applyAttr(s,ka)<>self2.applyAttr(s,ka))))

One would achieve an invalid ER state, if we change thecontent attribute of
thei 123 object from’123’ to ’456’, because there is anotherInstance
object (not shown in Fig. 2.22), namelycharlesEr, with passport number
’456’ andpassport is the only key attribute in the example ER schema.

Syntax of the Relational data model: The set of keyAttributes of a Rel-
Schema is not empty.

context self:RelSchema inv relSchemaKeyNotEmpty:
self.key()->notEmpty

We would get an invalid Relational schema, if we change theisKey attribute of
thepassportRel object fromtrue to false, because then the Relational
schema namedPerson would not have any key attributes.

Fig. 2.25 Excerpt from Metamodel Class Diagram ExplainingcommutativityAttribute

Semantics of the Relational data model: As shown in Fig. 2.25, the Attri-
butes connected to theRelSchema of aTuple are identical to theAttri-
butes connected to theAttrMap of the Tuple. In other words, there are
attribute assignments for allAttributes of aTuple (and for only those).

context self:Tuple inv commutativityAttribute:
self.relSchema.attribute=self.attrMap.attribute->asSet

We would obtain an invalid Relational state, if we would delete themarriage-
WifePassportRel object. Then there would exist anAttribute with
namewife passport which is present in the Relational schema named
Marriage, but one tuple for this Relational schema would miss the attribute
assignment for the attributewife passport, i.e., there would be no corre-
spondingAttrMap object.

Our example scenario included only one ER state, namely an ERstate where
two entities and one relationship connection are present. The metamodel is however
more general in the sense that not only one ER state can be described, but it is
possible to link several ER states to a single ER schema. For example, the three ER
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Fig. 2.26 Three consecutive ER states

states displayed in Fig.2.26 together with the corresponding ER schema could be
represented as a single object diagram in the metamodel.

Apart from describing the data models, it is also possible togive a metamodel
for the transformation of ER schemas into Relational database schemas. We will
not go into details here but only refer to the detailed metamodel which can be found
in [Gog05]. By characterizing the syntax and semantics of the data models and also
the transformation itself within the same (meta-)modelinglanguage, one can include
equivalence criteria on the syntactical and on the semantical level for the transfor-
mation. In particular, one can give a semantical equivalence criterion requiring that
the ER states and the corresponding Relational states carrythe same information.

2.7 Further Related Work

Relevant related work has been mentioned already in the respective chapters. In ad-
dition, we want to point to the following books and papers relating on the one hand
UML and conceptual modeling and on the other hand UML and constraint devel-
opment. Further relevant literature can be found by using the ‘Complete Search’
facility on DBLP by searching with ‘Conceptual UML Model’ or‘UML Database
Design’, for example.

An early approach for developing databases with object-oriented design tech-
niques is given in [BP98]. Comparisons between designing (database) schemas and
class diagrams with UML and with ORM are discussed in [Hal02,HB99]. Object-
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oriented and object-relational schemas described with UMLand other object-
oriented techniques are studied in [MVC03, UD03, APP06]. The work in [Amb09]
proposes a UML profile for database design, whereas in [ZT07]a UML profile for
conceptual modeling in connection with data warehouses is worked out.

Constraints and OCL have been used for conceptual modeling since the early
days of UML. [DHL01] treats the transformation of OCL constraints into Relational
database requirements. The text book [Oli07] radically uses OCL and UML for all
facets of conceptual modeling. [RO08] discusses the impactof MOF to developing
database schemas. [CGQ+08] is a further approach using OCL for conceptual mod-
eling which proposes special treatment of typical, schematic integrity constraints.
[CT09] emphasizes incremental development of OCL constraints.

2.8 Conclusions

This contribution has explained how UML can be employed for conceptual model-
ing of information systems. UML supports on the one hand all classical features of
the ER model, and on the other hand also more advanced features like part-whole
relationships are expressible as well. Within UML, the textual constraint and query
language OCL is available. OCL has many similarities to SQL.

However, support for conceptual modeling within UML can be improved in a
number of directions. There are proposals around for a UML profile for data model-
ing, but an overall accepted solution is still missing. Sucha profile should take into
account data modeling on various abstraction levels, e.g.,the conceptual, the logi-
cal, and the physical level. Complete metamodeling of thesedata models respecting
syntactical and semantical aspects is another open issue. One reason for the success
of the Relational model is probably the well-studied relationship between descrip-
tive languages like tuple or domain calculus and operationally effective languages
like Relational algebra. OCL as a central ingredient for conceptual modeling and
as a descriptive language within UML would benefit from a clear relationship to an
operationally effective UML execution language.
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Appendix A: Original ER Diagram from Chen’s Paper

Fig. 2.27 Original ER Diagram from Chen’s Paper
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Fig. 2.28 Plain UML Class Diagram Corresponding to Fig. 2.27

context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2|

e1<>e2 implies e1.EmployeeNo<>e2.EmployeeNo)
-- above invariant analogously for other classes
context d1:Dependent inv FirstNameEmployeeNoIsKey:
Dependent.allInstances->forAll(d2| d1<>d2 implies
(d1.FirstName<>d2.FirstName or
d1.supporter.EmployeeNo<>d2.supporter.EmployeeNo))

Fig. 2.29 Stereotyped UML Class Diagram Corresponding to Fig. 2.27




