
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

A Feature-Based Classification of
Formal Verification Techniques for
Software Models

Sebastian Gabmeyer ·
Petra Kaufmann ·
Martina Seidl · Martin
Gogolla · Gerti Kappel

Received: date / Accepted: date

Abstract Software models are the core development arti-
fact in model-based engineering (MBE). The MBE para-
digm promotes the use of software models to describe struc-
ture and behavior of the system under development and pro-
poses the automatic generation of executable code from the
models. Thus, defects in the models most likely propagate
to executable code. To detect defects already at the mod-
eling level, many approaches propose to use formal verifi-
cation techniques to ensure the correctness of these mod-
els. These approaches are the subject of this survey. We re-
view the state-of-the-art of formal verification techniques for
software models and provide a feature-based classification
that allows us to categorize and compare the different ap-
proaches.

This work has been funded by the Vienna Science and Technology
Fund (WWTF) under grant ICT10-018 and the Austrian Science Fund
(FWF) under grant S11408-N23.

S. Gabmeyer
TU Darmstadt
E-mail: gabmeyer@seceng.informatik.tu-darmstadt.de

M. Gogolla
University of Bremen
E-mail: gogolla@informatik.uni-bremen.de

G. Kappel
Vienna University of Technology
E-mail: gerti@big.tuwien.ac.at

P. Kaufmann
Vienna University of Technology
E-mail: kaufmann@big.tuwien.ac.at

M. Seidl
Johannes Kepler University Linz
E-mail: martina.seidl@jku.at

1 Introduction

In contrast to traditional software engineering, where soft-
ware models like class diagrams and state machine diagrams
are mainly used for design and documentation, model-based
engineering (MBE) projects position software models at the
center of the development process [142]. In typical MBE-
based software development projects, models describing the
platform-independent implementation of software are iter-
atively built. Therefrom, the platform-specific, executable
code [150] is generated. Consequently, defects in software
models propagate directly to executable code and result in
errors, or, more generally, malfunctions in the deployed sys-
tem. Moreover, because models are built from the initial
stages of the development process onward, the early iden-
tification and subsequent correction of defects is, in many
cases, easier and often leads to lower development costs as
compared to their later detection [21]. To this end, the cor-
rectness of the software models has to be ensured in order to
obtain correct software.

In this survey, we review methods and approaches for
formally verifying the correctness of software models us-
ing (semi-)automated theorem proving or model checking-
based techniques. We identified distinguishing features of
such approaches that naturally led to a feature-based clas-
sification formulated in terms of a feature model [77]. This
feature model allows us to categorize each verification ap-
proach according to (a) its pursued verification goal, (b) the
type of analyzable software models, (c) the encoding of the
software model used by the underlying verification engine,
(d) the specification language used to phrase the properties
that the system should satisfy, and (e) the employed verifica-
tion technique. The feature model gives an overview of for-
mal verification approaches for software models and com-
pares them on various levels. On the one hand, it answers
questions like “for what modelling languages have verifica-
tion approaches been proposed?” or “what kind of errors can
be detected in software models by the means of formal ver-
ification?”, i.e., questions that might be of interest to mod-
elers. On the other hand, it also categorizes approaches ac-
cording to the underlying technologies allowing the direct
positioning of novel verification approaches in the research
landscape.

This research landscape is very vast and evolving in a
very fast manner. It is therefore not possible to cover all
ever presented approaches in this article. Instead, we take
a tour with the aim to discover the wide variety of efforts
that have been taken to improve the quality of models by
the means of formal methods. Our tour takes us even back
to the 90s of the last century where already the first ap-
proaches of model verification have been investigated. In
the first decade of this century many approaches have been
established in the literature containing many interesting re-



2 Sebastian Gabmeyer et al.

search ideas and directions. It turns out that formal verfica-
tion techniques have been applied extensively to all areas of
MBE, but compared to advancements made in the verifica-
tion of hard- and software systems, the verification of soft-
ware models is still in its infancy. While mainly based on
the abstraction power of models, the huge potential of for-
mal verification in MBE is obvious, large scale evaluations
are still missing. For this purpose, common benchmarks and
also more evaluation events have to be established by the
research community. Such efforts would lead to the setup
of common interfaces of verification tools increasing their
usability.

This survey is structured as follows. In Section 2, we
introduce concepts and terminology used throughout this
survey. We explain our feature-based classification in Sec-
tion 3 and present the resulting feature model in Section 4.
This feature model allows us to classify the verification ap-
proaches for software models reviewed in Section 5. We
conclude with a discussion and future research directions in
Section 6.

This survey is an extended, completely revised, and in
large parts rewritten version of previous work that we pre-
sented at the VOLT workshop [51].

2 Background

In computer science, the term model is heavily overloaded.
For example, in software engineering, models are design ar-
tifacts for describing the structure and behavior of software,
whereas a model in logic usually provides a set of variable
assignments for some formula such that the formula eval-
uates to true, i.e., it is satisfied under this assignment. As
we use both kinds of models in this paper, we distinguish
between software models and logical models and use these
terms explicitly whenever ambiguities might arise.

In the following, we introduce the common terminology
used in subsequent sections. First, we discuss the notion of
model and modeling, position them in the context of soft-
ware development and highlight their importance to model-
based engineering. Then we shortly review the formal veri-
fication techniques relevant for this work.

2.1 Terms and Notions in Software Modeling and
Model-Based Engineering

In general, modeling is the act of building abstract represen-
tations of certain observations that reflect the typical way
how humans cope with reality [95,137]. Models are based
on an original phenomenon, item, or system, which either
already exists or will be built. They are created with the
pragmatic intention of using, for a special purpose, the sim-
plified and abstracted model in place of the original. As

models reduce the original to a relevant, abstracted subset of
original properties they allow us to communicate concepts
and reason about things that are not (yet) there. This ex-
plains the attractiveness of adopting models in engineering
disciplines [143].

Similar to construction plans in civil engineering, mod-
els in computer science are used to design multiple views
onto a software system before actually implementing it in
terms of executable program code [142,141]. Due to the in-
creasing complexity of software projects, new development
approaches have been devised, triggering a shift from code-
centric to model-centric paradigms [15]. In model-centric
paradigms like model-based engineering (MBE), software
models are treated not only as informal design sketches or
(outdated) documentation artifacts during the design phase,
but as “first-class citizens.” The idea of MBE is to automate
the repetitive task of translating diagrammatic and textual
blueprints to code such that developers can concentrate on
creative and non-trivial tasks that computers cannot do.

Modeling Languages and the MDA

To establish a commonly accepted set of key concepts and to
preserve interoperability between domain-specific modeling
languages, the Object Management Group (OMG) speci-
fied the Model-Driven Architecture (MDA) [115] that places
models at the center of the entire software development pro-
cess and standardizes the definitions of models, metamodels,
and meta-metamodels. Therein, the OMG proposes a lay-
ered framework, called the metamodeling stack, which is or-
ganized into four layers. The topmost meta-metamodel layer
M3 sets the role of the Meta-Object Facility (MOF) [118] as
the unique and self-defined metamodel for building meta-
models, i.e., MOF is defined recursively by MOF itself.
Thus, MOF is the meta-metamodel that ensures interoper-
ability between any two metamodels conforming to it. MOF
is comparable to the Extended Backus-Naur Form (EBNF),
the metagrammar for expressing (programming) languages.
The Eclipse Modeling Framework (EMF) provides a refer-
ence implementation for MOF, called Ecore [151], which
enjoys broad acceptance both in industry and academia. The
metamodel layer M2 contains any metamodel defined with
MOF and includes, for example, the Unified Modeling Lan-
guage (UML) [120], and any other custom, domain-specific
metamodel. A metamodel at this level corresponds to an
EBNF definition of a programming language, examples of
which are the grammars that define C# or Java. A metamodel
defines the abstract syntax of a modeling language and is
usually supplemented with one or more concrete syntaxes.
A graphical concrete syntax, defined again as a metamodel
at level M2, frames graphical elements such as shapes and
edges and associates those elements with corresponding el-
ements of the abstract syntax metamodel. The model layer



A Feature-Based Classification of Formal Verification Techniques for Software Models 3

M1 contains any model built with a metamodel of layer M2,
e.g., a UML model. Resorting again to our previous analogy
with programming languages, models correspond to specific
programs written in any programming language specified
with an EBNF definition. Finally, the concrete layer M0 re-
flects any model based representation of a real situation.
This representation is an instance of a model defined at layer
M1. Thus, models at layer M0 (roughly) correspond to dy-
namic execution traces of a program of layer M1.

Often, modelers wish to incorporate fine-grained details
of a domain into a model that cannot be expressed with stan-
dard modeling constructs provided by the OMG’s UML
and MOF specifications. The Object Constraint Language
(OCL) [116] aims to fill this gap. It is a formal, declarative,
typed, and side-effect free expression language to define in-
variants and queries on MOF-compliant models as well as
pre- and postconditions of operations. An OCL constraint
is defined within a context, i.e., the element of the model
to which it applies, and consists of a constraint stereotype,
either inv, pre, or post to declare an invariant, a pre- or
a postcondition, that is followed by the OCL expression,
which defines the property that should be satisfied/refuted
in the context of the constraint. For this purpose, the OCL
specification defines a rich library of predefined types and
functions. In contrast to many other formal specification lan-
guages it claims to have been designed to be user-friendly
with regard to readability and intuitive comprehensibility.
OCL is heavily used to dissolve ambiguities that arise easily
in natural language descriptions of technical details. Thus, it
plays an important role in many MBE projects and OMG
standards.

Model Transformations

Model transformations express arbitrary computations over
models and, thus, take on a pivotal role in MBE [144]. They
are classified, among other characteristics, by their specifi-
cation language, the relationship between the input model
of the transformation and its output model, and whether the
transformation is unidirectional or bidirectional [37]. In the
subsequent sections we will use the term source model to re-
fer to the input model of a transformation and the term tar-
get model to refer to the transformation’s output or resulting
model. A trace model establishes links between elements of
the source model and the target model to indicate the effect
of the transformation on the respective element. A transfor-
mation is endogenous if source and target model conform
to the same metamodel, it is exogenous otherwise. A trans-
formation can be in-place meaning that source and target
model coincide or out-place if source and target model are
separate. A transformation that is in-place and exogenous
is called in-situ transformation and mixes source and target
model elements during intermediate steps.

Numerous languages have been proposed for the devel-
opment of such model transformations. Two popular choices
are the Atlas Transformation Languages (ATL) [75] and
the Query/View/Transformation (QVT) standard specified
by the OMG [117]. ATL is a rule-based, primarily declar-
ative transformation language for Ecore models that also
allows to mix-in imperative code sections. An ATL trans-
formation rule thus consists of (a) a guarded from block
that matches a pattern in the source model; (b) a to block
that creates the desired elements in the target model once a
match for the from block is found; and (c) an optional do
block that executes the imperative code. ATL supports ex-
ogenous and endogenous model-to-model transformations.
The Query/View/Transformation (QVT) specification is a
standard issued by the OMG [117] that embraces the defini-
tion of model queries, the creation of views on models, and,
in its most general form, the specification of model transfor-
mations. It defines three transformation languages for MOF-
2.0 models, namely the QVT Relations, the QVT Core,
and the Operational Mappings language. Both the QVT Re-
lations and the QVT Core language are declarative trans-
formation language that are equally expressive. QVT Rela-
tions supports complex pattern matching and template cre-
ation constructs, and it implicitly generates tracing links be-
tween the source and the target model elements. While the
QVT Relations is designed to be a user-friendly transforma-
tion language, QVT Core provides a minimal set of model
transformation operations that lead to simpler language se-
mantics without loosing the expressiveness of the QVT Re-
lations language; yet, QVT Core’s reduced set operations
increases the verbosity of its transformation definition. Fur-
ther, QVT Core requires an explicit definition of traces be-
tween source and target model elements. The QVT standard
defines a RelationsToCore transformation that can be used
either to define the formal semantics of QVT Relations or
to execute QVT Relations transformations on a QVT Core
transformation engine. The third transformation language,
Operational Mappings, is imperative and uni-directional. It
extends OCL by enabling the definition of operations with
side-effects, allowing a more procedural-style programming
experience. A QVT-Relations specification establishes the
tracing links for Operational Mappings.

2.2 Terms and Notions in Formal Verification Techniques

In this section, we introduce formal representations for soft-
ware models and discuss verification techniques based on
theorem proving and on model checking.

Graphs and Petri Nets

Due to a lack of formality in OMG standards, which of-
ten describe the semantics of modeling languages in prose



4 Sebastian Gabmeyer et al.

rather than with formal, mathematical or computing state-
ments, many approaches choose graphs, Petri nets, or com-
binations thereof that come with the desired mathematical
foundation to represent software models and their semantics
formally and unambiguously.

Over the last years, graphs and graph transformations
have become very popular to formally describe models and
model transformations. Therefore, the theory of graph trans-
formations has been extended to support rewriting of at-
tributed, typed graphs with inheritance as well as part-of
relations [19]. Both the dedicated handbook [135] and the
more recent monograph [44] discuss the graph transforma-
tion theory extensively. In the following, we summarize the
concepts relevant for this work. A graph consists of a set
of vertices V , a set of edges E, and a source and a target
function, src : E → V and trg : E → V , that map edges to
their source and target vertices. A morphism m : G→H is a
mapping between graphs G and H. A morphism is injective,
m : G ↪→ H, if no two distinct elements in G are mapped
to the same element in H. A graph transformation (also:
rewriting rule, graph production) p : L→R describes declar-
atively how a graph L, the left-hand side (LHS), is rewrit-
ten into a graph R, the right-hand side (RHS). We say that
a graph transformation p is applicable to some graph G if
there exists a match in form of a morphism m : L ↪→ G that
maps the LHS L of p into G. Roughly speaking, a graph
transformation is applied to a graph G, thus producing graph
H, by removing elements m(L), the images of L under m,
from G and replacing them by R.

Petri nets are bipartite graphs that have become popu-
lar for modeling concurrent systems as well as parallel pro-
cesses [108]. Again, we summarize relevant concepts in a
most basic variant. A Petri net [123] is a place/transition
graph N = (S,T,m0) where places s ∈ S are connected via
transitions t ∈ T . Each transition has zero or more incom-
ing edges and zero or more outgoing edges. A place is an
in-place (out-place) of a transition t if it connects to t over
an incoming (outgoing) edge. Petri nets have a token-based
semantics. A marking m assigns tokens to places, and de-
fines the current state of the represented system. The initial
state is given by the initial marking m0. We denote with m(s)
the number of tokens assigned to place s. A transition is en-
abled if all its in-places carry a token. Given a marking mi,
an enabled transitions fires by removing a token from each
in-place and assigning a token to each out-place resulting in
a new marking mi+1. If more than one transition is enabled,
one is non-deterministically chosen to fire. A transition with
no in-places (out-places) is always enabled (never enabled).
A marking m j is reachable from mi if there exists a sequence
of firing transitions that, starting with mi result in m j. A
marking m is coverable if there exists a reachable marking
m′ such that m′(s) ≥ m(s) for every place s in the Petri net.

This second property is useful to determine whether the Petri
net deadlocks.

Theorem Proving/(Semi-) Automated Reasoning

Theorem proving is the task of deriving a conclusion, i.e.,
the theorem, from a set of premises using a set of inference
rules. Traditionally performed manually, nowadays, interac-
tive proof assistants like ISABELLE/HOL [112], COQ [41],
or PVS [122] are often used to aid the trained user in pro-
ducing machine checked proofs. These proofs are developed
interactively. Given a set of premises and a goal, i.e., the
desired conclusion, the proof assistant attempts to prove in-
termediate steps automatically and, if unable to continue, it
resorts to the user. The user then guides the proof search by
adding new lemmas such that the assistant is finally able to
complete the proof. Due to the undecidability of many log-
ics beyond the propositional level, interactive proving strate-
gies are necessary. Sometimes, user guided proof search is
considered a limitation. Thus, there exist a number of ap-
proaches that (a) either accept non-termination or (b) reduce
the expressivity of the logic to a decidable level and thus
achieve full automatism that requires no user guidance. Au-
tomatic theorem provers like PROVER 9 [98], SPASS [159],
or VAMPIRE [86] are able to prove the validity of many hard
classical first-order formulas. The proof search, however,
may not terminate in all cases. A number of first-order theo-
ries exists that are both decidable and expressive enough to
formulate non-trivial system properties, examples of which
include, among others, Presburger and bit vector arithmetic,
or the theory of arrays. This satisfiability modulo theories
(SMT) approach is established by SMT solvers like Z3 [38].
Sometime SAT solvers [18] like LINGELING or MINISAT
are used either as part of the verification backend or solv-
ing verification problems directly encoded in propositional
logic.

Model Checking

Model checking is an automatic theorem proving technique
that proves a proposition valid by exploring and evaluating
all relevant – usually a subset of all possible – interpretations
over the product of a set of finite domains D1×·· ·×Dn. The
proposition is referred to as the specification and is usually
formulated in a temporal logic. Applied to the verification
of hard- and software systems [33,73], the specification ex-
presses desired or undesired properties of the system and
the interpretation corresponds to the valuation of the sys-
tem’s variables, whose values are drawn from the domains
D1, · · · ,Dn. A distinct valuation of the system’s variables
identifies a state of the system and the set of all possible
variable valuations that are reachable from the system’s ini-
tial state is referred to as the state space of the system. The



A Feature-Based Classification of Formal Verification Techniques for Software Models 5

state space is traditionally represented by a Kripke struc-
ture, but also by finite automata or labeled transition sys-
tems (LTS). A Kripke structure is a finite, directed graph
whose nodes represent the states of the system. The nodes
are labeled with those atomic propositions that are true in
that state. The edges of a Kripke structure represent transi-
tions between their source and their target node and are un-
labeled. In contrast, automata and labeled transition systems
label transitions with the system’s operations that trigger the
state change. All of them have in common that they describe
execution paths of the system, which are defined as, possi-
bly infinite, sequences ρ = s1s2s3 . . . of states. We say that a
state sn is reachable from the initial state s1 if there exists a
finite path ρ = s0 . . .sn.

The specification is most commonly formulated either
with Computation Tree Logic (CTL) [30] or Linear Tempo-
ral Logic (LTL) [124]. Both share the same set of temporal
operators, namely X (next), F (finally, also: eventually), G
(globally), and U (until). In case of CTL, each occurrence
of a temporal operator must be preceded by a path quanti-
fier, either A (on all paths) or E (on some paths), whereas
LTL formulas are implicitly universally quantified. The for-
mulas AXϕ , AFϕ , AGϕ , and AϕUψ are satisfied if, along all
paths that start in the current state, ϕ holds in the next state,
in some future state (including the current state), in all fu-
ture states (including the current state), and in all states until
ψ holds eventually. It follows that a CTL formula may ex-
plore multiple branches due to the requirement that every
temporal operator is path-quantified, while an LTL formula
is evaluated w.r.t. to linear paths.

Temporal formulas describe properties that the system
should satisfy and can be categorized into safety, and live-
ness properties.1 Safety properties are typically specified by
AGϕ and describe invariants of the system [96] that hold in
every state on all paths. They assert that “nothing bad” ever
happens. Liveness properties test if “something good” hap-
pens eventually or repeatedly and are either of the form Fϕ

or GFϕ [13]. Moreover, reachability properties are used to
test if there exists a path to a state that eventually satisfies
some condition ϕ . They are of the form EFϕ [13].

To algorithmically verify a system with a model checker
the user supplies both a representation of the system and
its specification as input. In its simplest form, the model
checker first builds the state space of the system and then
evaluates the specification. If the specification is violated,
the model checker returns a counterexample trace that de-
scribes paths to states that falsify the specification. Other-
wise, it informs the user that the specification holds.

Model checking is applicable only to finite state repre-
sentations of systems. The state space may, however, be-
come exorbitantly large, because it grows exponentially with

1 Note that there exist two classification schemes, namely the safety-
liveness [1] and the safety-progress classification [29].

Verification
Technique

Verification
Representation

Specification
Language

Verification
Goal

Domain
Representation

Fig. 1 Overview of classification criteria.

every additional system variable. This phenomenon is called
the state explosion problem. Reducing the number of states
and improving the efficiency of the state space’s traversal
has been the subject of active research for the past 30 years
and still is. This line of research has brought forth several
techniques that pushed the number of feasibly analyzable
states from 105 to 1020 and beyond. McMillan [99] pro-
posed the first symbolic model checking technique in an ef-
fort to reduce the space required to store an explicit enu-
meration of all states, and represented states and transitions
with Boolean formulas, which he encoded into Binary De-
cision Diagrams (BDD) [26]. As alternative symbolic ap-
proach without BDDs, Biere et al. [17] presented bounded
model checking (BMC), which turned out to be very suc-
cessful for many industrial applications. BMC analyzes ex-
ecution paths of bounded length, thus, offering an efficient
technique that is sound, yet not necessarily complete. In a
different line of research, the framework of abstract inter-
pretation [36] is employed to represent a set of concrete
states by a single abstract state. This overapproximation is
conservative, i.e., if a property holds in the abstract sys-
tem, it holds in the concrete system, too. If, however, the
property fails in the abstract system, the returned counterex-
ample trace need not describe a realizable trace in the con-
crete system. This is due to the overapproximation of the
abstract system that may permit execution paths that do not
exist in the concrete system. If this is the case, the coun-
terexample that is not realizable in the concrete system is
identified as being spurious. To eliminate a spurious coun-
terexample it is necessary to refine the abstraction. This re-
finement procedure may be guided by the returned coun-
terexample and thus performed automatically. This proce-
dure is now known as counterexample-guided abstraction
refinement (CEGAR) [31]. Details on model checking can
be found in [32].



6 Sebastian Gabmeyer et al.

3 A Feature-Based Classification of Verification
Approaches

We propose a feature-based view to make different verifi-
cation approaches comparable. We classify verification ap-
proaches by (a) the pursued verification goal, which cap-
tures the objective of the verification, (b) the domain rep-
resentation, which defines the expected input format of the
verification approach, (c) the verification representation that
the underlying verification engine uses to perform the actual
verification, (d) the specification language used to describe
the correctness properties that the system should satisfy and
(e) the verification technique that is applied to achieve the
verification goal (cf. Fig. 1). Some aspects of the classifica-
tion that we use have been captured by previously published
surveys, all of which focus either on the verification of UML
multi-view consistency (e.g., [81,11]) on the verification of
model transformations. For example, Amrani et al. [3] pro-
pose a tri-dimensional categorization for model transforma-
tion verification approaches. They categorize approaches ac-
cording to (a) the type of the model transformations that can
be verified, (b) the properties of the transformations that can
be analyzed including termination as well as syntactic and
semantic relations, and (c) the employed verification tech-
nique. Recently, they presented a generalization of their cat-
egorization and introduced a catalog of intents that allows to
classify model transformations according to their intended
applications, which includes, but is not limited to, verifi-
cation [2]. Calegari and Szasz [28] re-use Amrani et al.’s
tri-dimensional categorization and suggest further subcate-
gories for each dimension. Rahim and Whittle [129] classify
formal and informal approaches based on the technique em-
ployed to assert the correctness of model transformations.
In contrast, we consider model transformations as one of
many possibilities to specify the behavior of a system and,
focus on formal verification approaches that assert whether
a set of model transformations operates as specified. Further
González and Cabot reviewed formal verification techniques
for static software models [59]. In this work, they identify a
list of eight questions to characterize verification systems.
There are generic questions overalpping with some of our
criteria, but also questions specific to static modeling which
are also covered by some features of our feature model.

3.1 Verification Goal

The verification goal describes the purpose or the intent of
the verification. We distinguish between three types of goals:
consistency, translation correctness as well as behavioral
correctness. In the following, we explain and compare the
different verification goals. We provide an example scenario
for each goal, describing the verification goal in the context
of a possible development process. Note that we postpone

an in-depth discussion of the differences between the trans-
lation correctness and behavioral correctness goals until the
end of this subsection after both have been introduced.

Consistency Approaches that verify the consistency of a set
of models, each of which describes a different part of the
same system, aim to ensure that their intersection, i.e., the
parts where the models overlap, does not contain contradict-
ing information. Consider for example a multi-view mod-
eling language like UML, where diagrams provide distinct
views of the system under development, developers need
tools to assert that the different diagrams are consistent.
Example Scenario: The developers define the behavior of
the system with a set of sequence diagrams. Next, they de-
fine the structure of the system and devise corresponding
state machines for each class. In such a setting, the system
is deemed consistent w.r.t. the sequence diagrams if the mes-
sage sequences described by each of the sequence diagrams
correspond to execution paths in the state machines.

Translation Correctness When performing model-to-model
or model-to-code transformations, then the correctness of
the translation becomes the subject of the verification. The
primary correctness criterion among the approaches in this
category deems a translation correct w.r.t. the source model,
if the target model preserves the semantics of the source
model. This requires that both the semantics of the source
model and the target model are formally defined. Moreover,
the transformations that perform the translation are required
to terminate.
Example Scenario: The development team generates a Petri
net from a UML activity diagram, which is then used to per-
form additional verification tasks. Before the analysis with
the Petri net can be performed they need to assert the cor-
rectness of the activity-diagram-to-Petri-net transformation
to ensure that all states that are reachable in the activity dia-
gram are also reachable in the Petri net.

Although the term “translation correctness” might sug-
gest that source and target model conform to different meta-
models, we also assign approaches to this category that as-
sert the correctness of endogenous transformations.
Example Scenario: When performing model refactorings al-
tering the structure of the system but not its behavior, de-
velopers assert the refinement correctness of the performed
changes to ensure, for example, that the target model be-
haves like the source model in every possible run of the sys-
tem.

Behavioral Correctness The behavior of a system is gov-
erned by a set of rules. In our classification and the ap-
proaches we analyze, these rules are either provided as a set
of model or graph transformations, or as a set of operation



A Feature-Based Classification of Formal Verification Techniques for Software Models 7

contracts. Each operation contract is associated with an op-
eration or function provided by the system. It describes the
necessary conditions to execute the operation and its effects.
Thus, an operation contract consists of a set of preconditions
that define in which state of the system the operation can be
executed and a set of postconditions that define the state of
the system after the operation has terminated. Similarly, a
transformation defines application conditions, which control
when the transformation can be applied to the source model,
and a set of instructions that define the structure of the target
model after it has been executed. Hence, under the assump-
tion that a contract’s conditions are formulated in first-order
logic and a transformation rewrites graph-based structures,
transformations and operation contracts are equally expres-
sive and interchangeable. The sequence of states, called a
trace, resulting from the execution or application of an op-
eration or transformation yield the behavior of the system.
Hence, a specification describes the necessary and forbid-
den traces of a system, often by means of a temporal logic
formula. The algorithmic procedure performing the verifi-
cation compares the system’s behavioral description, i.e., all
possible traces resulting from its executios by means of ap-
plying the operation contracts or the transformations, with
the specification. Note that traces may be infinite, i.e., some
operation contracts or transformations may be applied in-
finitely often.
Example Scenario: The development team designs a new se-
curity protocol and models the behavior of the two commu-
nicating agents and the behavior of the attacker with graph
transformations. They want to ensures that no attacker can
hijack a secured channel and formulate the specification ac-
cordingly as an LTL formula. The number of interactions
between the agents and the attacker is finite, however, large.
Thus, they use a model checker to assert that the transition
system, which captures the interaction of the agents and the
attacker, satisfies the protocol’s specification.

Discussion In order to clarify the classification we high-
light the discriminating features between translation and be-
havioral correctness in the following. Approaches that tar-
get the behavioral correctness always analyze endogenous
transformations that may not terminate. Translation correct-
ness approaches analyze both exogenous and endogenous
transformations, but require that these transformations ter-
minate. Obviously, a translation of a source to a target model
requires a result and thus a definite end; otherwise, there
would be an error in the translation, i.e., a source model, on
which the translation diverges. A system, whose behavioral
correctness we want to verify, may, in contrast, continue
to expose its behavior indefinitely; and hence, some of the
transformations that describe the system’s behavior may be
applicable over and over again. Further, we observe differ-
ences in the way specifications are phrased. Translation cor-

rectness aims to assert that the semantics of the source model
are preserved by the target model, that is, the properties that
hold in the source model should still hold in the target model
after the execution of the transformation. On the contrary,
the specifications for behavioral correctness express system
properties over traces, i.e., sequences of states, and often use
temporal logics to formally describe these properties.

3.2 Domain Representation

The input or domain representation defines type and format
of the source model(s) that the verification approach is able
to analyze. We distinguish between graph-based represen-
tations and representations that use notations and visualiza-
tions defined in an OMG standard. Simple graphs can be
enhanced with different constructs to raise their expressiv-
ity. They can be labeled [61], typed, or attributed and may
support inheritance relations or compositions (also called
part-of relationships) [19]. Approaches that use the notation
of an OMG standard may use elements or combinations of
UML [120], MOF [118], QVT [117], or OCL [116].

3.3 Verification Representation

The verification representation classifies the approaches ac-
cording to the formal representation that is used to perform
the verification. Here, we distinguish between logical, state-
transition, and graph-based representations. As most ap-
proaches do not implement their own verification back-end,
this representation correlates with the input language of the
underlying verification tool. For example, approaches that
employ MAUDE [35] represent use algebraic data types such
that MAUDE’s search and model checking capabilities may
be used to verify the system. Approaches based on the AL-
LOY analyzer [70] or Kodkod [156] convert models as well
as transformations into relational predicates.

Logical verification representations can be partitioned
into approaches using higher-order logic (HOL) [92], first-
order logic [148], dynamic logic [62], rewriting logic [102],
relational logic [69], or temporal logics (e.g. [30,124,87]).
Likewise, different kinds of state-transition systems are in
use. Therefore, the classification can be further refined w.r.t.
to their use of linear transition systems (LTS), graph tran-
sition systems (GTS), or abstract state machines (ASM).
The approaches that use a graph-based representation typi-
cally introduce a combination of extensions, e.g., types, at-
tributes, and inheritance relations, to increase the precision
of the verification.



8 Sebastian Gabmeyer et al.

3.4 Specification Language

Different specification languages for expressing the proper-
ties to be checked are in use with varying degrees of expres-
sivity. We distinguish between logical, bisimulation-based,
and graph-based specifications. In addition, we list OCL
explicitly due to its relevance as a specification language in
MBE. The subcategory of logical specification languages is
further divided into approaches that specify system proper-
ties with higher-order logic, first-order logic, dynamic logic,
rewriting logic, relational logic, or temporal logics (CTL,
LTL, µ-calculus). A bisimulation is an equivalence relation
that asserts whether two automata can simulate each oth-
ers moves on the same input. Basically, two automata are
declared bisimilar if there exists a bisimulation relation R,
where a pair (a,b) of states from automaton A and B is in
R if automaton B can replicate every move a→ a′ by au-
tomaton A, for some state a′, and automaton A can repli-
cate every move b→ b′ by automaton B, for some state b′,
and the pair (a′,b′) is again in R [104]. In general, this re-
lation is stronger than language equivalence, i.e., whether
two automata accept the same language [104]. Graph-based
specification languages define system properties by means
of graph constraints, which are, essentially, graph transfor-
mations whose LHS and RHS are identical; thus, they do
not alter the system. If a graph constraint is applicable, the
system is declared to be correct w.r.t. to the constraint.

3.5 Verification Technique

Finally, we categorize approaches according to the verifi-
cation technique they employ and assign them either to the
category of theorem proving-based techniques or to the cate-
gory of model checking-based techniques. Once assigned to
either of the two verification techniques the capabilities and
limitations of the different approaches become comparable
with regard to the logical models and properties they can
verify. In particular, theorem proving-based approaches can
verify systems with infinitely many different states, but they
usually require manual guidance by an expert user. Model
checking-based approaches, on the contrary, are fully auto-
matic, but can only verify finite state system descriptions.
There exist, however, automatic theorem provers that either
check the satisfiability of logical propositions modulo de-
cidable first-order theories or the satisfiability of classical
first-order logic, in which case the search of a proof may not
terminate. Hence, we classify theorem proving-based ap-
proaches into automatic and manual/interactive approaches.

We refine the classification of model checking-based ap-
proaches by their state space representation and by the type
of properties that can be verified. If the state space is ex-
plored enumeratively, every possible combination of differ-
ent valuations for the state-defining properties is analyzed.

Contrary, symbolic state space representations use (propo-
sitional) logic to represent states and transitions. Likewise,
abstract state space representations use the theory of ab-
stract interpretation [36] to conservatively over-approximate
the set of possible system states. Concerning the supported
types of properties, we record for a model checking-based
approach whether it supports the verification of reachabil-
ity, safety, or liveness properties.

4 The Feature Model

The classification described above is reflected in the feature
model [77] depicted in the left half of Table 1. In the follow-
ing presentation we use a tabular representation for our fea-
ture model, that compactly mirrors the commonly used tree-
based representation (cf. [37]). The root feature, named Soft-
ware Model Verification Approach, is decomposed into five
main features named verification goal, domain representa-
tion, verification representation, specification language, and
verification technique. These main features are further re-
fined according to our classification described in the previ-
ous section. Note that all features in the table are mandatory.
Names written in italic denote abstract features that are fur-
ther refined by either and, or, or xor decompositions. An and
(or, xor) decomposition mandates that each (at least one,
exactly one) of the child features is present, used, or imple-
mented in the verification approach in order to be classified
successfully. For example, the Verification Goal feature is
or-decomposed into the Consistency, the Translation Cor-
rectness, and the Behavioral Correctness feature. The latter
is in turn xor-decomposed into the Behavior by Transfor-
mation and the Behavior by Operation features. Hence, an
approach that asserts the behavioral correctness encodes the
behavior into transformations or operation contracts. More-
over, we introduce multi-valued features to increase read-
ability of the feature model. A multi-valued feature is equiv-
alent to an abstract feature containing a child feature for each
of its possible values. Thus, a multi-valued feature is always
abstract and written in italic. For example, the multi-valued
feature Transition System listed under the main feature Ver-
ification Representation has three different values: Linear
Transition System (LTS), Graph Transition System (GTS),
and Abstract State Machine (ASM). Each of the possible
values of a multi-valued feature is listed in the legend.

The right side of Table 1 shows the classification pre-
sented in Section 5. This part of the table is read as follows.
A check-mark in the table indicates that the feature is sup-
ported and, in case of multi-valued features, the actual val-
ues are displayed in parentheses. Approaches providing an
implementation are underlined.

We purposefully deviated from the restriction governing
the xor-decomposition in the case of GROOVE [78], which
supports both an enumerative traversal and, since recently,



A Feature-Based Classification of Formal Verification Techniques for Software Models 9

an abstraction-based traversal of the state space. Further, due
to the many similarities among the model checking-based
approaches for UML, we decided to only list a representa-
tive assignment of features in the last column of Table 1 for
all model checking-based verification approaches that verify
the consistency and behavioral correctness of UML models.
In Section 5.4 we provide a more fine-grained comparison of
these approaches, which are then summarized in Table 2.

5 Verification Approaches

This section surveys the different verification approaches
listed in Table 1 and Table 2. It is structured as follows. In
Table 1, we group the approaches by the verification tech-
nique they employ, that is, either theorem proving or model
checking. As the majority of the reviewed approaches uses
model checking we subdivide them into (a) rewriting based
approaches; (b) approaches that verify OCL specifications;
and (c) approaches that assert the consistency and behav-
ioral correctness of different UML models. Table 2 shows
model-checking approaches for UML models. Note that we
simplified the theoretical presentation in some cases for the
sake of readability, comprehension, and space.

5.1 Theorem Proving

In the following, we review the diverse field of theorem
proving-based approaches. It is characterized by the use of
rich and highly expressive specification languages. Since all
of the approaches propose either a manual or an interactive
proving process, their main area of application is that of se-
curity critical systems, for which the significant increase in
time, effort, and expertise required to perform the verifica-
tion is justified.

5.1.1 Model Transformations from Proofs

Poernomo and Terrell [125] synthesize transformations from
their specification and thus ensure the translation correctness
of the transformations. The synthesis is performed in the in-
teractive theorem prover COQ [41]. The approach derives a
correct-by-construction transformation from a proof of the
transformation’s specification using the Curry-Howard iso-
morphism. OCL-constrained (meta)models that are based
on MOF are encoded into co-inductive types in COQ, which
allows them to model bidirectional associations. The spec-
ifications are formulated as OCL constraints and are en-
coded in COQ into ∀∃ formulas, i.e., ∀x ∈ A. Pre(x)→∃y ∈
B. Post(x,y). This specification schema demands that for
all source models x, which conform to metamodel A and
satisfy the pre-condition Pre(x), there exists a target model
y conforming to metamodel B such that the postcondition

Post(x,y) holds. According to the Curry-Howard isomor-
phism, a transformation can be extracted from a proof of
this specification that converts a source model x satisfying
Pre(x) into a target model y such that Post(x,y) holds. The
Curry-Howard isomorphism establishes a mapping between
logic and programming languages, where propositions cor-
respond to types and their proofs correspond to programs. It
essentially states that a function f can be extracted from a
proof of a proposition A→ B such that f applied to an el-
ement of type A returns an element of type B [149]. Then,
the extracted function f corresponds to the transformation
that satisfies the specification. Further, Poernomo and Ter-
rell propose to partition the transformation specification into
a series of subspecifications, which allows the users to ex-
press more complex transformations and to reason modu-
larly over the subspecifications.

5.1.2 Correctness of Graph Programs

Poskitt and Plump [127,128] present a Hoare calculus for
graph transformations, which are specified with graph pro-
grams [97]. The calculus consists of a set of axioms and
proof rules to assert the partial [127] and the total correct-
ness [128] of graph programs. Graph programs operate on
untyped, labeled graphs. Labels can be attached to nodes
and edges, and may represent identifiers and attributes. Mul-
tiple attributes can be assigned to a node as an underscore-
separated list of values. For example, the string “TheSimp-
sons MattGroening” identifies the node of a movie database
that represents Matt Groening’s sitcom “The Simpsons.”

A graph program consists of a set of conditional rule
schemata and a sequence of commands that controls the ex-
ecution order of the rule schemata. In this context, a con-
ditional rule schema, in the following just rule, refers to a
parametrized function, whose instruction block consists of
a labeled left-hand and a labeled right-hand side graph. A
label is an integer or a string expression over the function’s
parameters and can be attached to a node or an edge. An
instruction block can contain an optional where-clause that
restricts the applicability of the rule. The rewriting is per-
formed according to the double pushout approach with re-
labeling [61]. The sequence of commands that controls the
execution of a graph program is a semicolon-separated list
of rules that are as long as necessary.

Poskitt and Plump represent (software) systems by la-
beled graphs and transformations with graph programs. So
they can verify both the translation correctness and the be-
havioral correctness. In the latter case, the graph program
describes the behavior of the system; in the former, it de-
scribes the transformation that needs to be verified. Then the
specification of a graph program is formulated as a Hoare-
triple {c}P{d} that consists of a precondition c, a postcon-
dition d, and the graph program P. Pre- and postconditions



10 Sebastian Gabmeyer et al.
Table

1
T

he
Softw

are
M

odelVerification
A

pproach
feature

m
odel.

Poernomo, Terrell [125]

Poskitt, Plump [127]

Stenzel et al. [152]

Hülsbusch et al. [67]

Ehrig, Ermel [45]

Giese, Lambers [54]

Kyas et al. [89]

Strecker [153]a

Schmidt, Varró [139]

Baresi et al. [9]

Baresi, Spoletini [10]

Kastenberg, Rensink [78]b

Arendt et al. [5]c

Narayanan, Karsai [109]

König, Kozioura [84]d

Boronat et al. [23]e

Gagnon et al. [52]

Troya, Vallecillo [157]

Büttner et al. [27]

Mullins, Oarga [106]

Al-Lail et al. [90]

Bill et al. [20] f

UML Model Checking
(see Table 2)

Legend:
Behavior: A. . . ATL, G. . . Graph Transformation, O. . . OCL, Q. . . QVT, S. . . State Machine
Logic: C. . . CTL, D. . . DYL, F. . . FOL, H. . . HOL, L. . . LTL, R. . . REL, W. . . RWL, µ . . . µ-calculus
Trans. Systems: A . . . ASM, G . . . GTS, L . . . LTS

a ISABELLE/HOL source files available from
http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.tgz

b Available from http://groove.sourceforge.com
c Available from https://www.eclipse.org/henshin/downloads.php
d Available from http://www.ti.inf.uni-due.de/research/tools/augur2/
e Available from ftp://moment.dsic.upv.es/releases/20070727/
f Web interface available at http://www.modelevolution.org/prototypes/mococl

Software Model Verification Approach

Verification
G

oal

(or)

C
onsistency

X
Translation

C
orrectness

(xor)
Source-TargetA

nalysis
X

X
X

X
Transform

ation
A

nalysis
X

X
X

X
X

B
ehavioralC

orrectness

(or)
B

ehaviorby
transform

ation
(G

)
(G

)
(G

)
(G

)
(G

)
(G

)
(G

)
(G

)
(Q

)
(A

)
(G

)

B
ehaviorby

operation
(S)

(S)
(O

)
(O

)
X

D
om

ain
R

epresentation

(xor)

G
raphs

X
X

X
X

X
X

X
X

X
X

X
X

O
M

G
Standards

(or)

U
M

L
X

X
X

X
X

X
M

O
F

X
X

X
X

X
O

C
L

X
X

X
X

X
Q

V
T

X
Verification

R
epresentation

(xor)
Logic

(H
)

(D
)

(H
)

(H
)

(W
)

(W
)

(W
)

(R
)

(R
)

Transition
System

(L
)

(L
)

(G
)

(G
)

(A
)

(G
)

(L
)

G
raphs

X
X

X
X

X
X

Specification
Language

(or)

Logic
(H

)
(F)

(D
)

(H
)

(R
)

(C
)

(µ
)

(L
,W

)
(L

)
(W

)
(C

)
(L

)
(C

)
(C

,L
)

B
isim

ulation
R

elation
X

X
X

X
G

raphs
X

X
X

X
X

O
C

L
X

X
X

X
X

Verification
Technique

(xor)

Theorem
P

roving

(xor)
A

utom
atic

M
anual/Interactive

X
X

X
X

X
X

X
X

M
odelC

hecking

(and)

State
space

representation

(or)
enum

erative
X

X
X

X
X

X
X

X
X

X
X

X
X

X
sym

bolic/abstract
X

X
P

roperty
type

(or)
R

eachability
X

X
X

X
X

X
X

X
X

X
X

X
Safety

X
X

X
X

X
X

X
X

X
X

X
X

X
X

L
iveness

X
X

X
X

X
X

X



A Feature-Based Classification of Formal Verification Techniques for Software Models 11

are defined by so-called E-conditions, which are either true
or have the form e = ∃(G |γ,e′). An E-condition consists of
a premise G |γ , where G is a graph and γ is an assignment
constraint that restricts the values assignable to labels in G,
and a conclusion e′, which is again a (nested) E-condition.
Intuitively, a graph H satisfies an E-condition e = ∃(G |γ,e′)
if G, whose variables are assigned to values that satisfy the
assignment constraint γ , is a subgraph of H and the nested
E-condition e′ holds.

A graph program P is partially correct if postcondition
d holds in all graphs H that result from a terminating run of
P on any source graph G that satisfies precondition c. Sim-
ilarly, total correctness is achieved if P terminates on ev-
ery graph G that satisfies precondition c and postcondition d
holds in all resulting graphs H. The actual verification pro-
cess is performed manually and results in a proof tree, which
derives, i.e., proves, the specification {c}P{d} (cf. Hoare
logic [66]).

5.1.3 Verifying QVT Transformations

Stenzel et al. [152] verify properties of operational QVT
(QVTO) transformations by using the interactive theorem
prover KIV [80]. They implement a sequent calculus based
on dynamic logic [62] in KIV. A dynamic logic extends a
base logic, for example, propositional or first-order logic,
with a modality 〈.〉, called the diamond operator. A dynamic
logic formula 〈p〉ϕ is satisfied if ϕ holds in all successor
states of the current state after the execution of program p,
which is required to terminate. Note that ϕ is either again a
dynamic logic formula or a formula in the base logic. Pro-
grams p are of the form (ε)α , where α is a QVTO expres-
sion and ε = (in,out, trace) is the environment, which con-
sists of an input model in, an output model out, and a trace
model trace. Their calculus defines proof rules for a subset
of the commands offered by QVTO. The proof rules are of
the form Γ ` ∆ and consist of a set Γ of premises and a
set ∆ of conclusions. Premises and conclusions are dynamic
logic formulas of the form 〈(ε)α〉ϕ . The specification can
now be expressed, analogous to a Hoare-triple {ϕ}α {ψ},
with a sequent ϕ ` 〈α〉ψ , where α is the QVTO expres-
sion that triggers the execution of the transformation pro-
vided that ϕ is satisfied. For example, we can express that
a transformation CDtoER, which converts a UML class di-
agram (CD) into an entity relation (ER) diagram, produces
for every class a table carrying the name of the correspond-
ing class with a dynamic logic formula.

The authors use their calculus in a framework to prove
semantic properties of a code generator that produces an
intermediate model, called the Java Abstract Syntax Tree
(JAST) model, from a set of Ecore models. The JAST model
is mapped to a formal Java semantics defined in KIV. The
JAST model acts as the source model for the model-to-text

transformation that generates the actual Java code. They set
up a transformation chain that translates several Ecore mod-
els into a JAST model and the JAST model to Java code.
The authors verify the type correctness of the Ecore-to-JAST
transformation and check that the transformation satisfies a
set of user-defined, semantic properties.

5.1.4 Behavior Preserving Transformations

Hülsbusch et al. [67] present two manual strategies to prove
that a model transformation between a source and a tar-
get model preserves the behavior. One strategy is based on
triple graph grammars (TGG) [140] and the other on in-
situ graph transformations and borrowed contexts [46]. The
source and the target models of the transformation are rep-
resented as graphs, which may be typed over different type
graphs, and the operational semantics of the source and the
target graphs are defined with graph transformations. They
declare a model transformation, either a TGG transforma-
tion or an in-situ graph transformation, behavior preserv-
ing if there exists a weak bisimulation2 between the source
and the resulting target graph with respect to their opera-
tional behavior. In case of TGG, the bisimulation can be de-
rived from the correspondence graph that relates the source
and the target graph and vice versa. The second proof tech-
nique uses in-situ transformations that perform the rewrit-
ing directly in the source model (in-place) thereby mixing
source and target model elements. The bisimulation relation
is established via borrowed contexts [64,68]. A third tech-
nique to assert that a model transformation preserves the
behavior is presented by Ehrig and Ermel [45]. Similar to
Hülsbusch et al. they define the operational behavior with
graph transformations, called the simulation rules, and an-
other set of graph transformations that convert the source to
the target model. They then apply the latter to the simulation
rules, that is, they rewrite the simulation rules, and check if
the transformed simulation rules of the source model match
the simulation rules of the target model.

Giese and Lambers [54] sketch a technique to prove au-
tomatically that a TGG-based model transformation is be-
havior preserving. They show that the problem of assert-
ing bisimilarity between the graph transition systems for the
source and target model can be reduced to checking if a
constraint over the graph transition systems, the bisimilar-
ity constraint, is inductive.3

2 Weak bisimulation allows internal steps for which no correspond-
ing step in the opposite system may exist.

3 In general, a constraint or assertion c over a transition system with
initial state ι and transition relation T is said to be inductive if ι ⇒ c
(base case) and c∧T ⇒ c′ (induction step) holds where c′ denotes the
constraint in the next state.



12 Sebastian Gabmeyer et al.

5.1.5 Verification of OCL Specifications

Kyas et al. [89] present a prototype that verifies OCL invari-
ants over simplified UML class diagrams, whose behavior is
described by state machines. They assert the behavioral cor-
rectness of a system and translate its class diagrams, state
machines, and OCL specifications into the input format of
the interactive theorem prover PVS [122]. Similar to other
theorem proving-based approaches, they are able to prove
OCL properties of infinite state systems; for example, they
demonstrate how to verify a system that grows indefinitely,
i.e., has an unbounded number of objects.

5.1.6 Verification with Isabelle/HOL

Strecker [153] formalizes the theory of graph transforma-
tions in higher-order logic for proving behavioral proper-
ties of systems interactively with the Isabelle/HOL theorem
prover [112]. With this formalization it is possible to rea-
son about the effect of a transformation and to derive asser-
tions on the shape of the graph that results from the applica-
tion of a transformation. Thus, the reasoning is not limited
to the behavioral correctness properties, but also admits the
verification of translation correctness. Software models are
encoded into untyped or typed graphs, where nodes are in-
dexed by and mapped to natural numbers and edges are rep-
resented as a binary relation over natural numbers. A typing
function assigns types to nodes and the type correctness of
a graph is enforced by a well-formedness constraint. Note
that attributes and inheritance hierarchies are not supported
natively. Hence, a graph consists of a set of natural num-
bers to represent the graph’s nodes, a binary relation over
the natural numbers to represent edges, and a typing func-
tion to assign types to nodes. The LHS and the RHS of a
transformation are encoded separately into an application
condition and an action, respectively. An application condi-
tion is specified as a path formula that describes the structure
of the graph required to apply the transformation. The action
then describes the effects of the transformation by adding or
removing indices to or from the set of nodes and updating
the edge relation accordingly.

The formalization provides a Hoare-style calculus that
verifies the partial correctness of a higher-order logic spec-
ification. Furthermore, Strecker [154] proposes two reduc-
tion techniques4 to simplify the interactive proving proce-
dure for reachability properties. The first technique decom-
poses a graph into smaller subgraphs such that properties
proven for a subgraph hold in the original graph. The sec-
ond technique aims to restrict the reasoning to the shape of
the graph transformation itself and is applicable only if the

4 The source files for ISABELLE/HOL are available from
http://www.irit.fr/~Martin.Strecker/Publications/

proofs_graph_transformations.tgz

matching morphism is assumed to be injective and the ap-
plication condition is a conjunction of relations over edges.

5.2 Model Checking of Rewriting-Based Systems

When software systems are modeled with graphs and their
behavior is described by graph transformations, temporal
properties can be verified with model checking-based tech-
niques. Here, states are represented by graphs and state tran-
sitions correspond to the application of a graph transforma-
tions to a source state, which results in (or leads to) a tar-
get state [63]. More formally, given a graph grammar G =

(R, ι) with a set of graph transformations R and an ini-
tial graph ι , a graph transition system (GTS) is constructed
by recursively applying the graph transformations to the ini-
tial graph and all resulting graphs. The graphs generated by
the graph grammar constitute the states of the GTS and the
transitions between two states G and G′ correspond to the
application of a graph transformation p : G→ G′.

The same technique is also employed by term rewriting-
based approaches and tools, e.g., MOMENT2 [23], where
states are represented by terms and transitions correspond
to (term) rewrite rules that are applicable to these terms.

5.2.1 Model Checking of Graph Transition Systems

One of the first model checkers for graph transition systems
was CHECKVML [139,158]. It targets the behavioral ver-
ification of systems defined by UML-like class diagrams.
CHECKVML receives a metamodel that describes the struc-
ture of the system, a set of graph transformations that de-
fine the system’s behavior, and a model instance that de-
scribes the system’s initial state to produce a graph tran-
sition system. Internally, the metamodel is represented as
an attributed type graph with inheritance relations and the
initial model is an instance graph conforming to the type
graph derived from the metamodel. CHECKVML uses the
model checker SPIN as its verification back-end. It thus en-
codes the GTS into PROMELA code, the input language of
SPIN. For each class the encoding uses a one-dimensional
Boolean array, whose index corresponds to the objects’ IDs,
and the value stored for each object indicates whether the
object is active or not. Since arrays are of fixed size CHECK-
VML requires from the user an a priori upper bound on
the number of objects for each class. Further, for each asso-
ciation CHECKVML allocates a two-dimensional Boolean
array that stores whether there exists a link between two
objects. To construct a finite encoding of the system the
domain of each attribute is required to be finite such that
it can be represented by an enumeration of possible val-
ues in PROMELA. Further, since SPIN has no knowledge
of graph transformations all possible applications for each
transformation are pre-computed and transitions are added



A Feature-Based Classification of Formal Verification Techniques for Software Models 13

to the PROMELA model accordingly. To reduce the size of
the state space CHECKVML tries to identify static model
elements that are not changed by any transformation and
omits them from the encoding. The state space, however,
still grows fast as symmetry reductions for the encoding are
possible only to a very limited extent in SPIN. For exam-
ple, a direct comparison [131] with GROOVE [130] showed
that the encoding of the dining philosophers problem with
ten philosophers produces 328503 states but only 32903
are actually necessary. Interestingly, even though the state
space is an order of magnitude larger, the performance of the
verification does not degrade as anticipated. CHECKVML
with its SPIN back-end verifies the dining philosophers in-
stance 12x faster (16.6 seconds including pre-processing)
than GROOVE (199.5 seconds) [131].5 CHECKVML sup-
ports the specifications of safety and reachability properties
by means of property graphs that are automatically trans-
lated into LTL formulas for SPIN. Unfortunately, counter-
example traces from SPIN are not translated back automat-
ically.

A similar approach is proposed by Baresi et al. [9]. They
produce BIR (Bandera Intermediate Representation) code
for the model checker BOGOR [134]. They translate typed,
attributed graphs into sets of records. They, too, bound the
number of admissible objects per class. Associations are en-
coded into arrays of predefined, fixed size. This approach
supports class inheritance, i.e., in a preprocessing step all in-
heritance hierarchies are flattened such that attributes of the
supertypes are propagated to the most concrete type. Like
CHECKVML, containment relations are not supported na-
tively. In addition, they distinguish between static and dy-
namic references and keep track of the set of currently ac-
tive objects. For each transformation two distinct BIR frag-
ments are generated. Its LHS is encoded into a matching
fragment, while the RHS is encoded into a thread that exe-
cutes the effects of the transformation once a match has been
detected. Since BOGOR is not aware of graph transformation
theory either and does not provide constructs to match graph
structures, the matching fragment queries attribute values
and existence of links from every possible combination of
active objects that could be matched. The user can spec-
ify safety properties that should hold in the system, just like
in CHECKVML, with property graphs. These are converted
into LTL formulas and encoded into BIR.

5 With version 4.5.2 of GROOVE (build: 20120606174037) the ver-
ification requires 13413.8ms on an Intel Core i5 2.67Ghz with 8GB of
RAM running Gentoo Linux with OpenJDK 1.6. Taking into consid-
eration that GROOVE was in its infancy when the comparison was per-
formed in 2004, this improved result reflects the development efforts
of past years. In contrast, SPIN, the verification back-end of CHECK-
VML, has been under active development since the 1980s [12]. How-
ever, we cannot provide up-to-date runtimes for CHECKVML as it is
currently not available to the public.

Previously to the above described approach, Baresi and
Spoletini [10] presented an encoding that allows the analysis
graph transformations specified in AGG [136] with the AL-
LOY analyzer [70]. The authors model a (software) system
by means of a type graph, which captures the static com-
ponents of the system, and a set of graph transformations
that specify the system’s behavior. Instance graphs that con-
form to the type graph represent the possible states of the
system. The execution of a system is modeled with finite
paths, which are sequences of instance graphs. The encoding
creates ALLOY signatures for the type graph and predicates
for the graph transformations. Each predicate represents the
effect of a transformation, i.e., the addition, removal, and
preservation of vertices and edges, with relational logic for-
mulas. The resulting transformation predicates are used to
define the possible state transitions of the system and re-
strict the execution paths to valid system behavior, i.e., a
transition between two instance graphs is only possible if
the effect of the transition satisfies a transformation pred-
icate. ALLOY supports reachability and safety analysis of
system properties, which are specified as first-order formu-
las. The authors use this feature to show that either (a) a
certain state is reachable or (b) a counter-example exists that
violates a safety property.

Kastenberg and Rensink [78] propose GROOVE,6 which
realizes an enumerative state model checking approach to
verify the behavioral correctness of object-oriented (OO)
systems. The static structure of an OO-system is described
by an attributed type graph with inheritance relations, while
the system’s behavior is, again, defined through graph trans-
formations. States are represented by (instance) graphs con-
forming to the type graph. The GROOVE Simulator [130]
generates the state space on the basis of a graph grammar
G = (R, ι), which consists of an initial graph ι and a set
R of graph productions. Between two states s and s′ there
exists a transition if a graph transformation can be applied
to the graph of s such that the result is isomorphic to the
graph of s′. The resulting state-transition structure is a graph
transition system (GTS) and converted into a Kripke struc-
ture, where states and transitions of the GTS correspond di-
rectly to those of the Kripke structure. The Kripke struc-
ture’s labeling function assigns to each state the names of
the applicable graph productions. In GROOVE, similar to
CHECKVML’s property graphs, system properties are de-
fined with graph constraints, i.e., named graph productions,
whose LHS and RHS are equivalent. The names of these
graph constraints define the alphabet of the propositions that
can be used in the specification of the system. GROOVE can
be used to verify CTL and LTL formulas that express ei-
ther reachability, safety, or liveness properties. To reduce the
size of the state space GROOVE checks if a graph is isomor-
phic to any existing graph before adding it to the state space.

6 Available from http://groove.sourceforge.com



14 Sebastian Gabmeyer et al.

The isomorphism check is, however, computationally costly
and, thus, Rensink and Zambon investigated alternative state
space reduction methods that use neighborhood [132] and
pattern-based abstraction techniques [133], of which the for-
mer has been implemented in GROOVE. Neighborhood ab-
straction partitions a graph into several equivalence classes.
Two nodes are put into the same equivalence class if (a) they
have equivalent incoming and outgoing edges, and (b) the
target nodes of these edges are comparable [132]. For each
equivalence class, neighborhood abstraction records the pre-
cise number of folded nodes up to some bound k and beyond
that simply ω for many. Pattern-based abstractions capture
the properties of interest in layered pattern graphs, which
are, similar to neighborhood abstraction, folded into pattern
shapes. The abstraction of the system’s transformations is
then directed by these pattern shapes. The resulting pattern
shape transition system (PSTS) is an overapproximation of
the original GTS and the authors show that properties that
hold in the PSTS also hold in the GTS. However, an im-
plementation cannot be derived straightforwardly at the mo-
ment.

HENSHIN7 [5] is a model transformation tool for Ecore
models. Ecore models are represented as typed, attributed
graphs with inheritance and containment relations [19]. So,
HENSHIN is a graph-based tool that natively supports con-
tainment relations. HENSHIN also provides an enumerative
state space explorer for graph transition systems and an in-
terface to communicate with external model checkers. Cur-
rently, it supports the model checker CADP [53] out-of-
the-box, which is able to verify µ-calculus [87] specifica-
tions. Moreover, invariant properties specified with OCL
constraints can be checked over the entire state space.

In contrast to approaches that target the verification of
behavioral correctness, Narayanan and Karsai [109] use a
bisimulation-based approach to assert the translation cor-
rectness of a set of exogenous graph transformations that
transform a source model conforming to type graph A into a
target model conforming to type graph B. More specifically,
it is checked whether the graph transformations preserve
certain, user-imposed reachability properties of the source
model. The approach does not require the explicit definition
of the behavior of the source and target models. Instead it
verifies the transformations by establishing a structural cor-
respondence between source and target type graph, which
consists of a set of cross-links that trace source model ele-
ments to target model elements and a set of correspondence
rules that define conditions on the target model to enforce
the reachability properties across the transformation. Then,
the structural correspondence defines the bisimilarity rela-
tion between the source and the target model. The approach
assumes that the correspondence rules are developed (a) in-

7 Available from https://www.eclipse.org/henshin/

downloads.php

dependently from the transformation and (b) with fewer or
zero errors because they are less complex as compared to
the actual graph productions. Further, the cross-links need to
be established whenever a graph production generates trace-
able target model elements. The verification of the reacha-
bility properties is performed for each source instance that
is translated into a target instance. The verification engine
uses the source instance, the cross-links, and target instance
and checks if the correspondence rules are satisfied. If the
verification succeeds the target instance is certified correct.

5.2.2 Verification of Infinite State Graph Grammars

Besides the recent abstraction mechanisms introduced into
GROOVE, the approach by Baldan et al. [8] and by König
and Kozioura [83] extending the former are the only model
checking approaches that use abstraction techniques to ver-
ify infinite state spaces. Given a graph grammar G = (R, ι)

they construct a Petri graph. A Petri graph consists of a hy-
pergraph which is overlayed by a Petri net in such a way
that the places of the Petri net overlay the edges of the hy-
pergraph. A Petri graph is a finite, overapproximated unfold-
ing of G = (R, ι) that is constructed as follows. In the be-
ginning, it consists of the initial hypergraph ι and a Petri
net without transitions whose places overlay the edges of ι .
An unfolding step selects an applicable rule r from R, ex-
tends the current hypergraph by the rule’s RHS, creates a
Petri net transition labeled with r, whose in- and out-places
are the edges matched by the rule’s LHS and RHS, respec-
tively. That is, each transition of the Petri net is labeled with
a rule r ∈ R, and the in- and out-places of a transition are
the hypergraph’s edges matched by the LHS and the RHS
of rule r. A folding step is applied if, for a given rule, two
matches in the hypergraph exist such that their edges (i.e.,
places) are coverable in the Petri net and if the unfolding of
the sub-hypergraph identified by one of the matches depends
on the existence of the sub-hypergraph identified by the sec-
ond match. The folding step then merges the two matches.
The procedure stops if neither folding nor unfolding steps
can be applied. Baldan et al. [8] show that the unfolding
and folding steps are confluent and are guaranteed to termi-
nate returning a unique Petri graph for each graph grammar
G . Moreover, the Petri graph overapproximates the underly-
ing graph grammar conservatively, that is, every hypergraph
reachable from ι through applications of R is also reachable
in the resulting Petri graph.

Finally, an initial marking m0 for the Petri net is derived
from G = (R, ι) that assigns a token to every place with a
corresponding edge in ι . That is, a marking of the Petri net
assigns tokens to the edges of the hypergraph. Each marking
defines, in this manner, a distinct state of the system, which
is obtained by instantiating an edge for each token it con-
tains and gluing together the edges’ common nodes to build



A Feature-Based Classification of Formal Verification Techniques for Software Models 15

the resulting hypergraph. The firing of a transition then cor-
responds to the application of the rule r that labels the tran-
sition and triggers a state change, i.e., the marking resulting
from the firing defines the next system state. Hence, a (pos-
sible infinite) sequence of markings m0, . . . defines a trace of
the modeled system. Since the Petri graph overapproximates
the unfolding of G , there exist, however, traces that reach a
hypergraph unreachable in G . Such a trace is classified as
spurious. If such a spurious trace violates the specification,
there exists a spurious counterexample trace to an error that
is due to the overapproximation and not realizable in the
original system. Inspired by the work on counterexample-
guided abstraction refinement (CEGAR) [31], König and
Kozioura [83] present an abstraction refinement technique
for Petri graphs. They show that spurious counterexamples
result from the folding operation that merges nodes. Thus,
their technique identifies nodes that must not be merged in
order to prevent a spurious counterexample. Their CEGAR
techniques for hypergraphs is implemented in AUGUR 2.8

König and Kozioura extended their CEGAR-based ver-
ification approach to attributed graph grammars [85]. The
Petri graph then consists of an attributed or colored Petri net
and an overlaid, non-attributed hypergraph structure. The
overapproximated unfolding proceeds as above, but without
taking the attributes into account, which, intuitively, leads
to the coarsest possible abstraction. Only when the overap-
proximation has been constructed are the attribute values of
the initial graph ι assigned to the corresponding places of the
Petri graph. As the domains of the attribute values are usu-
ally infinite, abstract attribute values are computed [36]. A
spurious counterexample may now be either due to the struc-
tural overapproximation of the hypergraph or due to the at-
tribute abstraction. In the first case, the abstraction is refined
as described above; in the second case, the abstract domain
is refined semi-automatically with the help of the user or
according to a predefined scheme that runs a certain number
of iterations and aborts if the spurious counterexample is not
eliminated.

The technique admits the verification of specifications
formulated either over the (attributed) Petri net or the hyper-
graph structure of the overapproximated Petri graph. That
is, the user needs to decide whether the specification is ex-
pressed over the marking of the (attributed) Petri net or if it is
best captured by a graph morphism over the hypergraph [8].
In both cases, the specification is described with graphs, ei-
ther by means of a discrete graph that represents a mark-
ing of the Petri net, or by means of a graph morphism with
equivalent LHS and RHS graphs (cf. with property graphs
in CHECKVML and GROOVE). If the specification can be
verified over the Petri net, it is possible to verify reachabil-

8 Available from http://www.ti.inf.uni-due.de/

research/tools/augur2/

ity, boundedness, and liveness properties, while graph mor-
phisms can express reachability properties.

5.2.3 Verification of QVT and ATL Transformations

Boronat et al. use QVT-like model transformations to de-
scribe OCL-constrained, MOF-based metamodels and their
behavior. Algebraic semantics for (a) MOF [25], (b) model
conformance w.r.t. restricted OCL-constraints [24] as well
as (c) QVT-like model transformations [23] based on the
membership equational logic (MEL) [101] and the rewrit-
ing logic (RWL) [100] is presented. This formalization al-
lows them to express OCL-constrained Ecore models and
QVT-like model transformations as theories in MEL and
RWL, respectively. A MEL theory (Σ ,E) consists of a sig-
nature Σ and a set E of Σ -sentences. The signature defines a
set of function symbols and a set of kinds, where each kind
is associated with a set of (ordered) sorts. Given a set X of
variables, every variable in X and every function symbol ap-
plied to a variable or another function symbol defines a Σ -
term. If a term t is a member of just a kind but not of a sort
it represents an undefined or an error value. For example,
the constant term NaN (Not a Number) is member of kind
Number but neither member of sort Real nor Integer. A
division-by-zero error can thus be expressed, for example,
by returning the term NaN. Sentences in E are conditional
equations of the form ∀X. t = t ′ if

∧
i∈I pi =qi ∧

∧
j∈J w j : s j,

which consist of an atomic equation t = t ′ and a condition,
i.e., a conjunction of atomic equations pi = qi, with pi,qi
being Σ -terms and I an index set, and membership asser-
tions w j : s j that assign a term w j to some sort s j with J
being an index set. Note that all variables in t, t ′, pi,qi,w j
are in X . A rewriting logic theory (Σ ,E,R) consists of a
MEL theory and a set R of rewrite rules that are of the form
t → t ′ if C where condition C is a conjunction of atomic
rewrite rules, atomic equations, and membership assertions.
A RWL theory can be used to represent a concurrent sys-
tem, where the system’s states and transitions are defined by
a deterministic MEL theory9 and a set of rewrite rules, re-
spectively. Each term, rewritten to its unique normal form10

by the MEL’s equations (interpreted from left to right), de-
fines a state of the concurrent system. A rewrite rule in R
applied to a term defines a transition in the concurrent sys-
tem. An RWL theory can be executed as a system module in
MAUDE [35].11 The MOMENT2 tool12 automatizes the pro-
cess of translating Ecore models and corresponding model

9 A MEL theory is deterministic if its equations, interpreted from
left to right, are confluent and terminating such that every term can be
rewritten into a unique normal form.

10 For an introduction to term rewriting refer to [6] and [14].
11 For an RWL theory to be executable as a system module has to be

coherent [[35, p. 136]].
12 Available from ftp://moment.dsic.upv.es/releases/

20070727/



16 Sebastian Gabmeyer et al.

transformations into system modules such that MAUDE’s
reachability analysis and LTL model checker can be used
to verify the system’s specification [23]. MAUDE builds the
state space as a derivation tree for both analyses and pro-
ceeds as follows. Given an initial term that represents the
system’s initial state, MAUDE applies all rewriting rules in
R recursively to each resulting term, thus, building a deriva-
tion tree rooted in the initial term. In both cases, MAUDE

explores the state space of the system enumeratively. For
a reachability property, which is specified by a term that
should be shown reachable in the derivation tree, MAUDE

searches breadth-first trough the derivation tree starting from
the given initial term. The search stops if either (a) the term
is found; (b) the entire state space has been explored and
the term is not found; (c) the user-provided search-depth is
reached without encountering the term, or (d) MAUDE runs
out of memory while searching for the term. If the term that
MAUDE searches for in the derivation tree expresses an error
state, safety properties can be verified by asserting that such
a term is not reachable. LTL specifications are formulated
over a set of propositions that are defined as equations where
the right-hand side defines the name of the proposition and
the left-hand side defines the pattern or conditions required
for the proposition to hold. Then, if the proposition-defining
equation is interpreted as a rewrite rule and a state can be
rewritten in this manner, i.e., a state’s sub-term matches the
left-hand side of the proposition-defining equation and is
thus labeled with the name of the proposition, then the state
is said to satisfy the proposition. MOMENT2 does not sup-
port the specification of LTL formulas; they have to be writ-
ten and executed directly in MAUDE.

Gagnon et al. [52] have proposed a similar model check-
ing based approach based on MAUDE. They, too, target the
behavioral verification of systems but represent these sys-
tems and their behavior by means of UML class diagrams
as well as state and communication diagrams, respectively.
They describe how simplified class, state, and communica-
tion diagrams can be (manually) encoded into RWL theo-
ries and show how LTL specifications can be verified within
MAUDE.

Troya and Vallecillo [157] present for ATL transforma-
tions a formal semantics based on rewriting logic. They for-
malize ATL’s default and refining execution mode such that
both translation and behavioral correctness can be asserted.
Further, their formalization makes it possible to automati-
cally translate ATL into MAUDE system modules. In partic-
ular, they translate matched rules, (unique) lazy rules, called
rules, helper functions, and imperative rule blocks into RWL
theories. They, too, propose to use MAUDE’s reachability
analysis to verify safety properties of systems that are de-
scribed by Ecore models and whose behavior is specified
by ATL transformations. However, they do not integrate the
verification into their ATL-to-MAUDE translation and only

sketch the possibility that their approach admits the verifica-
tion of behavioral properties and do not consider the possi-
bility to assert the translation correctness of the ATL trans-
formation at all.

Büttner et al. [27] verify with ALLOY [70] if an exoge-
nous ATL transformation that is defined for an OCL con-
strained Ecore model preserves the target model’s invari-
ants. From metamodels MI , MO, where MI 6=MO, and an
ATL transformation t : MI →MO that transforms a source
model conforming to MI into a target model conforming to
MO, Büttner et al. build a transformation model that cap-
tures MI , MO, and the ATL transformation t in a single
model. Basically, a transformation model traces which ele-
ments of the source model are translated to what elements
of the target model. Further, they define a conversion from
transformation models to ALLOY using the UML2ALLOY

tool [4]. The verification is performed in three steps. First, an
OCL constraint defined for the target model is selected and
negated, while all other constraints are disabled. Observe
that all instance models of the target metamodel that satisfy
the negated constraint are invalid. In the second step, the
transformation model is constructed from the source meta-
model, the ATL transformation, and the target metamodel,
where the selected OCL constraint has been negated. Fi-
nally, ALLOY is used to check if there exists a model that
satisfies the modified, but invalid transformation model. If
it finds no counterexample that satisfies the negated con-
straint of the target model, a counterexample is found to
the validity of the original transformation model and one
can conclude that the ATL transformation does not preserve
the invariants of the target model. If it finds no such model,
one can, however, only conclude that the ATL transforma-
tion is correct up to a certain number of instance objects in
the source model. This restriction is due to ALLOY that de-
mands a bound on the number of investigated objects such
that its search space of possible logical models remains fi-
nite. In contrast to the approach presented by Troya and Val-
lecillo [157], this approach can only handle ATL’s matched
rules and no recursive helper functions are allowed. The
strength of the approach, however, lies in its lightweight
methodology that builds on the small scope hypothesis [71,
p. 15] and its ability to translate counterexamples from AL-
LOY back into Ecore.

5.3 Model Checking of OCL Specifications

When MOF or UML models are used to describe systems,
OCL is often the language of choice to phrase the speci-
fication of the system. However, the language is limited to
express properties over at most two snapshots of the system
(with invariants and pre- and postconditions) and cannot rea-
son over arbitrary sequences of system snapshots. Thus, nu-
merous temporal extensions to OCL have been proposed to



A Feature-Based Classification of Formal Verification Techniques for Software Models 17

overcome this limitation. In this section, we review model
checking-based verification approaches that use either exist-
ing or custom-built temporal OCL extensions to formulate
a system’s specification.

Mullins and Oarga [106] present an extension to OCL,
called EOCL, that augments OCL with CTL operators. It
is strongly influenced by BOTL [39], a CTL-based logic
to specify static and temporal properties of object-oriented
systems, but, in contrast, also supports inheritance. EOCL’s
operational semantics is defined over object-oriented tran-
sition systems. In each state such a transition system keeps
track of the active objects, active methods, and the active
objects’ attribute valuations. The SOCLe tool13 is able to
assert the behavioral correctness of a system that is defined
by a class diagram, a set of state machines for each class
in the class diagram, and an object diagram that defines the
initial state. For the verification, SOCLe translates the class,
state machine, and object diagrams into an abstract state ma-
chine. Then, it checks enumeratively and on-the-fly if the
system satisfies its EOCL specification, which expresses ei-
ther reachability, safety, or liveness properties.

Al-Lail et al. [90] also verify the behavioral correctness
of systems. They describe systems with class diagrams. The
operations contracts specified by using OCL pre- and post-
conditions capture the behavior of the system. They spec-
ify reachability and safety properties in TOCL [161], an
LTL-inspired extension of OCL supporting past and future
temporal operators. The user initiates the verification pro-
cess by providing the class diagram that includes a con-
tract for each operation and the TOCL specification. Then,
the model checker builds the so-called Snapshot Transition
Model (STM) that describes the state space of the system. A
snapshot, i.e., a single state of the system, contains all active
objects, their associations, and their current attribute values.
The application of an operation defined by its contracts to
a source snapshot yields a transition to a target snapshot.
The USE Model Validator [57,65,58] verifies the TOCL
specification over the STM and searches for sequences of
snapshots, i.e., a scenario, that violate the specification. If
a counterexample is found, the violating execution trace is
visualized with UML object and sequence diagrams. Note
that the search space is bounded by a user-defined scope
that defines an upper bound on the length of the scenario
and an upper bound on the number of objects that the sce-
nario may contain. Thus, this verification approach imple-
ments a (symbolic) bounded model checking algorithm that
uses the USE Model Validator to translate the problem into
a bounded, relational problem description, which is subse-
quently converted into a Boolean formula by Kodkod [156].
This Boolean formula can be solved with any off-the-shelf
SAT-solver like MINISAT [43].

13 Unfortunately, SOCLe does not seem to be available to the public
anymore.

With MOCOCL,14 Bill et al. [20] present an enumer-
ative model checker for their CTL-based OCL extension,
called cOCL. cOCL is thus far the only temporal extension
for OCL that integrates the CTL operators and their seman-
tics (see [30]) seamlessly into the existing formal semantics
of OCL. Their extension introduces six temporal operators,
next, eventually, globally, until, and unless (equiv-
alent to weak until). Each of these operators is preceded by a
(mandatory) path quantifier, either always or sometimes.
To assert the behavioral correctness of a system, MOCOCL
expects four inputs: (1) an Ecore model that captures the
static structure of the system, (2) a set of graph transfor-
mations, each of which describes an operation of the sys-
tem, (3) a model that represents the initial state, and (4) a
specification formulated in cOCL. Internally MOCOCL rep-
resents system states as graphs and uses HENSHIN [5] to
construct the state space. The evaluation of a cOCL speci-
fication is performed incrementally. Starting with the initial
state, the state space is expanded step-wise by applying the
behavior-describing transformations to the most recently ex-
panded states. Then, the cOCL specification is evaluated in
the single-step expanded state space. If the specification is
violated, MOCOCL informs the user of the failure and re-
turns a cause that contains a counterexample to the speci-
fication. Otherwise, the state space is expanded once more
and the specification is evaluated again. If the system is fi-
nite, this loop continues until the state space cannot be ex-
panded further, i.e., all states have been visited. If the spec-
ification still holds, MOCOCL reports back the success of
the evaluation and, again, returns a cause that explains why
the evaluation was successful.

5.4 Model Checking of UML Diagrams

Finally, we survey approaches that employ model checking
in the context of verifying the correctness of UML mod-
els. Because size and structure of UML leaves much room
for the application of model checking, significant effort has
been devoted to the application of model checking tech-
niques to UML. Due to the large number of papers falling
into this category, we list them separately in Table 2 that, in
essence, captures all features of the feature model presented
above, however, re-arranged to provide a better overview.
Due to the many similarities between the approaches in this
category, we refrain from discussing each approach individ-
ually, but highlight only their distinguishing contributions.
In this section we will often give precedence to the term di-
agram over software model in accordance with the UML
standard’s preference of the former, but in general use the
two synonymously.

14 Available from http://www.modelevolution.org/

prototypes/mococl



18 Sebastian Gabmeyer et al.

5.4.1 Verification Goals and Scenarios

In general, model checking of UML models either aims to
(a) ensure the correct behavior of one diagram, i.e., behav-
ioral correctness, or (b) assert that two different diagrams
consistent. In Table 2, we group the different approaches
according to their pursued verification goal and list them
in alphabetical order. In general, consistency asserting ap-
proaches analyze whether a set of different diagrams de-
scribes the overall system in a consistent way, that is, they
verify that the information presented in one diagram does
not contradict the information of another diagram. Note that
we also assign approaches to this category, that use one dia-
gram to define the specification and another diagram to rep-
resent the implementation. In contrast, behavioral correct-
ness is usually asserted with respect to a single diagram and
its specification that defines the desired or forbidden behav-
ior of the system. These specifications are usually formu-
lated in temporal logic and demand, for example, that the
system is free of dead- and livelocks.

5.4.2 Domain Representation

UML as general purpose modeling language is too large
as to be supported by any verification approach in its en-
tirety. Therefore, all reviewed works focus on a subset of
UML that is essential for the intended application areas. The
UML metamodel [119] precisely defines the syntax of the
modeling language, i.e., it describes the available language
concepts. Further, some semantic aspects are documented,
but especially the execution behavior is only informally de-
scribed. As a precise definition of the meaning of a diagram
is essential for the verification, works on model checking
UML models often spend a lot of emphasis on describing
the semantics of the models under consideration. For exam-
ple, communication mechanisms, concurrency models, tim-
ing specification features etc. have to be introduced con-
cisely. The differences arising from incompatible semantic
interpretations are one reason why the approaches are hard
to compare. In the following, we shortly review which di-
agrams and concepts of UML have been subject to model
checking.

Because UML state machines are very close to finite au-
tomata, it has soon been realized that model checking is a
suitable technique to verify their correctness. The basic lan-
guage concepts supported by most approaches are (a) states,
including initial and final states; (b) transitions, which can
be labeled with an event, a guard and a set of effects that rep-
resent actions triggering other effects; and (c) choices. Hier-
archical states (e.g., [55]) and orthogonal states (e.g., [76])
as well as fork and join states (e.g., [55]) are only supported
by a few approaches. Zhang and Liu’s [160] model check-

ing approach for state machines, for example, integrates all
of these language elements.

Apart from number and type of supported language con-
cepts, the various systems differ in their behavioral seman-
tics, which describes in what order events are triggered and
dispatched. For example, concurrent completion events, i.e.,
events which are automatically triggered when some activ-
ity is completed, are usually forbidden and each event trig-
gers exactly one transition. Further, data processing is not
considered, and timing issues are also neglected. Some ap-
proaches are based on asynchronous communication [76],
while others assume synchronous communication [103]. For
state machines, the above mentioned incompatible seman-
tic interpretation can be circumvented with POLYGLOT [7],
a tool that translates the different state machine semantics
to a common intermediate representation based on the pro-
gramming language Java prior to performing the verifica-
tion. The intended semantics, however, have to be imple-
mented in form of pluggable modules. The separation of a
model’s structure and its semantics allows the combination
of state machines from different sources and different tools.

Class diagrams are used to describe the static structure
of a system by offering many concepts that are also found in
object-oriented programming languages. On their own class
diagrams contribute only little to the verification process if
not paired with a description of the system’s behavior. For
example, Ober et al. [114] use classes to describe processes
whose behavior is specified by state machines. Likewise,
the RHAPSODY VE [138] specifies a system in terms of
class diagrams and state machines. While the classes pro-
vide the structure of and the relationship among the ele-
ments contained in the systems, the state machines describe
the system’s behavior. The classes are annotated with the
maximal number of its instances allowed during the model
checking process. On this basis, the required memory usage
is restricted. Ji et al. [74] check whether for the scenarios
shown in a collaboration diagram all required associations
are available in the class diagram. Jussila et al. [76] use class
diagrams without inheritance relations and operation decla-
rations to model the active objects occurring in a system.
They specify the initial configuration, i.e., the initial state of
the system, by means of a deployment diagram at the object
level. Approaches for class diagrams can be distinguished by
the extent they handle ternary and higher-order associations,
inheritance and part-of relationships apart from supporting
basic concepts as classes and binary associations.

Interaction diagrams like the sequence diagram are used
to illustrate communication scenarios, i.e., they represent
snapshots of interactions. HUGO supports model checking
of sequence diagrams and state machines [82]. For this pur-
pose, the sequence diagrams are translated into finite au-
tomata offering a wide range of concepts available in se-
quence diagrams, among others, partially ordered event oc-



A Feature-Based Classification of Formal Verification Techniques for Software Models 19

currences, state invariants, weak and strict sequencing, par-
allel and alternative operators, loops, as well as the neg op-
erator. The content of neg fragments is restricted in such
a manner that the resulting automaton is deterministic and,
hence, can be negated directly. The vUML tool [126] uses
sequence diagrams to report counterexamples back to the
user, i.e., displays an error trace that allows the reproduction
of the error. Lima et al. [94] focus on the verification and
validation of sequence diagrams containing combined frag-
ments which allow for a compact representation of sets of
traces.

Only a few works deal with model checking for activity
diagrams. The reason for this is probably that prior to UML
2.0 activity diagrams and state machines shared more com-
monalities than there were distinguishing features. Now, ac-
tivity diagrams are close in semantics to Petri nets, for which
a wealth of literature exists [108]. Eshuis [49] presents a
symbolic model checking approach for activity diagrams,
where activity diagrams are mapped to finite state machines.

5.4.3 Target Representation, Specification Language, and
Properties

Almost all approaches use existing verification back-ends to
achieve their verification goals. Very popular model check-
ers are SPIN and NUSMV (refer to Table 2 for the details).
Grumberg et al. [60] translate the state machines, for the
purpose of verification, to C code, which is than handed to
software model checker CBMC [34]. Here, bounded model
checking is applied, but it is indicated how also unbounded
model checking might be realized. The UMC framework
presented in [155] implements an on-the-fly model checker,
i.e., the representation of a state machine as doubly labeled
transition system is created on demand to deal with the state
explosion problem. The specification language UCTL [155],
a state and event based temporal logic that is tailored to-
wards the verification of UML models, is used. Mozaffari
and Haounabadi [105] translate sequence diagrams to exe-
cutable, colored Petri nets, on which they perform the ver-
ification of the given properties, Shen et al. [145] take ad-
vantage of verification tools available for abstract state ma-
chines [22]. Some approaches translate the UML models
to formal languages for which dedicated model checkers
are available. In contrast to most other approaches that use
high-level intermediate languages of verification systems,
Niewiadomski et al. [110,111] directly encode their model
checking problem in propositional logic. In a first case study,
the authors show that the direct encoding outperforms the
approaches that rely on high-level verification systems.

The specification language of the model checker could
be used directly to formulate the properties that are checked
on the given diagrams. This is, however, often problematic
due to the disparity between the UML diagrams, i.e., the

domain representation, and the verification representation,
i.e., the encoding of the UML diagrams into the input lan-
guage of the verification back-end. Thus, several concepts
for expressing properties in a notation close to the domain
representation have been explored. Siveroni et al. [147] pro-
pose an LTL-based language that introduces special pred-
icates to ease reasoning on UML class diagrams and state
machines with temporal expressions. Ober et al. [113] sug-
gest observer objects based on UML stereotypes and state
machines for specifying properties that should hold. There-
fore, they use UML components together with temporal ex-
tensions. Porres [126] also introduces stereotypes into the
UML models to annotate them with constraints. The spec-
ification language column (Spec. Lang.) in Table 2 shows
whether an approach provides a custom textual or a graphi-
cal language or uses the model checker’s language.

5.4.4 Summary

Over the last 15 years, many approaches have been pre-
sented that aim to increase the quality and specification ad-
herence of UML models by applying model checking tech-
niques. Because the UML standard contains numerous se-
mantic ambiguities, many works show how to resolve these
inconsistencies and propose different encodings based on
their semantic interpretation. The large number of differ-
ent semantic interpretations and the non-availability of tools
impede a direct comparison of the different approaches. Be-
cause most works focus on resolving semantic issues and
the efficiency of their encoding, little is said about the prac-
tical application scenarios of the proposed verification ap-
proaches. It thus comes without surprise that hardly any of
the available solutions can be used out-of-the-box in arbi-
trary application scenarios.

6 Conclusion

In model-based engineering (MBE), software models re-
place textual code as the core development artifacts and con-
stitute the foundation for the (semi-)automatic generation
of the executable system. The strength of software models
stems from the abstraction they provide in form of distinct
views of the software system, which helps different stake-
holders of software development projects to (a) cope with
the complexity of modern software systems, (b) communi-
cate and grasp ideas, and (c) respond timely and prudently
to changing user requirements. The mere use of MBE tech-
niques, however, does not automatically imply the correct-
ness of a system w.r.t. to its specification. Progress and suc-
cess of formal verification techniques in hardware design
and software engineering have motivated the MBE commu-
nity to adopt and apply these techniques [73] for the verifi-
cation of software models. It is thus unsurprising that many



20 Sebastian Gabmeyer et al.

Table 2 Model Checking Approaches for UML

Domain Representation Spec. Lang. ∗ Prop.

Authors C
la

ss
D

ia
gr

am

St
at

e
M

ac
hi

ne

Se
qu

en
ce

D
ia

gr
am

A
ct

iv
ity

D
ia

gr
am

C
ol

la
b.

D
ia

gr
am

G
ra

ph
.L

an
gu

ag
e

Te
xt

.L
an

gu
ag

e

Te
m

po
ra

lL
og

ic

M
od

el
C

he
ck

er

L
iv

en
es

s

Sa
fe

ty

C
on

ta
in

m
en

t

be
ha

vi
or

al
co

rr
ec

tn
es

s

Balasubramanian et al. [7]a X L F X
ter Beek et al. [155]b X X C O X
Del Bianco et al. [16] X C K X
Dong et al. [40] X L S X
Dubrovin, Junttila [42]c X B N X X
Eshuis [49] X X L N X
Gnesi et al. [55] X C J X X
Grumberg et al. [60] X L C X X
Jussila et al. [76]d X X L S X
Lam, Padget [91] X C N X
Lilius, Porres [93]; Porres [126] X X X X S X
Lima et al. [94] X X S X
Mikk et al. [103] X L S X
Mozaffari, Haounabadi [105] X X O X
Muram et al. [107] X X L N X
Niewiadomski et al. [110]e X X O X
Oubelli et al. [121] X L S X X
Shen et al. [145] X X X A X X
Siveroni et al. [147] X X X S
Zhang, Liu [160] f X L P X X

co
ns

is
t. Ji et al. [74] X X X X S X

Knapp, Wutke [82]g X X X S X
Ober et al. [113]h X X X I X
Schinz et al. [138] X X X V X X
Kaufmann et al. [79]i X X X O X

Temporal Logics: C. . . CTL, L. . . LTL, B. . . CTL and LTL

Model Checker: A. . . ASM, C. . . CBMC, F. . . Java Path Finder, I. . . IF-tool-suite, J. . . Jack,
K. . . Kronos, N. . . NuSMV, O. . . own, P. . . Pat, S. . . SPIN, V. . . VIS

Note: The column titled ∗ corresponds to the Verification Representation of our classification.
a Available from https://wiki.isis.vanderbilt.edu/MICTES/index.php/Publications b Web interface available at
http://fmt.isti.cnr.it/umc/V4.1/umc.html c Available from http://www.tcs.hut.fi/Research/Logic/SMUML.shtml d Available from
http://www.tcs.hut.fi/SMUML/ e Available from http://artur.ii.uph.edu.pl/zimplit/bmc4uml.html f Available from
http://www.comp.nus.edu.sg/~pat/

g Available from http://www.pst.informatik.uni-muenchen.de/projekte/hugo/ h Available from
http://www.irit.fr/ifx/ i Available from http://modelevolution.org/updatesite/

verification approaches for software models investigate the
peculiarities of lifting verification techniques from hard- and
software to modeling.

In this survey, we provide a detailed review of formal
verification techniques in the MBE development process.
We established a feature model that relates the characteristic
properties of different verification approaches. In particular,
for each approach we review the verification goal it offers to
achieve; the representation of analyzable input models; the
representation of the analyzable models used by the verifi-
cation back-end; the supported specification languages; and
the technique used to analyze the software models. By this
means, we concisely and uniformly categorized many differ-
ent approaches that assert the correctness of software mod-
els w.r.t. their specification. Based on the insights gained
from the literature review and the subsequent classification
we draw the following conclusions:

– formal verification techniques based on model checking
and interactive theorem proving have been applied ex-
tensively to all areas of MBE;

– compared to formal verification methods developed for
hard- and software, the majority of the approaches for
the verification of software models is still in its infancy
and (prototypical) implementations are pending;

– a large scale evaluation of the effectiveness of the pro-
posed approaches is, at its current state, impossible and
further hindered by the lack of common benchmarks;

– the large amount of literature on formal verification tech-
niques in MBE illustrates, however, their huge potential.

We identified three major directions of possible future
work with a high potential to increase the practicality of
verification techniques applicable in MBE-based develop-
ment processes. These are concerned with the reduction of



A Feature-Based Classification of Formal Verification Techniques for Software Models 21

the state space using abstractions, comparability of different
approaches, and usability.

Abstractions from models. Most model checking-based ap-
proaches enumerate the state space explicitly and do not use
abstractions to reduce its size. Although models, by their
very nature, abstract from irrelevant implementation details,
the amount of information they contain easily surpasses the
capabilities of modern verification engines. Amidst this in-
formation, models contain easily extractable data that could
be used to guide the reduction of the state space. In our
opinion, the data most promisingly exploitable are (a) mul-
tiplicity constraints that provide lower and upper bounds,
(b) composition and aggreation relationships, and (c) OCL
constraints, all of which impose structural and behavioral
restrictions and thus on the set of possible system states.
Structural restrictions constrain the domain of possible in-
stance models, for example, they restrict an attribute’s value
to a bounded interval or a set of values satisfying some char-
acteristic property. Behavioral restrictions control the set of
reachable states and shape the control flow through the sys-
tem. This kind of information is usually not available ex-
plicitly to frameworks developed to verify the correctness
of software; yet, approaches devised to verify the correct-
ness of software models do not exploit it extensively. Thus,
we anticipate to see more verification approaches that com-
bine results from different analyses, e.g., multiplicities and
abstract interpretation, to obtain finer-grained abstractions.

Evaluation and Benchmarks. Currently, several factors pro-
hibit an authoritative comparison of different verification ap-
proaches with respect to their performance and usability.
First, only a few of the proposed approaches have been im-
plemented, and from those approaches that describe an im-
plementation, only a few are publicly available. From the 45
reviewed approaches only 14 provide a publicly accessible
implementation. Second, due to ambiguities in the seman-
tic definitions discovered in, e.g., the UML standard [146,
50], many approaches propose and implement their own in-
terpretation of these definitions. This leads to inconsistent
evaluation results if compared directly. Third, a standard
set of benchmarks like the one started in [56] that allows
an objective evaluation of the different approaches needs to
be collected. Experience from the field of hard- and soft-
ware verification has shown that a competitive comparison
of the available verification approaches has stirred indus-
trial interest and subsequently led to the contribution of real-
world benchmarks. A competition may not only lead to more
and better benchmarks, but may also increase the number of
available verifiers and spark improvements in those that al-
ready exist (cf. SAT competition [72]).

Usability. Given that only a few approaches provide an im-
plementation it is less surprising that the usability considera-
tions are in many cases out of scope. Nonetheless, the usabil-
ity certainly requires much more attention if the user base
of the proposed verification approaches is intended to grow
beyond the scientific/research community. For example, the
way results are presented to the user often require thorough
knowledge of the underlying verification back-end. Thus, a
verification approach is required either to translate the result
of a lower level encoding back to the domain representation
the user is familiar with or to perform the analysis directly in
the domain representation, which makes the translation ob-
solete. Further, a common interchange format for problem
descriptions and the returned results eases not only the def-
inition of a common set of benchmarks, but also the combi-
nation of different verifiers. Above all, it increases the pro-
ductivity of the whole research community if reading and
writing of problem descriptions and result files can be dele-
gated to a common API.

Acknowledgements We want to thank the participants of the VOLT
2013 workshop for valuable discussions and suggestions of improve-
ment on an initial version of this work; in particular, Moussa Amrani,
Leen Lambers, Tihamer Levendovszky, and Manuel Wimmer (in al-
phabetic order) as well as the anonymous reviewers.

References

1. Bowen Alpern and Fred B. Schneider. Recognizing Safety and
Liveness. Distributed Computing, 2(3):117–126, 1987.

2. Moussa Amrani, Jürgen Dingel, Leen Lambers, Levi Lúcio, Rick
Salay, Gehan Selim, Eugene Syriani, and Manuel Wimmer. To-
wards a model transformation intent catalog. In Proc. of the 1st
Workshop on the Analysis of Model Transformations (AMT’12),
pages 3–8. ACM, 2012.

3. Moussa Amrani, Levi Lúcio, Gehan M. K. Selim, Benoı̂t Combe-
male, Jürgen Dingel, Hans Vangheluwe, Yves Le Traon, and
James R. Cordy. A Tridimensional Approach for Studying the
Formal Verification of Model Transformations. In Proc. of the
5th Int. Conf. on Software Testing, Verification, and Validation
(ICST’12), pages 921–928. IEEE Computer Society, 2012.

4. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrak-
shi Ray. UML2Alloy: A Challenging Model Transformation.
In Proc. of the 10th Int. Conf. on Model Driven Engineering
Languages and Systems (MODELS’07), volume 4735 of LNCS,
pages 436–450. Springer, 2007.

5. Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian
Krause, and Gabriele Taentzer. Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformations. In Proc. of
the 13th Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS’10), volume 6394 of LNCS, pages 121–135.
Springer, 2010.

6. Franz Baader and Tobias Nipkow. Term rewriting and all that.
Cambridge University Press, 1998.

7. Daniel Balasubramanian, Corina Pasareanu, Gabor Karsai, and
Michael Lowry. Polyglot: Systematic Analysis for Multiple Stat-
echart Formalisms. In Proc. of the 19th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’13), volume 7795 of LNCS, pages 523–529. Springer,
2013.



22 Sebastian Gabmeyer et al.

8. Paolo Baldan, Andrea Corradini, and Barbara König. A Static
Analysis Technique for Graph Transformation Systems. In Proc.
of the 12th Int. Conf. on Concurrency Theory (CONCUR’01),
volume 2154 of LNCS, pages 381–395. Springer, 2001.

9. Luciano Baresi, Vahid Rafe, Adel Torkaman Rahmani, and Paola
Spoletini. An efficient solution for model checking graph trans-
formation systems. Electr. Notes Theor. Comput. Sci., 213(1):3–
21, 2008.

10. Luciano Baresi and Paola Spoletini. On the Use of Alloy to Ana-
lyze Graph Transformation Systems. In Proc. of the 3rd Int. Conf.
on Graph Transformations (ICGT’06), volume 4178 of LNCS,
pages 306–320. Springer, 2006.

11. Raja Sehrab Bashir, Sai Peck Lee, Saif Ur Rehman Khan, Victor
Chang, and Shahid Farid. Uml models consistency management:
Guidelines for software quality manager. International Journal
of Information Management, 36(6):883–899, 2016.

12. Mordechai Ben-Ari. Principles of the Spin Model Checker.
Springer, 2008.

13. Béatrice Bérard, Michel Bidoit, Alain Finkel, François
Laroussinie, Antoine Petit, Laure Petrucci, and Philippe Sch-
noebelen. Systems and Software Verification: Model-Checking
Techniques and Tools. Springer, 2001.

14. Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term
rewriting systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

15. Jean Bezivin. On the unification power of models. Software and
Systems Modeling, 4:171–188, 2005.

16. Vieri Del Bianco, Luigi Lavazza, and Marco Mauri. Model
Checking UML Specifications of Real Time Software. In Proc. of
the 8th Int. Conf. on Engineering of Complex Computer Systems
(ICECCS’02), pages 203–212. IEEE Computer Society, 2002.

17. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu. Symbolic Model Checking without BDDs. In Proc. of
the 5th Int. Conf. on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’99), volume 1579 of LNCS, pages
193–207. Springer, 1999.

18. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009.

19. Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. For-
mal foundation of consistent EMF model transformations by al-
gebraic graph transformation. Software and System Modeling,
11(2):227–250, 2012.

20. Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and Martina
Seidl. OCL meets CTL: Towards CTL-Extended OCL Model
Checking. In Proc. of the MODELS 2013 OCL Workshop,
volume 1092 of CEUR Workshop Proc., pages 13–22. CEUR-
WS.org, 2013.

21. Barry W. Boehm. Software Engineering Economics. Prentice
Hall PTR, 1 edition, 1981.

22. Egon Börger and Robert F. Stärk. Abstract State Machines. A
Method for High-Level System Design and Analysis. Springer,
2003.

23. Artur Boronat, Reiko Heckel, and José Meseguer. Rewriting
Logic Semantics and Verification of Model Transformations. In
Proc. of the 12th Int. Conf. on Fundamental Approaches to Soft-
ware Engineering (FASE’09), volume 5503 of LNCS, pages 18–
33. Springer, 2009.

24. Artur Boronat and José Meseguer. Algebraic Semantics of
OCL-Constrained Metamodel Specifications. In Proc. of the
47th Int. Conf. on Objects, Components, Models and Patterns
(TOOLS’09), volume 33 of Lecture Notes in Business Informa-
tion Processing, pages 96–115. Springer, 2009.

25. Artur Boronat and José Meseguer. An algebraic semantics for
MOF. Formal Asp. Comput., 22(3-4):269–296, 2010.

26. Randal E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Trans. Computers, 35(8):677–691,
1986.

27. Fabian Büttner, Marina Egea, Jordi Cabot, and Martin Gogolla.
Verification of ATL Transformations Using Transformation
Models and Model Finders. In Proc. of the 14th Int. Conf. on
Formal Methods and Software Engineering (ICFEM’12), volume
7635 of LNCS, pages 198–213. Springer, 2012.

28. Daniel Calegari and Nora Szasz. Verification of Model Trans-
formations. Electr. Notes Theor. Comput. Sci., 292:5–25, March
2013.

29. Edward Chang, Zohar Manna, and Amir Pnueli. The Safety-
Progress Classification. In Logic and Algebra of Specification,
volume 94 of NATO ASI Series, pages 143–202. Springer, 1993.

30. Edmund M. Clarke and E. Allen Emerson. Design and Synthe-
sis of Synchronization Skeletons Using Branching-Time Tempo-
ral Logic. In Workshop on Logics of Programs, volume 131 of
LNCS, pages 52–71. Springer, 1981.

31. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM, 50(5):752–794, 2003.

32. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
checking. MIT Press, 1999.

33. Edmund M. Clarke, Anubhav Gupta, Himanshu Jain, and Helmut
Veith. Model Checking: Back and Forth between Hardware and
Software. In Proc. of the 1st Int. Conf. on Verified Software: The-
ories, Tools, Experiments (VSTTE’05), volume 4171 of LNCS,
pages 251–255. Springer, 2005.

34. Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool
for Checking ANSI-C Programs. In Proc. of the 10th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’04), volume 2988 of LNCS, pages 168–176.
Springer, 2004.

35. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Martı́-Oliet, José Meseguer, and Carolyn L. Talcott, ed-
itors. All About Maude - A High-Performance Logical Frame-
work: How to Specify, Program and Verify Systems in Rewriting
Logic, volume 4350 of LNCS. Springer, 2007.

36. Patrick Cousot and Radhia Cousot. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints. In Proc. of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL’77), pages 238–252. ACM, 1977.

37. Krzysztof Czarnecki and Simon Helsen. Feature-based survey
of model transformation approaches. IBM Systems Journal,
45(3):621–645, 2006.

38. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Effi-
cient SMT Solver. In Proc. of the 14th Int. Conf. on Tools and Al-
gorithms for Construction and Analysis of Systems (TACAS’08),
volume 4963 of LNCS, pages 337–340. Springer, 2008.

39. Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. On
a Temporal Logic for Object-Based Systems. In Proc. of the
4th Int. Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’00), volume 49 of IFIP Advances
in Information and Communication Technology, pages 305–325.
Springer US, 2000.

40. Wei Dong, Ji Wang, Xuan Qi, and Zhichang Qi. Model Checking
UML Statecharts. In Proc. of the 8th Asia-Pacific Software En-
gineering Conference (APSEC’01), pages 363–370. IEEE Com-
puter Society, 2001.

41. Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chetan
Murthy, Catherin Parent, Christine Paulin-Mohring, and Ben-
jamin Werner. The COQ Proof Assistant: User’s Guide: Version
5.6. INRIA, 1992.

42. Jori Dubrovin and Tommi A. Junttila. Symbolic model checking
of hierarchical uml state machines. In Proc. of the 8th Int. Conf.
on Application of Concurrency to System Design (ACSD’08),
pages 108–117. IEEE, 2008.



A Feature-Based Classification of Formal Verification Techniques for Software Models 23

43. Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In
Proc. of the 6th Int. Conf. on Theory and Applications of Satisfi-
ability Testing (SAT’04), volume 2919 of LNCS, pages 502–518.
Springer, 2003.

44. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer-Verlag New York, Inc., 2006.

45. Hartmut Ehrig and Claudia Ermel. Semantical Correctness and
Completeness of Model Transformations Using Graph and Rule
Transformation. In Ehrig, ICGT2008 [47], pages 194–210.

46. Hartmut Ehrig and Barbara König. Deriving bisimulation con-
gruences in the dpo approach to graph rewriting with bor-
rowed contexts. Mathematical Structures in Computer Science,
16(6):1133–1163, 2006.

47. Proc. of the 4th Int. Conf. on Graph Transformation (ICGT’08),
volume 5214 of LNCS. Springer, 2008.

48. Proc. of the 6th Int. Conf. on Graph Transformation (ICGT’12),
volume 7562 of LNCS. Springer, 2012.

49. Rik Eshuis. Symbolic model checking of UML activity dia-
grams. ACM Transactions on Software Engineering and Method-
ology, 15(1):1–38, 2006.

50. Harald Fecher, Jens Schönborn, Marcel Kyas, and Willem P.
de Roever. 29 new unclarities in the semantics of UML 2.0
state machines. In Proc. of the 7th Int. Conf. on Formal Methods
and Software Engineering (ICFEM’05), volume 3785 of Lecture
Notes in Computer Science, pages 52–65. Springer, 2005.

51. Sebastian Gabmeyer, Petra Brosch, and Martina Seidl. A Clas-
sification of Model Checking-Based Verification Approaches for
Software Models. In Proc. of the STAF Workshop on Verification
of Model Transformations (VOLT’13), pages 1–7, 2013.

52. Patrice Gagnon, Farid Mokhati, and Mourad Badri. Applying
Model Checking to Concurrent UML Models. Journal of Object
Technology, 7(1):59–84, 2008.

53. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin
Serwe. CADP 2011: a toolbox for the construction and analysis
of distributed processes. STTT, 15(2):89–107, 2013.

54. Holger Giese and Leen Lambers. Towards Automatic Verifica-
tion of Behavior Preservation for Model Transformation via In-
variant Checking. In Ehrig, ICGT2012 [48], pages 249–263.

55. Stefania Gnesi, Diego Latella, and Mieke Massink. Model
Checking UML Statechart Diagrams Using JACK. In Proceed-
ing of the 4th IEEE Int. Symposium on High-Assurance Systems
Engineering (HASE’99), pages 46–55. IEEE Computer Society,
1999.

56. Martin Gogolla, Fabian Büttner, and Jordi Cabot. Initiating a
Benchmark for UML and OCL Analysis Tools. In Proc. 7th
Int. Conf. Tests and Proofs (TAP’13), pages 115–132. Springer,
Berlin, LNCS 7942, 2013.

57. Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A
UML-based specification environment for validating UML and
OCL. Sci. Comput. Program., 69(1-3):27–34, 2007.

58. Martin Gogolla and Frank Hilken. Model Validation and Ver-
ification Options in a Contemporary UML and OCL Analysis
Tool. In Proc. of the Int. Conf. on Modellierung (MODEL-
LIERUNG’16), pages 203–218. GI, LNI 254, 2016.

59. Carlos A. González and Jordi Cabot. Formal verification of static
software models in MDE: A systematic review. Information &
Software Technology, 56(8):821–838, 2014.

60. Orna Grumberg, Yael Meller, and Karen Yorav. Applying Soft-
ware Model Checking Techniques for Behavioral UML Models.
In Proc. of the 18th Int. Symposium on Formal Methods (FM’12),
volume 7436 of LNCS, pages 277–292. Springer, 2012.

61. Annegret Habel and Detlef Plump. Relabelling in Graph Trans-
formation. In Proc. of the 1st Int. Conf. on Graph Transforma-
tion (ICGT’02), volume 2505 of LNCS, pages 135–147. Springer,
2002.

62. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic.
MIT Press, 2000.

63. Reiko Heckel. Compositional Verification of Reactive Sys-
tems Specified by Graph Transformation. In Proc. of the 1st
Int. Conf. on Fundamental Approaches to Software Engineer-
ing (FASE’98), volume 1382 of LNCS, pages 138–153. Springer,
1998.

64. Frank Hermann, Mathias Hülsbusch, and Barbara König. Spec-
ification and Verification of Model Transformations. ECEASST,
30:20, 2010.

65. Frank Hilken, Philipp Niemann, Martin Gogolla, and Robert
Wille. Filmstripping and Unrolling: A Comparison of Verifi-
cation Approaches for UML and OCL Behavioral Models. In
Proc. 8th Int. Conf. Tests and Proofs (TAP’14), pages 99–116.
Springer, LNCS 8570, 2014.

66. C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

67. Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Se-
menyak, Christian Soltenborn, and Heike Wehrheim. Showing
Full Semantics Preservation in Model Transformation - A Com-
parison of Techniques. In Proc. of the 8th Int. Conf. on Inte-
grated Formal Methods (IFM’10), volume 6396 of LNCS, pages
183–198. Springer, 2010.

68. Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Se-
menyak, Christian Soltenborn, and Heike Wehrheim. Showing
Full Semantics Preservation in Model Transformation - A Com-
parison of Techniques. Technical Report TR-CTIT-10-09, Cen-
tre for Telematics and Information Technology, University of
Twente, 2012.

69. Daniel Jackson. Automating first-order relational logic. In Proc.
of the 8th ACM SIGSOFT Int. Symposium on Foundations of Soft-
ware Engineering (FSE’00), pages 130–139. ACM, 2000.

70. Daniel Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, April 2002.

71. Daniel Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, Rev. edition, 2012.

72. Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent
Simon. The Int. SAT Solver Competitions. AI Magazine, 33(1):6,
2012.

73. Ranjit Jhala and Rupak Majumdar. Software model checking.
ACM Comput. Surv., 41(4), 2009.

74. Lixia Ji, Jianhong Ma, and Zhuowei Shan. Research on Model
Checking Technology of UML. In Proc. of the 2012 Int. Conf. on
Computer Science Service System (CSSS’12), pages 2337–2340.
IEEE, 2012.

75. Frédéric Jouault and Ivan Kurtev. Transforming Models with
ATL. In Satellite Events at the MoDELS 2005 Conf., volume
3844 of LNCS, pages 128–138. Springer, 2005.

76. Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala Lat-
vala, and Ivan Porres. Model Checking Dynamic and Hierar-
chical UML State Machines. In Kuehne, MODELS2006 [88],
page 15.

77. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. No-
vak, and A. Spencer Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon University,
November 1990.

78. Harmen Kastenberg and Arend Rensink. Model Checking Dy-
namic States in GROOVE. In Model Checking Software, volume
3925 of LNCS, pages 299–305. Springer, 2006.

79. Petra Kaufmann, Martin Kronegger, Andreas Pfandler, Martina
Seidl, and Magdalena Widl. Intra- and interdiagram consistency
checking of behavioral multiview models. Computer Languages,
Systems & Structures, 44:72–88, 2015.

80. The KIV system, October 2012.
81. Alexander Knapp and Till Mossakowski. Multi-view consistency

in UML. CoRR, abs/1610.03960, 2016.



24 Sebastian Gabmeyer et al.

82. Alexander Knapp and Jochen Wuttke. Model Checking of UML
2.0 Interactions. In Kuehne, MODELS2006 [88], pages 42–51.

83. Barbara König and Vitali Kozioura. Counterexample-guided ab-
straction refinement for the analysis of graph transformation sys-
tems. In Proc. of the 12th Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’06), volume 3920
of LNCS, pages 197–211. Springer, 2006.

84. Barbara König and Vitali Kozioura. Augur 2 - A New Version of
a Tool for the Analysis of Graph Transformation Systems. Electr.
Notes Theor. Comput. Sci., 211:201–210, 2008.

85. Barbara König and Vitali Kozioura. Towards the Verification of
Attributed Graph Transformation Systems. In Ehrig, ICGT2008
[47], pages 305–320.

86. Laura Kovács and Andrei Voronkov. First-Order Theorem Prov-
ing and Vampire. In Computer Aided Verification, volume 8044
of LNCS, pages 1–35. Springer, 2013.

87. Dexter Kozen. Results on the Propositional mu-Calculus. Theor.
Comput. Sci., 27:333–354, 1983.

88. Models in Software Engineering, Workshops and Symposia at
MoDELS 2006, volume 4364 of LNCS. Springer, 2007.

89. Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef
Hooman, Mark van der Zwaag, Tamarah Arons, and Hillel Ku-
gler. Formalizing UML Models and OCL Constraints in PVS.
Electr. Notes Theor. Comput. Sci., 115:39–47, 2005.

90. Mustafa Al Lail, Ramadan Abdunabi, Robert France, and In-
drakshi Ray. An Approach to Analyzing Temporal Properties
in UML Class Models. In Proc. of the 10th Int. Workshop on
Model Driven Engineering, Verification and Validation (MoD-
eVVa’13), volume 1069 of CEUR Workshop Proc., pages 77–86.
CEUR-WS.org, 2013.

91. Vitus S. W. Lam and Julian A. Padget. Symbolic Model
Checking of UML Statechart Diagrams with an Integrated Ap-
proach. In Proc. of the 11th IEEE Int. Conf. on the Engineering
of Computer-Based Systems (ECBS’04), pages 337–347. IEEE
Computer Society, 2004.

92. Daniel Leivant. Higher order logic. In Handbook of Logic in
Artificial Intelligence and Logic Programming (2), pages 229–
322. Oxford University Press, 1994.

93. Johan Lilius and Iván Porres Paltor. vUML: A Tool for Verifying
UML Models. In Proc. of the 14th IEEE Int. Conf. on Automated
Software Engineering (ASE’99), pages 255–258. IEEE Computer
Society, 1999.

94. Vitor Lima, Chamseddine Talhi, Djedjiga Mouheb, Mourad Deb-
babi, Lingyu Wang, and Makan Pourzandi. Formal Verification
and Validation of UML 2.0 Sequence Diagrams using Source
and Destination of Messages. Electr. Notes Theor. Comput. Sci.,
254:143–160, 2009.

95. Miroslaw Malek. The Art of Creating Models and Models In-
tegration. In Model-Based Software and Data Integration, vol-
ume 8 of Communications in Computer and Information Science,
pages 1–7. Springer, 2008.

96. Zohar Manna and Amir Pnueli. The temporal logic of reactive
and concurrent systems - specification. Springer, 1992.

97. Greg Manning and Detlef Plump. The GP Programming System.
ECEASST, 10:13, 2008.

98. William McCune. Prover9 and Mace4. http://www.cs.unm.
edu/~mccune/prover9/, Accessed: 2017-02-22, 2005–2010.

99. Kenneth L. McMillan. Symbolic model checking. Kluwer Aca-
demic Publishers, 1993.

100. José Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theor. Comput. Sci., 96(1):73–155, 1992.

101. José Meseguer. Membership algebra as a logical framework
for equational specification. In Proc. of the 12th Int. Work-
shop on Recent Trends in Algebraic Development Techniques
(WADT’97), volume 1376 of LNCS, pages 18–61. Springer,
1997.

102. José Meseguer. Twenty years of rewriting logic. Formal Asp.
Comput., 81(7–8):721–781, 2012.

103. Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J.
Holzmann. Implementing Statecharts in PROMELA/SPIN. In
Proc. of the 2nd IEEE Workshop on Industrial Strength Formal
Specification Techniques (WIFT’98), pages 90–101. IEEE Com-
puter Society, 1998.

104. Robin Milner. Communication and Concurrency. PHI Series in
computer science. Prentice Hall, 1989.

105. Maryam Mozaffari and Ali Harounabadi. Verification and vali-
dation of UML 2.0 sequence diagrams using colored Petri nets.
In Proc. of the 3rd Int. Conf. on Communication Software and
Networks (ICCSN’11), pages 117–121. IEEE, 2011.

106. John Mullins and Raveca Oarga. Model Checking of Extended
OCL Constraints on UML Models in SOCLe. In Proc. of the 9th
Int. Conf. on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’07), volume 4468 of LNCS, pages 59–75.
Springer, 2007.

107. Faiz UL Muram, Huy Tran, and Uwe Zdun. A model checking
based approach for containment checking of uml sequence dia-
grams. In Proc. of the 23rd Asia-Pacific Software Engineering
Conf. (APSEC’16), 2016.

108. Tadao Murata. Petri nets: Properties, analysis and applications.
Proc. of the IEEE, 77(4):541–580, 1989.

109. Anantha Narayanan and Gabor Karsai. Towards Verifying Model
Transformations. Electr. Notes Theor. Comput. Sci., 211:191–
200, 2008.

110. Artur Niewiadomski, Wojciech Penczek, and Maciej Szreter. A
New Approach to Model Checking of UML State Machines.
Fundam. Inform., 93(1-3):289–303, 2009.

111. Artur Niewiadomski, Wojciech Penczek, and Maciej Szreter. To-
wards Checking Parametric Reachability for UML State Ma-
chines. In Proc. of the 7th Int. Andrei Ershov Memorial Conf.
on Perspectives of Systems Informatics (PSI’09), volume 5947
of LNCS, pages 319–330. Springer, 2009.

112. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

113. Iulian Ober, Susanne Graf, and Ileana Ober. Validation of UML
Models via a Mapping to Communicating Extended Timed Au-
tomata. In Proc. of the 11th Int. Workshop on Model Check-
ing Software (SPIN’04), volume 2989 of LNCS, pages 127–145.
Springer, 2004.

114. Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed
UML models by simulation and verification. Int. Journal on Soft-
ware Tools for Technology Transfer, 8(2):128–145, 2006.

115. Object Management Group OMG. Model Driven Architecture
(MDA) Guide V1.0.1. http://www.omg.org/mda/, January
2006. Accessed: 2017-02-22.

116. Object Management Group OMG. Object Constraint Language
(OCL) V2.2. http://www.omg.org/spec/OCL/2.2/, Febru-
ary 2010. Accessed: 2017-02-22.

117. Object Management Group OMG. OMG Meta Object Facil-
ity (MOF) 2.0 Query/View/ Transformation Specification V1.1.
http://www.omg.org/spec/QVT/1.1/, January 2011. Ac-
cessed: 2017-02-22.

118. Object Management Group OMG. OMG Meta Object Facil-
ity (MOF) Core Specification V2.4.1. http://www.omg.org/

spec/MOF/2.4.1/, August 2011. Accessed: 2017-02-22.
119. Object Management Group OMG. OMG Unified Modeling Lan-

guage (OMG UML), Infrastructure V2.4.1. http://www.omg.
org/spec/UML/2.4.1/, August 2011. Accessed: 2017-02-22.

120. Object Management Group OMG. OMG Unified Modeling Lan-
guage (OMG UML), Superstructure V2.4.1. http://www.omg.
org/spec/UML/2.4.1/, August 2011. Accessed: 2017-02-22.

121. Mouna Ait Oubelli, Nadia Younsi, Abdelkrim Amirat, and
Ahcene Menasria. From UML 2.0 Sequence Diagrams to



A Feature-Based Classification of Formal Verification Techniques for Software Models 25

PROMELA code by Graph Transformation using AToM3. In
Proc. of the 3rd Int. Conf. on Computer Science and its Applica-
tions (CIIA’11), volume 825 of CEUR Workshop Proc. CEUR-
WS.org, 2011.

122. Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A
Prototype Verification System. In Proc. of the 11th Int. Conf. on
Automated Deduction (CADE’92), volume 607 of LNCS, pages
748–752. Springer, 1992.

123. Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia,
3(4):6477, 2008.

124. Amir Pnueli. The Temporal Logic of Programs. In Proc. of the
18th Annual Symposium on Foundations of Computer Science
(FOCS’77), pages 46–57. IEEE Computer Society, 1977.

125. Iman Poernomo and Jeffrey Terrell. Correct-by-Construction
Model Transformations from Partially Ordered Specifications in
Coq. In Formal Methods and Software Engineering, volume
6447 of LNCS, pages 56–73. Springer, 2010.

126. Ivan Porres. Modeling and Analyzing Software Behavior in UML.
Number 34 in TUCS Dissertations. Turku Centre for Computer
Science, 2001.

127. Christopher M. Poskitt and Detlef Plump. Hoare-Style Verifica-
tion of Graph Programs. Fundam. Inform., 118(1-2):135–175,
2012.

128. Christopher M. Poskitt and Detlef Plump. Verifying Total Cor-
rectness of Graph Programs. ECEASST, 61:20, 2013.

129. Lukman Ab. Rahim and Jon Whittle. A survey of approaches for
verifying model transformations. Software and System Modeling,
pages 1–26, 2013.

130. Arend Rensink. The GROOVE Simulator: A Tool for State Space
Generation. In Proc. of the 2nd Int. Workshop on Applications of
Graph Transformations with Industrial Relevance (AGTIVE’03),
volume 3062 of LNCS, pages 479–485. Springer, 2003.

131. Arend Rensink, Ákos Schmidt, and Dániel Varró. Model
Checking Graph Transformations: A Comparison of Two Ap-
proaches. In Proc. of the 2nd Int. Conf. on Graph Trans-
formations (ICGT’04), volume 3256 of LNCS, pages 226–241.
Springer, 2004.

132. Arend Rensink and Eduardo Zambon. Neighbourhood Abstrac-
tion in GROOVE. ECEASST, 32:13, 2010.

133. Arend Rensink and Eduardo Zambon. Pattern-Based Graph Ab-
straction. In Ehrig, ICGT2012 [48], pages 66–80.

134. Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensi-
ble and highly-modular software model checking framework. In
Proc. of the 11th ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE’03), pages 267–276. ACM, 2003.

135. Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.

136. Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0
- New Features for Specifying and Analyzing Algebraic Graph
Transformations. In Proc. of teh 4th Int. Symposium on Applica-
tions of Graph Transformations with Industrial Relevance (AG-
TIVE’11), volume 7233 of LNCS, pages 81–88. Springer, 2011.

137. Hermann Schichl. Models and History of Modeling. In Mod-
eling Languages in Mathematical Optimization, Applied Opti-
mization, chapter 2, pages 25–36. Springer, 2004.

138. Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd West-
phal. The Rhapsody UML Verification Environment. In Proc. of
the 2nd Int. Conf. on Software Engineering and Formal Methods
(SEFM’04), pages 174–183. IEEE Computer Society, 2004.

139. Ákos Schmidt and Dániel Varró. CheckVML: A Tool for Model
Checking Visual Modeling Languages. In Proc. of the 6th
Int. Conf. on The Unified Modeling Language and Applications
(UML’03), volume 2863 of LNCS, pages 92–95. Springer, 2003.

140. Andy Schürr. Specification of graph translators with triple
graph grammars. In Proc. of the 20th Int. Workshop on Graph-
Theoretic Concepts in Computer Science (WG’94), volume 903
of LNCS, pages 151–163. Springer, 1994.

141. Ed Seidewitz. What Models Mean. Software, IEEE, 20(5):26–
32, 2003.

142. Bran Selic. The Pragmatics of Model-driven Development. Soft-
ware, IEEE, 20(5):19–25, 2003.

143. Bran Selic. The theory and practice of modern modeling lan-
guage design for model-based software engineering. In Compan-
ion Volume of the 10th Int. Conf. on Aspect-Oriented Software
Development (AOSD’11), pages 53–54. ACM, 2011.

144. Shane Sendall and Wojtek Kozaczynski. Model Transformation
- the Heart and Soul of Model-Driven Software Development.
Technical report, Swiss Federal Institute of Technology in Lau-
sanne (EPFL), 2003.

145. Wuwei Shen, Kevin J. Compton, and James Huggins. A Toolset
for Supporting UML Static and Dynamic Model Checking. In
Proc. of the 26th Int. Computer Software and Applications Conf.
(COMPSAC’02), pages 147–152. IEEE Computer Society, 2002.

146. Anthony J.H. Simons and Ian Graham. 30 Things that Go Wrong
in Object Modelling with UML 1.3. In Behavioral Specifica-
tions of Businesses and Systems, volume 523 of The Springer
Int. Series in Engineering and Computer Science, pages 237–
257. Springer US, 1999.

147. Igor Siveroni, Andrea Zisman, and George Spanoudakis. Prop-
erty Specification and Static Verification of UML Models. In
Proc. of the 3rd Int. Conf. on Availability, Reliability and Secu-
rity (ARES’08), pages 96–103. IEEE Computer Society, 2008.

148. Raymond M. Smullyan. First-Order Logic. Courier Dover Pub-
lications, 1995.

149. Morten Heine Sørensen and Paweł Urzyczyin, editors. Lectures
on the Curry-Howard Isomorphism, volume 149 of Studies in
Logic and the Foundations of Mathematics. Elsevier, 2006.

150. Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, and Si-
mon Helsen. Model-driven Software Development - Technology,
Engineering, Management. John Wiley & Sons, Ltd., 2006.

151. Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework. the eclipse se-
ries. Pearson Eduction, Inc., 2 edition, 2008.

152. Kurt Stenzel, Nina Moebius, and Wolfgang Reif. Formal Verifi-
cation of QVT Transformations for Code Generation. In Proc. of
the 14th Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS’11), volume 6981 of LNCS, pages 533–547.
Springer, 2011.

153. Martin Strecker. Modeling and Verifying Graph Transforma-
tions in Proof Assistants. Electr. Notes Theor. Comput. Sci.,
203(1):135–148, 2008.

154. Martin Strecker. Interactive and automated proofs for graph
transformations. Available at: http://www.irit.fr/

~Martin.Strecker/Publications/proofs_graph_

transformations.html, Accessed: 2017-02-22, 2012.
155. Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and

Franco Mazzanti. A state/event-based model-checking approach
for the analysis of abstract system properties. Sci. Comput. Pro-
gram., 76(2):119–135, February 2011.

156. Emina Torlak and Daniel Jackson. Kodkod: A Relational Model
Finder. In Proc. of the 13th Int. Conf. on Tools and Algorithms
for Construction and Analysis of Systems (TACAS’07), volume
4424 of LNCS, pages 632–647. Springer, 2007.

157. Javier Troya and Antonio Vallecillo. A Rewriting Logic Seman-
tics for ATL. Journal of Object Technology, 10:5: 1–29, 2011.

158. Dániel Varró. Automated formal verification of visual modeling
languages by model checking. Software and System Modeling,
3(2):85–113, 2004.

159. Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit
Kumar, Martin Suda, and Patrick Wischnewski. SPASS version
3.5. In Proc. of the 22nd Int. Conf. on Automated Deduction
(CADE’09), volume 5663 of Lecture Notes in Computer Science,
pages 140–145. Springer, 2009.



26 Sebastian Gabmeyer et al.

160. Shao Jie Zhang and Yang Liu. An Automatic Approach to
Model Checking UML State Machines. In Proc. of the 4th Int.
Conf. on Secure Software Integration and Reliability Improve-
ment (SSIRI’10), pages 1–6. IEEE Computer Society, 2010.

161. Paul Ziemann and Martin Gogolla. OCL Extended with Tempo-
ral Logic. In Proc. of the 5th Int. Andrei Ershov Memorial Conf.
on Perspectives of Systems Informatics (PSI’03), volume 2890 of
LNCS, pages 351–357. Springer, 2003.


