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Abstract. Self-adaptive software systems modify their behaviour at runtime in
response to changes in the system or its environment. The fulfilment of the system
requirements and reachability of the system goals needs to be guaranteed even
in the presence of adaptations. Thus, a key challenge for self-adaptive software
systems is assurance. Traditionally, confidence in the correctness of a system is
gained during system development. Evidence to support assurance is collected
based on a variety of activities and processes performed at development time. In
the presence of self-adaptation, however, some of the assurance tasks need to be
performed at runtime. This calls for continuous assurance throughout the software
life cycle. One of the most promising avenues of research in this area is to use
models at runtime as a foundation for developing runtime assurance techniques.
This chapter focuses on investigating the use of models at runtime for assurance
of self-adaptive software systems. It defines what we understand by a model at
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runtime, specifically for the purpose of assurance, and puts this definition into
the context of existing work. We then outline selected research challenges. The
chapter concludes with an exploration of selected application areas where models
at runtime could contribute a considerable value proposition compared to existing
techniques.

1 Introduction

Self-adaptive software (SAS) systems modify their behaviour at runtime in response to
changes in the system or in its environment.1 A SAS system generally consists of the
part that delivers the basic function or service, often referred to as the target or managed
system, and the part that manages or controls that target system through an adaptation
process, often referred to as the controller [MAB+02] or autonomic manager [KC03].
The target system can be viewed as a steady-state program [ZCG07]. It is not adaptive
and applicable for one specific execution environment. The controller is the part of a
SAS system that can, via the invocation of an adaptation process, transform this steady-
state program to a different steady-state program—one that is suitable for a different
set of environment constraints. As such, the steady-state program that delivers the ba-
sic function or service of a SAS system is the target of the adaptation process that is
managed by the controller. For non-adaptive systems design-time assurance techniques
are used to ensure requirements conformance. Design-time assurance comprises sev-
eral disciplines including software quality engineering, assurance and control; software
safety; software reliability; software security; as well as software verification and val-
idation. In the presence of runtime adaptations in a SAS system the fulfilment of the
system requirements and the reachability of the system goals need to be guaranteed at
runtime. Thus, a key challenge for SAS systems is to develop runtime assurance tech-
niques.

The IEEE Standard Glossary of Software Engineering Terminology defines assur-
ance as “a planned and systematic pattern of all actions necessary to provide adequate
confidence that an item or product conforms to established technical requirements”
[IEE90]. 2 Since a SAS system modifies itself at runtime due to changes in its exe-
cution environment or its functional and non-functional requirements, assurance tasks
necessary to provide confidence that the software conforms to its goals must be per-
formed not only at design time but also at runtime—either continuously or whenever
the system adapts.

In practice, assurance tasks may comprise verification, validation, test, measure-
ment, conformance to standards, certification and other tasks—all contributing towards
gaining a high degree of confidence that both the processes employed and the end prod-
uct satisfy established technical requirements, standards, and procedures. Given the
increasing use of self-adaptive software systems in high-assurance applications (e.g.,

1 This chapter uses the acronym SAS to refer to any software application that exposes self-*
features.

2 This chapter uses the term software assurance rather than the more specific term software
quality assurance to not only include software quality concerns but also safety, reliability and
security concerns.
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power-grid management, transportation management systems, telecommunication sys-
tems and health-monitoring), it is of paramount importance to develop rigorous methods
and techniques for the runtime assurance of these systems.

Assurance is required for both, functional properties (i.e., those describing specific
functions of the system such as the result of a calculation) and non-functional proper-
ties (i.e., those describing the operational qualities of the system such as availability,
efficiency, performance, reliability, robustness, security, stability, and usability). Guar-
anteeing these properties at runtime in SAS systems is particularly challenging due to
the varying assurance needs posed by a changing system or execution environment,
both fraught with uncertainty. Nevertheless, the properties specified in the system re-
quirements need to hold before, during, and after adaptation.

Software assurance for traditional infomation systems is chiefly a software design
or development concern. For highly dynamical or self-adaptive systems continuous as-
surance over the entire life cycle is essential. Thus, for software systems that change
or evolve at runtime, software assurance becomes a critical runtime obligation. Con-
tinuous assurance throughout the entire software life cycle provides unprecedented op-
portunities for monitoring, analysing, guaranteeing, and predicting system properties
throughout the operation of a software system. The fact that many variables that are
free at development time are bound at runtime allows us to tame the state space explo-
sion, thus enabling the investigation of states that could not have been considered at
development time. This provides new opportunities for runtime verification and valida-
tion (V&V) leading to assurance of critical system properties at runtime [TVM+12].
One of the most promising avenues of research in this area is to use models at runtime
as a foundation for developing runtime assurance techniques.

This chapter presents models at runtime as a foundation for the assurance of SAS
systems and discusses related research challenges. Section 2 reviews assurance criteria,
both functional and non-functional, whose fulfilment depends on or can be affected by
self-adaptivity and therefore requires assurance at runtime. Section 3 classifies mod-
els at runtime and discusses the application of runtime models from two perspectives.
The first one refers to the use of models at runtime at the three levels of dynamics
that have been identified as important drivers in the engineering of SAS systems. The
second perspective involves the autonomic or MAPE-K loop as a reference model for
engineering adaptation mechanisms, and concerns the application of runtime models to
support assurance tasks throughout the adaptation process. Section 4 identifies research
challenges in the area of runtime models for SAS system assurance tasks. Section 5
characterizes existing methods used for assurance of SAS systems. Section 6 describes
selected application areas that exhibit the type of assurance challenges that we consider
can be addressed using models at runtime. Finally, Section 7 concludes the chapter.

2 Assurance Criteria for Self-Adaptive Software Systems

Assurance criteria for SAS systems include functional and non-functional requirements
whose fulfilment depends on or can be affected by self-adaptation. It is important to
distinguish between assurance criteria applicable to the target system (i.e., criteria that
relate to properties of the current or a potential future state of that system), and assur-
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ance criteria applicable to the adaptation process itself. Sections 2.1 and 2.2 discuss
functional and non-functional requirements as fundamental assurance criteria for SAS
systems.

2.1 Functional Requirements

A functional requirement specifies a function that a system or system component must
be able to perform [IEE90]. Functional requirements are typically formulated as pre-
scriptive statements to be satisfied by the system. While it is still common in practice
to describe functional requirements using natural language, the potential for misinter-
pretation of such descriptions is considerable due to the inherent ambiguity of natural
languages. Formal languages with well defined semantics provide a far more rigorous
and reliable means for specifying functional requirements in the context of system de-
sign. We will therefore restrict our discussion to formal descriptions.

Functional requirements directly relate to the functions f of a system. They are
typically defined in terms of relating the inputs I to the system with the outputs O of
the system, with the expectation that f : I → O As such, functional requirements
describe “what” the system has to provide to meet the expectations of its users, while
non-functional requirements describe “how” such functional services should be pro-
vided.

The respective function may be a calculation, a dialogue flow in user interaction,
data manipulation or other specific functions the system should execute. Taking the
variety of systems into consideration, the input may be human commands as well as
sensor input such as temperature or video streams. Similarly, the output may be pic-
tures or continuous video as well as the correct execution of an actor, stopping a car
upon activating its brake or opening of a valve. It should be noted that some systems
produce continuous output based on continuous streams of inputs and typically never
terminate. Functional requirements always deal with the system behaviour visible at the
system boundaries (i.e., system interfaces). These boundaries can be humans, sensors,
and actuators but also interacting systems.

Adaptivity of a system may become necessary to cope with changes in the envi-
ronment, which are visible at the boundaries and influence the system’s behaviour ex-
ternally, or changing requirements, which leads to internal changes within the system,
becoming observable at the system boundaries. While the former is a reaction to the
system context and leads to retaining the functional behaviour in the presence of exter-
nal change, the latter is a reaction to human (or system configuration) needs and leads
to behavioural adaptations to accommodate the new requirements.

The specification of functional requirements can either concentrate on the functional
behaviour of the system itself and disregard the context, thus assuming that the system is
robust against any context variation. Alternatively, functional requirements can take into
account the context of the system as well as explicit assumptions about its behaviour.
The functional requirements are formalized in an “assume/guarantee” style—assuming
a set of conditions or restrictions holds, then the application of the function guarantees
that the results satisfy a set of properties. The definition of pre- and postcondition is an
example of this style of functional requirements specification. The precondition takes
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the input and the system state into account, but does not typically allow full definition
of context behaviour.

While functional requirements are always system specific, it is possible to classify
them into distinct sets of properties. The most commonly used classification was in-
troduced by Alpern and Schneider who distinguish between safety properties that state
that “nothing bad” will happen during the execution of a system and liveness proper-
ties that stipulate that “something good” will eventually happen during the execution of
a system [AS87]. Safety and liveness properties have an important difference when it
comes to demonstrating that they hold for a given system. If a system violates a safety
property, then there exists a finite execution of the system to demonstrate this. This
does not hold for liveness properties. A liveness property cannot be violated based on
finite executions of a system; this is because, irrespective of the system behaviour cap-
tured in the finite execution, something good could still happen later. In general, the
verification of liveness properties requires infinite executions. This is a fundamental
difference between these two classes of properties with profound consequences on the
methods suitable to verify them. In practice, liveness properties are often constrained to
be within bounds to enable verification.

The kind of system and the level of detail required are key factors that determine
how functional requirements are described. Behavioural specifications can rely on re-
cent input and output, which is useful for stateless services, but can include the full his-
tory of inputs and outputs (e.g., history streams [BS01]) or an abstraction thereof, using
states to capture the input history ((i.e., various kinds of state-based specifications). Be-
havioural specifications may abstract from time (event driven) or include various forms
of time, such as equidistant time slices as in synchronous or clocked systems, continu-
ous time as in mathematical calculus and even super dense time, where there may exist
several events at the same time, but with internal order [Lee09].

Common formalisms used to express functional requirements are Linear-Time Tem-
poral Logic (LTL) [Pnu81] and Computational Tree Logic (CTL) [BAMP81], both in-
cluded in the powerful logic CTL* [CE82]. Several languages have been proposed to
facilitate the specification of functional properties, examples range from basic assertion
languages such as PSL [Acc04], used in electronic system design, to scenario-based
visual languages, such as Message Sequence Charts [HT04] or Property Sequence
Charts [AIP07]. These languages are often less expressive than pure temporal logic,
but are designed to be intuitive and user friendly.

Beyond property-based specification, various algebraic specification and system
modelling techniques have been developed including Statecharts [], UML and its var-
ious descendants, SDL [], VDM [], Z [], the B Method [], Event-B [ABH+10], ar-
chitectural description languages [], Mathlab/Simulink [] to name a few representative
examples. Many of these techniques support automatic code generation from the sys-
tem model as well as formal reasoning about the model at varying levels of abstraction.
Traditionally, these techniques are used during system design to ensure the system

Until now we only considered the system boundaries. However, today many sys-
tems are decomposed into distributed subsystems and components. Sometimes they
need physical distribution as in plants or airplanes to control the overall system, some-
times they need computational or storage distribution as in large data bases or the cloud.
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Sometimes the distribution is for reliability reasons (e.g., allowing redundancy or sepa-
rating control processors from controlled computations).

To be able to describe adaptive systems, it is important that the formalism allows
certain forms of under-specification, but also allows to constrain this freedom of the im-
plementation accordingly. First of all this is important to allow the modelling of band-
widths of acceptable behaviour. Only if the system violates this bandwidth, adaptation
needs to take place. Second, if the system is itself distributed, non-determinism natu-
rally occurs and thus must be captured. Third, not all inputs are important enough to be
taken into account in a systems specification, but some slight change of the behaviour
may occur dependent on invisible inputs.

As a remark, we can view the system context as another system comprising the rest
of the world. Just the inputs and outputs are inverted. Having a specification mechanism
that allows us to describe under-specification, we are able to describe the unconstrained
behaviour of the context.

2.2 Non-Functional Requirements

Chung et al. [CPL09] discuss definitions and possible classifications of non-functional
or extra-functional requirements. Their working definition states that while functional
requirements directly relate to a function f : I → O of the software system, non-
functional requirements are just about anything that addresses characteristics of f , I ,
O or relationships between I and O. Due to the fact that several of these characteris-
tics end with the suffix “-ility” (e.g., usability, dependability, verifyability, availability,
interoperability, and scalability), they are sometimes referred to as the -ilities.

Non-functional requirements such as performance, dependability, safety, security,
and their corresponding quality attributes such as latency, throughput, capacity, confi-
dentiality, and integrity can constitute assurance concerns from the perspective of both
the target system and the adaptation mechanism. Avižienis et al. [ALRL04] and Bar-
bacci et al. [BKLW95] provide two comprehensive taxonomies of software quality at-
tributes useful for the identification of assurance criteria in SAS systems.

It is necessary to validate and continually monitor non-functional requirements on
both the target system and the adaptation process, for example via probabilistic mon-
itoring [GZ09,Gru11]. The desired properties of the target system can change due to
changes in the target systems context-of-use (e.g., user, platform or environment con-
text [SCF+06]), as well as changes introduced by adaptations. In the latter case, it is
partially possible to derive the impact of adaptations on properties of the target system
by analysing adaptation properties such as stability, accuracy, settling time, small over-
shoot, and robustness. It is possible to take advantage of this relation to detect some
of the consequences of adaptations performed by controllers (i.e., monitors, analysers,
planners, and executors) or imposed by a changing environment (e.g., a failing compo-
nent or a deficient Internet connection).

There are several non-functional assurance criteria which can be better guaranteed
at runtime than at design time. For example, it is easier to assess latency when it is
possible to measure and continually monitor delay times in the running system. Ta-
ble 1 presents examples of non-functional assurance criteria with corresponding quality
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attributes (cf. Columns 1 and 2). Adaptation properties (cf. Column 3), defined as as-
surance criteria that concern the adaptation process [VMT+11b], can be mapped to
quality attributes measurable at runtime and at both the target system and the adapta-
tion mechanism. Where to measure a property, either of the adaptation process or the
target system, will depend on its definition and its assessment metric. For example,
settling time, defined as the time required for the adaptation process to take the tar-
get system to a desirable state, must be measured on the target system since the need
for the adaptation and the conditions for a desired state can be observed at this level
only. Moreover, settling time can be measured through different quality attributes. It
will depend on the non-functional property that must be satisfied. For example, if the
concern is performance, settling time can be observed in terms of the time the system
takes to perform a particular process. When the accepted time limit for this process is
violated, the adaptation process will be invoked. Once the process time is back to the
desired limits, the target system has reached its desired state. Settling time will then be
the time elapsed between the moment at which the need for adaptation was detected
and the moment at which the system reached the accepted processing time. Villegas et
al. provide a more comprehensive catalogue of adaptation properties and corresponding
quality attributes useful to drive the identification of assurance criteria applicable to the
adaptation process [VMT+11b]. This study also surveys definitions for the assurance
criteria presented in Table 1.

Table 1. Examples of non-functional assurance criteria that can be better guaranteed at runtime
than at design time as well as their mapping to quality attributes and adaptation properties. A map-
ping between adaptation properties and quality attributes is suggested as a starting point toward
the identification of metrics that supports the evaluation of the adaptation process [VMT+11b].

Assurance Criteria
(non-functional)

Quality Attribute Adaptation Properties

Latency Performance
Stability, accuracy, settling time, overshoot,
scalability

Throughput Performance
Stability, accuracy, settling time, overshoot,
scalability

Capacity Performance
Stability, accuracy, settling time, overshoot,
scalability

Safety Dependability Stability

Availability Dependability Robustness, settling time

Reliability Dependability Robustness

Confidentiality Security Security

Assuring these criteria at runtime requires effective monitoring mechanisms and
models at runtime to analyse guarantee and predict the qualities of the target system
and the adaptation process dynamically. To implement these mechanisms effectively
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requires a solid understanding of the interdependencies between non-functional assur-
ance criteria, quality attributes and adaptation properties as exemplified in Table 1. This
mapping constitutes a valuable starting point to identify assurance criteria and adapta-
tion properties. On the one hand, this mapping supports the identification of assurance
criteria according to the target system’s desired quality attributes. For example, latency,
throughput and capacity are relevant assurance criteria when performance is the negoti-
ated quality attribute. On the other hand, it is useful for the identification of adaptation
properties that must be guaranteed in the adaptation mechanism according to quality
attributes. For example, when performance is a key quality attribute for the target sys-
tem, stability, accuracy, settling time, small overshoot and scalability constitute relevant
properties to be guaranteed in the adaptation process. Of course these mappings also
depend on the actual target system, its technical implementation, and the performed
adaptations.

3 Models at Runtime (MART)

SAS systems require rethinking the notion of software life cycle for which the dis-
tinction between development time and execution time stages is not meaningful any
more (e.g., PLASTIC,14, SMScom15). Recent approaches recognize the need to pro-
duce, manage and maintain software models all along the software’s life time to as-
sist the realization and validation of system adaptations while the system is in execu-
tion [Inv07,BBF09,BG10,ACDR+11].

By building on this conclusion, our aim is to exploit models of different aspects
of the application (e.g., requirements, specification, design, architecture, implementa-
tion, infrastructure, instrumentation, and context-of-use) and lifecycle phases (e.g., de-
sign time, development time, configuration time, load time, and runtime) to deal with
the inherent dynamics of self-adaptation in software systems. These abstractions, com-
bined with suitable instrumentation, could provide effective techniques for monitoring,
analysing, guaranteeing, and predicting system properties throughout the operation of
a SAS system.

The kind of models used at runtime can be classified by (1) their purpose—descriptive,
prescriptive, constructive, or predictive, (2) their underlying model languages—for ex-
ample, the 14 UML 2.2 structural and behavioural diagrams, Statecharts, Petri Nets, and
logic based models, such as Temporal Logics, and (3) the aspects they describe—data
structure, task or process state, I/O behaviour or interaction pattern.

One of the main ideas of using models at runtime (MART) for assurance is to exploit
the causal connection [Mae87] between the model and its system under study at run-
time. This connection determines synchronization between the model and the running
system. On the one hand, runtime models can change to reflect changes in the running
system correctly—we say that they are in descriptive causal connection. This enables
assurance techniques to analyse abstract models instead of the actual implementation of
the application to collect information for assurance. On the other hand, the model can

14 FP6 IST EU PLASTIC project http://www.ist-plastic.org/.
15 Carlo Ghezzi, ERC Advanced Investigator Grant N. 227977 [2008-2013]
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be changed to cause an adaptation of the application (i.e., prescriptive causal connec-
tion). This can be used to implement adaptations of the running system that are required
to assure system properties.

In the scope of assurance, models at runtime can be used as a basis for assuring
functional as well as non-functional properties of the system as described in Section 2.
From this perspective, models can have various roles. Depending on what the models
describe, they can be used as a source of information about aspects of the running sys-
tem. For instance, goal models can represent the requirements that need to be assured,
the current state of the system, adaptations or the context-of-use. Models at runtime can
have several purposes for runtime assurance. Among others, they can be used as infor-
mation sources for monitoring aspects of the running system, to influence the system
via model manipulation, and as a basis for analysis methods such as model-based verifi-
cation and model-based simulation. For analysis methods, models are usually beneficial
as they provide easy-to-access high level knowledge about the system.

Development time modelling approaches already exploit these advantages and en-
able the assertion of certain properties of a developed system. The use of models at
runtime has the advantage that some of the analysis constraints are relaxed as the cur-
rent runtime state is available for reasoning, reaction, and regulation. At development
time full assurance is required to reason about all possible states. Several of these vari-
ables which are unknown at development time are bound at runtime and can allow for a
more focused analysis of the current state and possibly several neighbouring ones. This
is especially useful for factors which can only be estimated at development time (e.g.,
network delay). A running system can continually monitor these aspects and react to
them.

The following subsection discusses the role that models at runtime can play to sup-
port the assurance of SAS systems at three levels of dynamics that have been identified
as important drivers in the engineering of SAS systems. Subsection 3.2 introduces a
way to integrate runtime models into feedback loops for continuing runtime assurance.

3.1 Models at Runtime and the Dynamics of Self-Adaptive Software

Researchers from the Software Engineering for Adaptive and Self-Managing Systems
(SEAMS) research community identified three subsystems that are key in the design of
effective context-driven self-adaptation: the control objectives manager, the adaptation
controller, and the context monitoring system [VTM+12]. These subsystems represent
three levels of dynamics in self-adaptation that can be controlled through a feedback
loop each, i.e. the control objectives, the adaptation, and the monitoring feedback loops
respectively. Villegas et al. provide a comprehensive characterization of these three
levels of dynamics in SAS systems[VTM+12].

Assurance criteria in general drive the control objectives, adaptation, and monitor-
ing feedback loops, as well as their interactions, and thereby, govern the behaviour of
both the target system and the adaptation process. For example, system administrators
can provide the control objectives manager with the required specifications. Then, the
control objectives manager sends these specifications, in the form of adaptation goals,
to the adaptation controller, and, in the form of monitoring requirements, to the monitor-
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ing system. Thus, these specifications govern the behaviour of the adaptation process,
and the behaviour of the SAS system through the adaptation process.

MART to represent assurance 
criteria  (e.g., non-functional 

requirements)

MART to represent the target 
system, adaptation plans and their 

relationships with assurance criteria

MART to represent context, 
monitoring strategies and their 

relationships with assurance 
criteria and adaptation models

Control Objectives
(Assurance Criteria)

Adaptation

Monitoring

Legend:
MART Coordination

Fig. 1. The three levels of models at runtime (MART) for the assurance of SAS systems.

We argue that runtime models provide abstractions that are crucial to support the
feedback loops that control the three levels of dynamics identified in SAS systems.
From this perspective, models at runtime (cf. MART in Figure 1) could be developed
specifically for each level of dynamics to support the control objectives manager, adap-
tation controller, and the monitoring system as depicted in Figure 1. The figure also
shows the interactions between these models and between the respective subsystems in
a SAS system.

At the Control Objectives level, models at runtime represent requirements specifica-
tions subject to assurance in the form of functional and non-functional requirements. At
the Adaptation level, models at runtime represent states of the managed system, adap-
tation plans and their relationships with the assurance specifications. At the Monitoring
level, models at runtime represent context entities, monitoring requirements, as well
as monitoring strategies and their relationships with assurance criteria and adaptation
models. Most importantly, runtime models at these levels must have efficient and ef-
fective methods of interaction between them. This is because changes in requirement
specifications may trigger changes at both the adaptation and the monitoring levels,
and the associated runtime models. Similarly, changes in adaptation models may imply
changes in monitoring strategies or context entity models. In any case, runtime models
at the adaptation and monitoring levels must maintain an explicit mapping to the models
defined at the control objectives level which specify the requirements.

In summary, the architecture of SAS systems contains three interacting but func-
tionally self-contained levels, one each dedicated to control objectives, adaptation and
monitoring of the SAS system. Designing a SAS system for assurance, as opposed to
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leaving assurance to after system design, requires the tight integration of assurance ob-
jectives into each level in the SAS architecture. We argue that this can most effectively
be achieved by introducing dedicated runtime models that embody specific assurance
criteria, focused either on the target system or the adaptation process, and thus support
the assurance process at each of these levels.

3.2 Models at Runtime along the Adaptation Process

As a starting point for a research methodology we analyzed the MAPE-K loop. Kephart
and Chess proposed this autonomic manager as a foundational component of IBM’s
autonomic computing initiative [KC03]. It constitutes a reference model for designing
and implementing adaptation mechanisms in SAS systems. The MAPE-K loop is an ab-
straction of a feedback loop where the dynamic behaviour of a managed system is con-
trolled using an autonomic manager. The MAPE-K comprises four phases—Monitor
(M), Analyzer (A), Planner (P) and Executor (E)—that operate over a knowledge base
(K).

1. Monitors to gather and pre-process relevant context information from entities in
the execution environment that can affect the desired properties and from the target
system;

2. Analysers to support decision making on the necessity of self-adaptation;
3. Planners to generate suitable actions to affect the target system according to the

supported adaptation mechanisms and the results of the analysis phase;
4. Executors to implement actions with the goal of adapting the target system; and
5. A knowledge base to enable data sharing, data persistence, decision making, and

communication among the components of the feedback loop, as well as arrange-
ments of multiple feedback loops (e.g., the Autonomic Computing Reference Ar-
chitecture (ACRA) [IBM06]).

To illustrate the role of models at runtime as enablers of assurance mechanisms for
self-adaptation, Figure 2 presents an extension of the MAPE-K loop, where assurance
tasks complement each stage of the loop [TVM+12], and the knowledge base is re-
placed by models at runtime (MART). We aptly name the feedback loop depicted in
this figure MAPE-MART loop.

MAPE elements interact with models at runtime along the adaptation process to ei-
ther obtain or update information about system states, the environment, and assurance
criteria. Monitors keep track of relevant context information according to monitoring
conditions in the system itself (assurance monitors) and its adaptations (adaptation
monitors). Monitors interact with models at runtime for example to make monitored
data available throughout the adaptation process, or to monitor the states of models
or changes in assurance criteria. Analysers will then use monitored context to identify
whether desired conditions are being or could potentially be violated. Analysers can
also update models with identified symptoms. Again, we can distinguish between as-
surance analysers analysing the system itself and adaptation analysers analysing the
adaptation. Adaptation planners use the symptoms provided by analysers to define a
new adaptation plan. Adaptation plans can be defined in the form of models that are
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MART Target
System

Monitor

Environment

Planner Executor

Analyzer

Adaptation
Monitor

Assurance
Monitor

Adaptation
Analyzer

Assurance
Analyzer

Adaptation
Planner

Assurance
Planner

Adaptation
Executor

Assurance
Executor

MAPE elements-MART interactions
Information and control flow 

Fig. 2. MAPE-MART loop: The MAPE-K loop from autonomic computing extended with models
at runtime, and assurance instrumentation as foundational elements for the assessment of SAS
systems.

processable by executors to adapt the target system. Then, assurance planners check
whether the plan is correct with respect to the assurance criteria. Finally, adaptation
executors perform the plan and after that, assurance executors check whether both the
system remains in a safe state and the desired properties are accomplished. These veri-
fications can be optimized using runtime models.

The assurance of the target system is performed by the adaptation mechanism it-
self. This is what most contributions on SAS systems have done so far: implementing
an adaptation mechanism to control the dynamic behaviour of a target system to sat-
isfy requirements [VMT+11b]. Nevertheless, as depicted in Figure 2, assurance must
be implemented throughout the adaptation mechanism to guarantee desired properties
even during adaptation. As an example of assurance intended to guarantee the adapta-
tion process, suppose settling time, the time required for the adaptation mechanism to
take the target system to the desired state, has been defined as the assurance concern
for a particular adaptive system. Thus, assurance mechanisms must keep track of the
time the adaptation mechanism is taking to complete the adaptation process—generally
goals must be reached within a suitable time interval. An extremely long adaptation
process could be useless or even detrimental to the system’s safety. The desired thresh-
olds, monitoring conditions, and entities to be monitored can be specified using mod-
els at runtime. For instance, using goal-based models [WSB+09] or contextual RDF
graphs [VMT11a]. Executor mechanisms for dealing with this problem may include
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switching to a more effective adaptation algorithm, or adapting models used throughout
the process.

The following section analyses short- and long-term challenges related to the ap-
plication of models at runtime in the assurance of SAS systems. That is, the use of
models at runtime as enablers for assurance tasks in the adaptation process as depicted
in Figure 2.

4 Research Challenges for Assurance at Runtime

This section presents selected research avenues and research challenges for the assur-
ance of SAS systems using runtime models.

4.1 Research Avenues

Software assurance is a large field with many subfields (e.g., software quality, V&V,
safety, and several ’ilities’) that spans the realms of software engineering, systems engi-
neering, control engineering, and many other engineering disciplines. From a software
engineerg perspective assurance at runtime appears to be a rather recent research topic.
In contrast runtime assurance in control engineering traces its roots to the industrial
revolution, to devices such as the centrifugal governor. This device used a flyball mech-
anism to sense the rotational speed of a steam turbine and adjust the flow of steam into
the machine. By regulating the turbines speed, it provided the safe, reliable, consistent
operation that enabled the proliferation of steam-powered factories [MAB+02].

In an instrumented, interconnected and intelligent world where not just everyone is
conversing, but also every thing is talking to every other thing constantly, control and
runtime assurance are core components in dynamical systems, providing high perfor-
mance, high confidence, and reconfigurable operation in the presence of uncertainties.
The continuous integration of sensors, networks, cloud computing, and control presents
significant opportunities for engineering in general and software engineering in par-
ticular. A key goal is to provide certifiable trust in resulting systems which is a truly
formidable challenge for runtime software assurance.

Over the past 20 years, several research venues (i.e., journals, conferences, and
workshops) have emerged in the broad software engineering research community to
discuss the design and evolution as well as assurance of self-* systems including self-
adaptive systems, self-managing systems, self-healing, autonomic systems, self-organizing
systems as well as real-time systems.

Mining the rich histories, theories and experiences of fields such as biology, control
engineering, and software engineering are worthwhile starting points for assurance at
runtime research. In particular, we need survey papers that investigate models used for
design time and runtime assurance techniques in these fields including discussions on
the synergy between them. Moreover, it is useful to relate canonical practical applica-
tions to these findings. In a most stimulating 2002 control survey paper Murray et al.
posit that in modern control feedback is a central tool for uncertainty management. By
measuring the operation of a system, comparing it to a reference, and adjusting avail-
able control variables, the controller can assure proper operation even if its dynamic
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behaviour is not fully known or external disturbances its behaviour. In software this
reference can be realized with runtime models and evidence for assurance is gathered
by checking conformance to the reference model. Murray et al. argue that the challenge
is to go from the traditional view of control systems as a single process with a single
controller, to recognizing control systems as a heterogeneous collection of physical and
information systems, with intricate interconnections and interactions [MAB+02]. One
manifestation of this is the three levels of runtime control models discussed in Section 3.

The field of self-adaptive and self-managing systems has produced a spectrum of
runtime models and patterns with control-centric models at one end and architecture-
centric models at the end other. These models come with different attributes and prop-
erties that can be exploited for runtime assurance. There is plenty of room for research
to comparopen esearch probe and evaluate the benefits and synergy of these different
runtime model strategies [MKS09].

4.2 Selected Research Challenges

This section outlines selected open research problems and challenges encountered along
the research avenues presented in the previous section.

– Characterization of assurance criteria according to the separation of concerns.
Section 2.2 introduces a partial characterization of assurance criteria in the scope
of non-functional requirements. These should be completed. What are the proper-
ties to be ensured with respect to the target system? What are the properties to be
ensured with respect to the adaptation process? How do they relate? Which models
is their assurance based on?

– Analysis of methods and techniques according to assurance criteria. Functional
and/or non-functional requirements constitute the goals for self-adaptation. The ef-
fective application of models at runtime, as well as assurance methods and tech-
niques depends on whether the aim is to guarantee functional or non-functional
requirements. What are suitable methods and techniques to ensure functional re-
quirements using models at runtime? What are suitable techniques to ensure non-
functional requirements? How can the user be integrated into the assurance loop
for both functional and non-functional requirements?

– Analysis of assurance criteria, methods and techniques according to the SAS sys-
tem’s life cycle. It is clear that not all assurance tasks can be shifted to run time.
Factors like performance or the available run time memory can severely limit the
power of an assurance technique. Thus, it should be explored which assurance tasks
can be done in which phase of the SAS system’s life cycle. What properties can be
guaranteed at development, configuration, or load time as opposed to runtime? How
do dynamic models apply to properties that must be guaranteed at runtime? What
lightweight techniques can be applied to runtime assurance of SAS systems? How
can models at runtime leverage the application of such lightweight techniques?
How can we partition assurance concerns optimally throughout the system’s life
cycle? What are the opportunities to exploit techniques that become applicable at
runtime but not at development time? What development-time assurance methods
and techniques and models readily extend to runtime?
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– Analysis of models at runtime techniques for the assurance of the adaptation pro-
cess. As presented in Fig. 2, models at runtime play an important role as the ab-
straction mechanisms required to support every stage of the adaptation process.
What models at runtime techniques are useful for supporting the relevance of run-
time monitoring with respect to the assurance criteria? Moreover, to deal with the
dynamic nature of functional and non-functional requirements, and the execution
environment, every component of the adaptation process can be an adaptive com-
ponent as well: how can models at runtime support changes in monitors, planners
and executors according to changes in functional and non-functional requirements?
What are suitable models at runtime techniques to ensure desired properties taking
into account the different levels of dynamics in SAS systems (i.e., changes in re-
quirements, relevant context, adaptation mechanisms, and the target system itself)?

– Analysis of assurance criteria, models and techniques from the perspective of par-
ticular application domains. In order to provide the developer of a SAS system
with an indication of potential assurance criteria, models and techniques their clas-
sification with regards to the application domains they can be applied in is very use-
ful. What assurance techniques are application-independent and what are domain-
dependent? What properties are relevant for which application domains? What are
assurance methods and models at runtime techniques applicable or not applicable
in which application domains? (e.g., mission-critical systems, embedded systems,
real-time systems).

– Assurance of models at runtime. If runtime models form the foundation of assur-
ance tasks the quality of these tasks directly depends on the quality of the models.
How do we evaluate models at runtime? What are the properties that must define
the quality of a model at runtime (e.g., accuracy, performance, or safety)? How do
these properties differ depending on the application domain?

– Monitoring infrastructure. One major concern of runtime assurance is the extrac-
tion of the required information from evolving models. How can we efficiently
monitor models at runtime in order to gather knowledge as a basis for assurance?
What kinds of models are suited for which assurance criteria?

– Compelling reasons for models at runtime. In order to convince researchers and
practitioners to work on this subject we need compelling reasons for assurance us-
ing runtime models. What are the compelling advantages of using assurance based
on models at runtime in comparison with assurance based on development time
models? What are killer applications to demonstrate the challenges and opportuni-
ties for assurance using models at runtime?

– Laws of probability theory and monitoring of extreme probabilities. Non-functional
requirements often need to be statistically quantified. This can lead to additional
complications. What are the boundaries of monitoring capabilities for non-functional
attributes that need to be statistically quantified? How can we effectively reason
about probabilistic quality attributes where the desired probabilities are close to
zero or one and thus extreme statistical methods are required?
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4.3 Longer-term research challenges

– Transitioning development-time assurance methods to runtime. Assurance at run-
time, compared to development time, is really a different problem. The state space
at runtime is more constrained than at development time in that many free vari-
ables are bound at runtime. The challenge is to take advantage of the additional
information available at runtime to improve the quality and the efficiency of the
assurance assessment. What development-time assurance methods and techniques
(i.e., the entire spectrum from light-weight to heavy-weight processing approaches)
and models (i.e., descriptive, prescriptive, constructive and predictive) readily ex-
tend to runtime? How do traditional assurance models and methods from domains
such as performance, safety, and reliability extend to runtime? Since a complete
transition will probably not be feasible in most instances, how can the methods be
partitioned between development time and runtime?

– Extending reference models for the assurance of SAS systems. Reference models
have already proven themselves useful in the developement of complex SAS sys-
tems. For good integration into existing research runtime assureance and models
should be integrated into these reference models. How can we extend reference
models for SAS systems to include models and assurance at runtime (e.g., MAPE-K
loop)? Can we leverage runtime assurance techniques from other disciplines (e.g.,
control theory)? Assuming models at runtime what reference architectures are ap-
propriate for assurance at runtime? What are appropriate assurance reasoning tech-
niques for different phases of the software life cycle (i.e., development, installation,
load, and runtime) and how can assurance results from different lifecycle phase be
combined to assure systems at runtime (e.g., incremental and compositional assur-
ance)? What are ideal applications to demonstrate the challenges and opportunities
for assurance using models at runtime?

– Partitioning runtime assurance. There is a variety of techniques that can be po-
tentially used for runtime assurance. In order to structure the landscape of possi-
ble approaches and provide an overview on which approach can be used in which
situation these approaches need to be partitioned. How can we partition runtime
assurance according the different types of runtime changes (e.g., dynamic context,
changing requirements, or evolving models)? How can we partition runtime assur-
ance with respect to the properties that are assured. How can we partition runtime
assurance with respect to the runtime models that are used for assurance. Are there
other approaches to partitioning runtime assurance and what do we gain from such
delineations?

– Qualification. In order to be applicable and trusted at runtime we require reliable
tools and techniques. Can we qualify tools/techniques for assurance/adaptation so
that they can be trusted to work on the system at runtime? What role do models at
runtime play in this context? Would specific models at runtime make it easier to
qualify a tool/technique?

– Developing incremental and compositional runtime assurance methods. Modern
software systems should be more and more designed with adaptation and runtime
evolution in mind. But even with good reactions to changes, the triggered adap-
tation should be performed preserving some properties. This calls for incremental
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and compositional assurance for SAS systems. An enabling step, in this direction,
is to split functional and non-functional requirements in sub-requirements associ-
ated with single services and components of the system. The idea is to decompose
the requirement specification into properties associated to the behaviour of small
parts of the system; in this way it is possible to check these properties locally, and
to deduce from the local checks whether the system satisfies the overall specifica-
tion. By decomposing the assurance task in such a way, it is not necessary to build a
complete model of the system and thus the state explosion problem can be avoided.
The main challenge of this approach is that local properties are typically not pre-
served at the global level essentially because of dependencies among the considered
subparts of the system. However, this decomposition promotes lightweight V&V
approaches because V&V activities can concentrate exclusively on subparts of the
system. Even though this can imply in some cases reducing the V&V power, on the
other side this will make V&V practical and efficient.

– Exploiting the synergy between runtime assurance and runtime V&V. Once we have
mechanisms to assess assurance at runtime there is opportunity assess assurance
continuously. In other words, the boundary between assurance and V&V becomes
fuzzy. The models for runtime assurance methods and techniques should include
properties such as frequency assessments, measures of accuracy, or rates of change.
The instrumentation of the SAS system should not only satisfy the needs of the
control process and V&V but also assurance needs.

– Software engineering education for runtime. Over the past 40 years software engi-
neering education has largely concentrated on design and implementation methods
and tools. There are many courses on software maintenance and evolution that deal
with issues way past system deployment. However, it is rare that maintenance and
evolution is discussed in the context of dynamic adaptation. Software engineering
courses that deal with pure runtime issues such as self-adaptation are few and far
between. However, to further the adoption of models at runtime techniques such
courses build an important foundation. Two key challenges for this entire field is
to figure out ways to integrate models, methods, techniques and tools for SAS sys-
tems into our existing software engineering courses and develop effective software
engineering training methods for traditional software engineers to deal with the
challenges of runtime issues.

5 Characterizing Assurance Methods

Researchers from communities related to the engineering of SAS systems have con-
tributed valuable approaches to the state-of-the-art assessment of adaptive software.
Rather than producing a comprehensive and systematic literature review of the state
of the art, the goal of this section is to provide an overview of selected contributions.
This initial characterization of assessment approaches provides a starting point for re-
searchers to build on top of these contributions, or propose new ones, motivated by the
challenges posed by the assurance of SAS systems, at runtime, supported by model-
based techniques.
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5.1 Classifying Assurance Methods According to Techniques

This section presents and classifies selected approaches applicable to the assurance of
SAS systems according to techniques and methods used for their realization.

Goal-oriented approaches. The first step towards assuring software systems is the iden-
tification of assurance criteria. This task can result more complex for functional require-
ments because it requires a deep understanding of the application domain. Nguyen et
al. argue for the effectiveness of goal-oriented techniques for deriving assurance cri-
teria from functional requirements specifications [NPT+09]. At development time (or
negotiation time), goal models can be used to specify stakeholder expectations for au-
tonomous systems, and the criteria for deciding about system acceptable behaviour can
be derived from these models. Moreover, goals, and especially high-level goals, have
been recognized as less volatile than specific system requirements [vLDL98]. Thus,
high-level goals seem to offer suitable candidate assurance criteria in highly dynamic
systems. On this assumption relies the work on continuous requirements engineering by
Qureshi et al. [QJP11,QLP11,QP10]. In their work, high-level goals representing sys-
tem functional behaviour, also called hard goals, are decomposed into hard sub-goals.
Alternative decompositions are qualified by quality criteria and user preferences that
contribute positively or negatively to their ranking. From this perspective, in the work
by Qureshi et al. requirements engineering at runtime focuses on capturing changes in
relevant context and user preferences. Upon these variations, the system must select the
most appropriate goal decomposition path to ensure the expected system behaviour.

The effectiveness of the assurance of SAS systems at runtime is highly dependent
on changing conditions of the execution environment that can affect not only the target
system, but also the adaptation mechanism and monitoring infrastructure. Ramirez and
Cheng proposed an effective approach to manage changes in monitoring conditions
(assessment criteria) according to environmental situations at runtime [RC11]. In their
approach, software requirements are modelled using goal models based on the RELAX
language [WSB+09]. Goal-based models are excellent candidates to be exploited as
models at runtime to keep track of changes in SAS system requirements dynamically.

Direct-testing based methods. Multi-agent based software systems expose high levels
of runtime dynamism. Therefore, testing techniques applicable to these systems can be
good candidates to be borrowed to the assessment of SAS systems using models at run-
time [NPB+09]. An important challenge in the validation of SAS systems at runtime
using direct-testing techniques is the generation of test cases that are relevant to the sys-
tem’s current situation and goals. Nguyen et al. exploit evolutionary testing techniques
to generate test cases automatically, based on quality functions, in the evaluation of
system performance [NPT+09]. Quality functions are associated to stakeholder expec-
tations of the behaviour of an autonomous system. They propose a systematic way for
deriving quality functions and thresholds from a goal-oriented requirements model for
the assessment of agents (e.g., the quality function associated to the goal of a cleaner
agent to maintain its battery can be a minimum battery level to be satisfied). The evolu-
tionary testing approach by Nguyen et al. allows the automatic generation of test cases
with increasing difficulty levels, guided by a fitness function associated to the quality
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of interest (e.g., a function inversely proportional to the total power consumption of the
system throughout its lifetime).

Model checking. Model checking [CGP01,PPS09] was proposed in the 1980s indepen-
dently by Clarke and Emerson [CE82] and by Quielle and Sifakis [QS82]. It assumes
an available mathematical model of a system and a given formal specification, in some
logical formalism, such as Linear Temporal Logic (LTL) [Pnu81] and Computational
Tree Logic (CTL) [BAMP81]. The goal of model checking is to check in an algorith-
mic way the consistency between the given model and the given specification. Model
checking has been largely used to verify hardware systems [BLPV95], which are by
nature finite state systems, but it has been also used in the software development indus-
try [CGP02]. Model checking has been used in several application domains to assure
desired system properties and can be used to verify the SAS system based on its run-
time models. The work presented in [WIdlIA12] surveys the use of formal methods
in self-adaptive systems. This study shows that no standard tools have been emerged
for formal modelling and verification of self-adaptive systems. However, authors found
that 40.0% of the surveyed studies use tools for formal modelling or verification and
that 30.0% of the studies that use tools employ it for model checking.

The work presented in [BHTV06] used model checking to check whether an ar-
chitecture is a refinement of another one. This is obtained by defining refinement rela-
tionships between abstract and concrete styles. The defined refinement criteria guaran-
tee both semantic correctness and platform consistency. The paper in [AZ12] proposes
an approach to model check goal-oriented requirements for self-adaptive systems. The
approach presented in [CdL12] makes use of probabilistic model checking to verify
resilience properties of self-adaptive systems; in other words the authors aims at veri-
fying whether the self-adaptive system is able to maintain trustworthy service delivery
in spite of changes in its environment. In architecture-based domains, Pelliccione et al.
exploit model checking at the software architecture level to verify properties of the sys-
tem, its components, and the interactions among components [PIM09,PTBP08]. To deal
with unplanned adaptations, Inverardi et al. proposed a theoretical assume-guarantee
framework to efficiently define under which conditions to perform adaptation by still
preserving the desired invariants [IPT09]. Model checking has also been applied in the
domain of agent-based systems, for instance to assure adaptability to unforeseen con-
ditions, behavioural properties, and performance [Gor01]. Finally, other approach use
Petri Nets to enable the analysis of properties like the reachability of a certain state or
deadlock-freeness [Mur89]. Some of these analysis capability have been extended to
enhanced versions of Petri Nets like Colored Petri Nets [Jen03] and applied to check
several aspects like performance [Wel02] or safety properties [CHC96].

Rule-based analysis and verification. Several approaches based on formal methods,
specially graph-based formalisms, have been proposed to leverage rule-based analy-
sis and verification of software properties. In particular, Becker and Giese proposed a
graph-transformation based approach to model correct SAS systems at a high-level of
abstraction. Their approach considers different level of abstractions according to the
three-layer reference architecture proposed by Kramer and Magee for SAS systems
in [KM07]. In their approach, Becker and Giese check the correctness of the modelled
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SAS system using simulation and invariant checking techniques. Invariant checking is
mainly used to verify that a given set of graph transformations will never reach a for-
bidden state. This verification process exposes a linear complexity on the number of
rules and properties to be checked [BBG+06]. In another approach, Giese et al. use
triple graph grammars as a formal semantics for specifying models, their relation and
transformations. These models can be used as a basis for analysing the fulfilment of
desired properties [GHL10]. In the self-healing domain, Bucchiarone et al. proposed
an approach to model and verify self-repairing system architectures [BPVR09]. In their
approach, dynamic software architectures are formalized as typed (hyper) graph gram-
mars. This formalization enables verification of correctness and completeness of self-
repairing systems. This approach was extended later by Ehrig et al. by proposing an ap-
proach to model self-healing systems using algebraic graph transformations and graph
grammars enriched with graph constraints [EER+10]. This allows formal modelling of
consistency and operational properties. In the quality-driven component-based software
engineering domain, Tamura et al. formalized models for component-based structures
and reconfiguration rules suing typed and attributed graph transformation systems to
preserve QoS contracts [TCCD12,Tam12]. Based on this formalization, they provide
means for formal analysis and verification of self-adaptation properties, both at devel-
opment time and runtime by integrating the AGG tool in their system.

Synthesis. Synthesis techniques provide another mechanism applicable to the assurance
of SAS systems. The goal of synthesis techniques is to generate the “correct” assem-
bly code for the (pre-selected and pre-acquired) components that constitute the speci-
fied system, in such a way that it is possible to guarantee that the system exhibits the
specified interactions only. [IST11] provides an instance of synthesis-based approaches
applicable to networking. This approach considers application-layer connectors by re-
ferring to two conceptually distinct notions of connector: coordinator and mediator. The
former is used when the networked systems to be connected are already able to com-
municate but they need to be specifically coordinated to reach their goal(s). The latter
goes a step forward by representing a solution for both achieving correct coordination
and enabling communication between highly heterogeneous networked systems.

Semantic web. Models at runtime are also required to support self-adaptation of context
management infrastructures (i.e., the third level of dynamics in SAS systems). To man-
age context dynamically, the explicit mapping between assurance concerns and relevant
context must be complemented with an explicit mapping between relevant context and
infrastructural elements of the monitoring infrastructure. In this way, whenever changes
in assurance criteria or relevant context occur, the dynamic adaptation of a representa-
tion of the monitoring strategy will trigger the adaptation of context sensors, context
providers and context monitors accordingly. Resource description framework (RDF)
graphs from semantic web are also promising candidates to be used as effective mod-
els at runtime in the assessment of SAS systems. Models at runtime in the form of
RDF graphs can be exploited to represent relevant context, monitoring strategies, sys-
tem requirements including assurance criteria, as well as to support changes in context
management strategies at runtime. Ontologies and semantic-web based rules, defined
according to the application domain, provide the means required to infer changes in the
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monitoring infrastructure according to changes in requirements, assurance criteria or
context [VMT11a,VMM+11].

5.2 Classifying Assurance Methods According to Non-Functional Criteria

This subsection classifies several runtime assurance approaches according to selected
non-functional requirements.

Safety. For systems that are self-adaptive or even self-organizing the application of tra-
ditional safety assurance approaches is currently infeasible the application of traditional
safety assurance approaches. This is mostly because these approaches heavily rely on a
complete understanding of the system and its environment, which is difficult to attain
for adaptive systems and impossible for open systems. A general solution approach is
to shift parts of the safety assurance measures into runtime when all required informa-
tion about the current state of the application can be obtained. Rushby was one of the
first software engineering researchers to consider adaptive systems in which methods
of analysis traditionally used to support certification at development time are instead
used at runtime, and certification is performed just-in-time [Rus07]. Based on this work
he later coined the notion of runtime certification [Rus08], using runtime verification
techniques to partially perform certification at runtime. Following the same core idea
of shifting parts of the assurance measures into runtime, Schneider et al. introduced
the concept of conditional safety certificates (ConSerts) [ST11]. ConSerts are prede-
fined modular safety certificates that have a runtime representation to enable dynamic
evaluations in the context of open adaptive systems. Some initial ideas concerning the
extension of ConSerts regarding other certifiable non-functional properties such as se-
curity have been published also [SBT11]. Priesterjahn and Tichy proposed a different
approach based on the application of hazard analysis techniques during runtime [PT09].
This approach is closely related to previous work of its authors where they introduced
a development-time hazard analysis approach for analysing all configurations a self-
adaptive system can reach during runtime [GT06]. A corresponding extension also con-
siders the time between the detection of a failure and the reconfiguration into another
configuration [PSWTH11].

Performance. For assurance of performance properties which mostly focus on response
time, throughput or utilization, common runtime models include regression models and
queuing network models (QNM). For example, Hellerstein et al. [HDPT04] as well as
Lu et al. [LAL+03] described dynamic regression models in the context of autonomic
computing and self-optimization. Menascé and Bennani used QNM as predictive mod-
els for avoiding bottleneck saturation and for on line capacity sizing [N.B03]. Ghanbari
et al. have used dynamically tuned layered queuing models, which are software specific
versions of QNMs, for online performance problem determination and mitigation in
cloud computing [GSLI11]. More recently, Barna et al. reported performance load and
stress testing methods on on-line tuned runtime performance models [BLG11].

Reliability and availability. Runtime assurance for reliability and availability properties
employ discrete time Markov chains, which are synchronized with the system and its
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usage profile. An example for a specific approach is QoSMOS [CGK+11], which uses
the KAMI approach [EGMT09] to keep the model including its parameters and the sys-
tem consistent. QoSMOS employs probabilistic model checking at runtime to evaluate
whether the system satisfies the current reliability requirements, where recently novel
approaches [FGT11,MG10] have been developed to deal with the time complexity.

Usability. In applications with adaptive user interfaces it is often impossible to test
each adaptation state with real users. Therefore, automated usability evaluation of such
user interfaces often relies on models of the user or user interactions to automatically
evaluate states of user interfaces [IH01]. Quade et al. introduced an approach that
evaluates the usability of the current state of the user interface using models at run-
time [QBL+11]. The evaluation is based on a simulation of user interactions based
on the model of the user interface and a model of the user. Having these techniques
available at runtime enables a more detailed modelling of the user as the model can be
checked against data from the actual user interaction.

6 Compelling Applications for Models at Runtime

This section introduces application exemplars for which runtime models can play a ma-
jor role in the assurance of desired properties and system goals. The goal of this section
is to provide researchers with a catalogue of “killer applications” useful to conduct case
studies on the assurance of SAS systems using models at runtime.

Kaleidoscope. Kaleidoscope is a multi-channel multimedia video streaming and video
on demand system. Imagine an Olympics game or a football match where millions of
users are simultaneously streaming, watching and querying videos about the event. The
Kaleidoscope application aims to provide/share best quality video for its users. For this,
Kaleidoscope must act as a proxy server that is used to store and forward multimedia
contents to user devices. A device can be a notebook, a smartphone or a personal digital
assistant (PDA). Kaleidoscope must detect both the video source and the user target
device. Kaleidoscope is required to adjust or switch itself at runtime from one config-
uration variant to another, by providing best quality video to users concurrently and
reliably. The broadcast is fetched from a video source via TV cable (TV broadcast) or
either wired or wireless (Webcast) Internet connection. Users can configure preferences
using the client application.

Autonomous Vehicle Service. Lets assume that the legal issues on autonomous cars
will be solved. Several steps in the direction of autonomic driving are carried out by
many car manufacturers currently, but the boldest steps are undertaken by Google that
even has managed to get a license for an autonomic car in Nevada early 2012—only five
years after the DARPA Great and Urban Challenges on autonomic cars. In a few more
years, cars without drivers could come from and go to parking lots, or deliver things.
In a carpooling scenario, autonomous vehicles booked by users could serve the user at
a specific time and destination. Best routes will be planned intelligently based on cur-
rent context information such as traffic conditions and weather. Ordering, booking, and
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payment will be performed via smartphone applications. Elderly people will become
mobile again, as they will be completely safe in an autonomic car. Moreover, cars will
have intelligent driver assistance for anticipating potential hazards early and avoiding
collisions.

Intelligent, yet safe autonomous driving software systems require effective methods
to ensure their required qualities. Even though the functions of these vehicles are per-
ceived as “intelligent”, rather than on artificial intelligence they rely on standard algo-
rithms from sensor fusion, context management, and control theory. In particular, these
systems require special attention to context management infrastructures to guarantee the
reliability of sensors and monitors. Autonomous vehicle software use models at several
levels, specially for understanding relevant context situations: models are required to
represent entities that affect the behaviour of the car, to specify quality of sensors, and
to model context uncertainty. Given the dynamic nature of context information, these
models must be available and manipulable at runtime. Another kind of important mod-
els are those that specify vehicle typical behaviour and are used to understand unusual
behaviour patterns.

Models in autonomous vehicle software are typically developed implicitly and coded
manually into the running system. However, for a solid theory of autonomous driving
and intelligent driver assistance, these models need to be managed explicitly throughout
the software lifecycle, which includes runtime.

Autonomous Agricultural Operations. Precision agriculture aims at the implemen-
tation of a comprehensive farming management concept. One of the main issues that
is addressed by precision agriculture is the optimization of the productivity and effi-
ciency when operating on the field, by tailoring soil and crop management to match the
conditions at every location. This can be achieved through the utilization of different in-
formation sources such as GPS, satellite imagery and IT systems. More recently, there
are efforts to further improve productivity and efficiency by increasing the amount of
automation on the field to the point of autonomous operation. Examples are harvesting
fleets with several harvesters where only one is operated by humans, autonomous trac-
tors to pick up the crop from the harvesters, and tractor implement automation (TIA)
where tractors are controlled by implements to execute implement-specific tasks. These
application scenarios have in common that different vehicles or machines are combined
on the field in order to fulfil (partially) autonomous tasks. The assurance and certifica-
tion of important properties such as safety and security is obviously very important in
this context, whereas traditional assurance techniques are not applicable without further
ado. A general solution to this problem is to shift parts of the assurance measures into
runtime. This can be achieved by means of suitable runtime models, and corresponding
management facilities integrated into these systems.

Ambient Assisted Living. The number and capabilities of devices available at home
are growing steadily. Ambient Assisted Living (AAL) aims use these technologies to
assist users with disabilities in their daily live tasks, for example to monitor health
conditions and detect emergency situations. Software applications in this domain are
highly dynamic. Every home is different and can contain different devices that could be
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exploited by AAL services. New generations of devices are produced on a regular basis
requiring AAL services to evolve continuously to keep up to date with new technical
developments. Moreover, similar devices produced by different vendors may consider-
ably differ in their capabilities and interfaces. Nevertheless AAL systems must be able
to use these devices as soon as they become available at the user’s home.

In addition to variation in devices, users of AAL systems are subject to considerable
variation. An AAL service must deal with an arbitrary number of people living at the
same home, their disabilities and capabilities, and their current situations. Therefore,
the system is required to adapt itself according to current users and their environment.
Moreover, these systems must be open to future extensions such as the integration of
new sensors or actuators for new applications.

To deal with this complex dynamics, AAL software requires models at runtime to
reason about users and their context and thus deliver services accordingly. AAL systems
involve human lives, therefore assurance is a major concern to guarantee safety and
control despite the adaptive behaviour of these systems.

The Guardian Angels Project. In the context of AAL, the “Guardian Angels for a
Smarter Planet” project is a key example that has potential to benefit from models at
runtime. The following details are sourced from the webpage of the Publications Office
of the European Union [Pub12]:

The Guardian Angels Flagship Initiative16 aims to provide information and com-
munication technologies to assist people in all stages of life. Guardian Angels are en-
visioned to be like personal assistants. They are intelligent (thinking), autonomous sys-
tems (or even systems-of-systems) featuring sensing, computation, and communication,
and delivering features and characteristics that go well beyond human capabilities. It is
intended that these will provide assistance from infancy right through to old age. A key
feature of these Guardian Angels will be their zero power requirements as they will
scavenge for energy. Foreseen are individual health support tools, local monitoring of
ambient conditions for dangers, and emotional applications. Research will address sci-
entific challenges such as energy-efficient computing and communication; low-power
sensing, bio-inspired energy scavenging, and zero-power human-machine interfaces.

These devices by their very nature will need to be adaptive in terms of functional
and non-functional properties. In addition, they will be used in critical situations that
require high levels of dependability and hence the highest levels of safety assurance.
The development of models at runtime can support runtime decision making and certi-
fication for this important and innovative application area.

7 Conclusion

The main objectives of this publication are to identify a set of short-term and long-
term research questions to define a research agenda for the assurance of SAS systems
using models at runtime. We also aim to provide the research communities, including
Models@runtime, runtime V&V, Requirements@runtime, SEAMS (self-adaptive and

16 http://www.ga-project.eu/
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self-managing software systems), with starting points for conducting research where
models at runtime constitute cornerstones for advancing the state of the art on the as-
surance of dynamic SAS systems.

This paper covers a fragment of the existing state of the art for this area of research.
The reader should note, that we only included selected approaches. Other approaches
also include approaches that have been applied in Model Driven Engineering for design
time V&V, static analysis or model checking and could be leveraged to run time. Several
of the research questions state the requirement for structuring the existing techniques,
modelling approaches and of the area of models@run.time. This will serve as a basis
for getting a better idea of potential techniques, the purposes they can be used for and
their properties in a run time environment.

As reaction to one of the research questions this paper also states some compelling
applications for assurance based on models@run.time. Their commonality is in a highly
complex and adaptive run time application and environment. Such examples require
means to deal with this complexity at run time and are a good motivation for having
abstractions of complex processes and structures in the form of models@run.time as
well as assurance of their properties during their run time execution and evolution.
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modeling and refinement of service-oriented architectures. Software and System
Modeling, 5(2):187–207, 2006.

[BKLW95] Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, and Charles B. Weinstock.
Quality attributes. Technical Report CMU/SEI-95-TR-021, CMU/SEI, 1995.

[BLG11] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Autonomic load-testing frame-
work. In Proceedings 8th IEEE/ACM International Conference on Autonomic Com-
puting (ICAC 2011), pages 91–100. ACM, 2011.

[BLPV95] Jörg Bormann, Jörg Lohse, Michael Payer, and Gerd Venzl. Model checking in
industrial hardware design. In Proceedings 32nd ACM/IEEE conference on Design
automation (DAC 1995), pages 298–303. ACM, 1995.

[BPVR09] Antonio Bucchiarone, Patrizio Pelliccione, Charlie Vattani, and Olga Runge. Self-
repairing systems modeling and verification using AGG. In Proceedings Joint Work-
ing IEEE/IFIP Conference on Software Architecture 2009 & European Conference
on Software Architecture (WICSA/ECSA 2009), pages 181–190. IEEE Computer So-
ciety, 2009.

[BS01] Manfred Broy and Ketil Stoelen. Specification and Development of Interactive Sys-
tems: Focus on Streams, Interfaces, and Refinement. Monographs in Computer Sci-
ence. Springer, 2001.
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