Ina Schaefer, Dimitris Karagiannis, Andreas Vogelsang (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2018 1

Extending a UML and OCL Tool for Meta-Modeling:
Applications towards Model Quality Assessment
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Abstract:

For developing software in a model-driven style, meta- and multi-level modeling is currently gaining
more and more attention. In this contribution, we propose an approach to extend a two-level modeling
tool to three-level modeling by adding a meta-model at the topmost level. Standard OCL does not
support reflective constraints, i.e., constraints concerning properties of the model like the depth of
inheritance. By adding an auto-generated instance of the topmost level to the middle level, we can
offer an option for writing reflective constraints and queries. We apply the extension to demonstrate
the usefulness of meta-modeling for model querying and model quality assessment. A first proposal
towards level-crossing constraints is also put forward.

Keywords: UML; OCL; Meta-modeling; Reflective constraints; Model querying; Model quality
assessment.

1 Introduction

Within software development, Model-Driven Engineering (MDE) is playing now a more and
more important role. MDE considers models as central development artifacts, for example by
combining the UML (Unified Modeling Language) [Ob15b], and the OCL (Object Constraint
Language) [CG12]. Meta-models play a crucial role in modeling as they define the structure of
models, and meta-modeling [AKO03, BE0S] and multi-level modeling [At14, AtlS, AGC16]
has become a major research topic. Meta-modeling is closely connected to multi-level
modeling because a UML and OCL model, which we call a user model, can be regarded
an instance model, i.e., instantiation of a metamodel. The user model in turn may act as a
type model, which may be instantiated again to a run-time instance model. Following this
process, one obtains a modeling architecture with at least three levels.

Our starting point is a version of the tool USE (Uml-based Specification Environ-
ment) [GBRO7, GH16] that supports two-level modeling. In this contribution we show how
to extend the tool to three levels of modeling by adding the OMG (Object Management
Group) UML meta-model to the topmost level. In order to make the work with different
modeling levels easier, we provide the option to automatically take a simplified view on
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the meta-model based on the elements of the current input user model. To offer access to
the meta level, a meta-model instance corresponding to the user model is automatically
generated and added to the middle level. By doing that, the user model turns into a instance
model, and therefore modelers can write OCL constraints and queries about the model itself.
We call this type of OCL expressions reflective constraints and queries. Thus the work in this
paper supports meta-models and reflective OCL constraints and queries, i.e., expressions
that treat the user model itself as data. Reflective querying helps to explore, understand
and validate models, especially when we model large, complicated systems. For example,
we can utilize reflective constraints to analyze a model and check for internal quality of
a class diagram. In this paper, we also show the application of reflective constraints for
model quality evaluation. The quality properties that we deal with in this paper are the
problems on the class diagram might relate to general design issues, e.g., the naming of
elements, or to questions regarding model metrics. Some similar approaches in this field
have been presented, for example in the works [Agl1, AGO12, LGdL14]. Developers can
use an appropriate method to evaluate their model and find drawbacks and problems in the
model. The quality assessment method introduced in this contribution uses standard OCL
in our three-layer modeling approach. Our three-layer modeling approach also offers an
extension of standard OCL for level-crossing constraints, which are across all three levels,
since the meta objects and run-time objects are accessible at the same time. An idea of
extending OCL for level-crossing constraints is also presented in the later part of this paper.

The rest of the paper is organized as follows. Section 2 presents the general idea to extend
our two-level tool to a three-level modeling tool. In Section 3 we show how to write
reflective queries in the extended tool based on the available meta-model. The approach
using reflective OCL constraints for quality assessment is introduced in Sect. 4. Section 5
presents a first proposal towards level-crossing constraints. The paper ends with some
concluding remarks and future work in Section 7.

2  Tool-supported Meta Modeling

2.1 Meta-modeling in UML

The OMG has defined the Meta-Object-Facility (MOF) [Ob15a] as a fundamental standard
for modeling. MOF provides a four-layer architecture for system modeling (three of them
are shown in Fig. 1). Generally speaking, adjacent layers in the architecture are related by
the instance-of relationship. This means that a lower layer is used for instantiating the next
upper layer. One could also say that the same entities at a middle layer M; can be (A) objects
for the next upper layer M;,; and (B) classes for the entities at the next lower layer M;_;.

The top layer in the MOF architecture, named M3, is a meta-meta model. This meta-meta
model is the language used to build the metamodels at the lower layer, called M2. The UML
metamodel, which is used to describe the UML, is the most well-known example of a model
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at M2 layer. The models at layer M2 describe the elements and the structure of the models
at layer M1. Models at layer M1 can be, for instance, models written in UML. The last and
bottom layer in the MOF architecture is the layer MO (also called data layer). Models at this
layer describe run-time instances (representations of real-world objects).

2.2 Basics of Meta Modeling in USE

In previous works, we have introduced USE (UML-based Specification Environ-
ment) [GBR0O7, GH16] as a two-level modeling tool, in which a user UML and OCL
model at level M1 (class diagram and constraints) and run-time instances at layer MO (object
diagrams) are provided. In [Go15], ideas for experimenting with multi-level models in the
two-level tool USE are presented. In the current contribution, we introduce an approach, in
which the MOF architecture is integrated into USE for meta modeling. Roughly speaking,
we now make the third OMG layer M2 explicitly available. Fig. 1 shows the general schema
for our three-level modeling approach in the new version of USE. The model at layer M2
is the UML meta-model (the OMG superstructure) [Ob11]. This meta-model itself is an
explicit UML class model formulated in USE with (currently) 63 classes and 99 associations.
It is preloaded as a type model for all user UML models at layer M1 and is fixed during
the modeling process. In the middle of our three-layer modeling approach there is a user
UML and OCL model at layer M1, which is highlighted by the dashed rectangle in Fig. 1.
The key point that makes our approach available for writing reflective constraints is an
auto-generated meta-instance of the meta-model added to M1 level. Each meta-object is an
instance of a meta-class and the number of generated meta-objects and links is based on the
input user model. For example, if there are two classes in the user model, then two instances
of meta class Class are generated. Our approach visits all user model elements (e.g., classes,
attributes, operations, associations) and generates the corresponding meta-objects and links.
Table 1 shows the mapping between the user model elements and the related meta-model
classes and associations, which are the type elements for the generated meta-objects and
links. In this work, we use the USE specific language SOIL (Simple OCL-based Imperative
Language) [BG11] to create these meta-objects and links.

2.3 Three-layer Model Representation in USE

As discussed before, in the M1 layer we provide two views on the user model. The first view
is a class diagram view, which can be seen as a type model for the object model at the lower
layer MO. The second view is an object diagram view that is an instantiation of the UML
meta-model at level M2 and that corresponds to the loaded UML user model. These two
views represent the same information and are always in sync.

Fig. 2 contains an example of a three-level modeling representation in USE. The user
model in this example is a simple model, with two classes, Employee and Department, and an
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Fig. 1: General schema for three-layer model representation.

association WorksIn as shown in the right middle part of Fig. 2. As mentioned above, the full
meta-model includes 63 classes and 99 associations. Therefore, viewing the full meta-model
is not practical and sometimes not necessary, because many of the meta-model elements
might not be used to describe the current user model. For example, the meta-model class
Operation is not used to describe any element in the Employee-Department model. Starting
from these observations, we provide a simplified view for the meta-model, as shown in the
upper part of Fig. 2. To construct the simplified view from the full meta-model, we drop all
unnecessary classes and associations, which are not needed for any element of the current
user model. In the simplified view, we only show the meta-model elements, i.e., classes
and associations, that the user model needs as type elements to instantiate model elements.
Table 1 shows the mapping between the user model elements and the related meta-model
classes and associations.

In each row, the item in the first column is a user model element, and the items in the second
column are the classes that directly relate to the user model element, i.e., a typing model
element. The third column contains the related meta-model associations (the subscript
text includes the names of association ends corresponding to the classes). Based on this
mapping, we can detect which meta-model elements will be displayed in the simplified
view. For example, if a class in the user model contains attributes then the Property
metaclass and two associations, i.e., Classciass — Propertyownedatuibute and DataTypepagtype —
Propertyownedatribute Will be shown. Concerning the example and as the result of the
described mapping, only three classes, Class, Property, Association, and the corresponding
associations are shown in the simplified meta-model view for the Department-Employee
user model. Additionally, we still provide a full meta-model view, in case the developer
wants to explore it.
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Fig. 2: Three-layer model representation in USE.
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The left middle part in Fig. 2 is the user model represented as an instance of the meta-model.
As can be seen, every element of the user model is an instance of a class from the meta
model. Each instance is named as a combination of the name of the corresponding element
from the user model and the meta-model class from which it is instantiated. For example,
the object WorksInAssociation is an instance of metaclass Association and its name combines
‘WorkslIn’, the name of the association from user model, and ‘Association’, the name of
the meta-model class. The object diagram shown in the lower part of Fig. 2 is a run-time
instance of the user model. It is the model at layer MO. ‘CS’ and ‘Andy’ are instances of the
Department class and the Employee class, respectively.

There is a number of derived links between objects in the meta-instance view. However,
to make the meta-instance view at layer M1 more focussing on the instanceOf aspect, we
only show the direct links and do not show these derived links. The two views in layer M1
describe one model. They are equivalent and kept in sync. Each element in the user
model class diagram view, e.g., a class, an attribute or an association, is presented as a
meta-instance in the meta-instance view. If there is any change in the user model, e.g., a
name change, an addition or a deletion of an element, the object diagram in meta-instance
view will be updated. An example of a synchronous change on the views at layers M1
and M2 is presented and highlighted in Fig. 3. The change on the user model is made by

Tab. 1: Relationship between user model elements and meta-model elements.

User model elements Related UML | Related UML meta-model associations
meta-model
classes
Class Class
Attribute Property Classjass — Propertyownedattribute
DataTypedataType — PropertyownedAttribute
Association Association ClassendType — ASsOCiatiON,ssociation
Association End Property Associationyggociation — PrOpertymemverEnd

Associationyssociation — PropertYnavigableOwnedEnd
Associationgssociation — PropertyownedEnd

Operation Operation Classclass — Operationgwnedoperation
DataTYPedataType - Oper ationownedOperation

Parameter Parameter Operationgperation — Parameterownedparameter

AssociationClass AssociationClass

Generalization Generalization Classclass — ClasssuperClass

Generalizationgeneratization — Classspeciﬁc
Generalizationgeneralization — Classgeneral

Redefined Attribute/ Rede- Propertyproperty — Propertyredefinedproperty
fined Association End

Subsetted Attribute/ Sub- Propertyproperty — Propertysubsettedproperty
setted Association End
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(A) adding the operation ‘numberOfEmp(): Integer’ into class Department. Consequently,
two corresponding meta-instances are synchronously (B) added to the meta-instance view,
i.e., the Department_numberOfEmp:Operation instance and the IntegerDataType:DataType instance
for the return data type ‘Integer’. And synchronously, the metaclass Operation and related
associations are (C) added to the simplified meta-model view (at layer M2).

3 Tool-based Reflective Querying

The access to the meta-level supported by standard OCL [Ob06] is limited, therefore writing
reflective queries, e.g., “find the classes related to a given class ¢ and their relevant roles”, is
impossible. In this section, we will introduce how our approach supports more meta-level
access capabilities for writing reflective queries within the extended tool.

3.1 Meta-level Accessibility in OCL

Standard OCL is a formal language for writing constraints and queries on UML models.
OCL expressions are formulated on the level of classes (M1) and their semantics is applied
on the level of objects (M0). Given a meta object t: OcIType, the following table shows the
list of supported OCL meta-level access capabilities.

Tab. 2: OCL built-in meta-level access

Expression Semantics

t.name() : String Get the name of the type t

t.attributes() : Set(String) Get the set of names of all attributes of t
t.operations() : Set(String) Get the set of names of all operations of t

t.associationEnds() : Set(String) | Get the set of names of all association ends navigable from t

t.supertypes() : Set(OclType) Get the set of all direct supertypes of t

t.allSupertypes() : Set(OclType) | Get the transitive closure of the set of all supertypes of t

As we can see, with these limited meta-level access capabilities, standard OCL cannot
express a number of reflective queries and constraints. The following list presents several
reflective queries that cannot be expressed with the standard OCL.

1. Find all classes related to a given class
Find names of all subclasses of a given class

Find all abstract classes

il

Find all classes that have more than 10 attributes
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Fig. 3: Synchronous changes on the views of layer M1 and M2.
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Find all classes that have more than 5 subclasses
Calculate the number of classes in a user model

Check for the setter and getter methods of all attributes

®© N oW

Find all classes of a user model that have no subclass

These queries, however, can be expressed with our three-level modeling approach introduced
in the previous section. In the next section, we will show how to formulate and execute
reflective queries in the extended tool.

3.2 Writing Reflective OCL Querying in Tool USE

As introduced in the previous section, our approach supports a three-layer UML and OCL
specification: instances, model, and meta-model. Through the tool support, one can access
the meta-model and create OCL queries for the user model by considering it as an instance
of the meta-model. Model querying using the meta-model approach provides possibilities
for considering the elements contained in a model, for example, by accessing the attributes,
operations, and referenced elements of a given model element, by executing comprehensions
and quantified expressions. A query is an OCL expression on the meta-model layer, and
the result is a Boolean value or a set of user model elements in form of instances of a
meta-model type element. Model queries such as “find the classes related to a class and
their relevant roles” cannot be formulated in OCL directly. However, our meta-modeling
approach can deal with this kind of model query. For example, the query “find classes
related to class Department via an association” on the Employee-Department example can be
formulated by the following OCL expression and executed by our tool as shown in Fig. 4.

The Association meta class is the type element for associations in the user model and endType
is an end of a derived association that can be used to navigate from the Association meta
class to the Class metaclass. DepartmentClass is the meta-instance of the Class metaclass; its
name is a combination of the user model element and the corresponding metaclass. The
result of executing this query, i.e., Bag{EmployeeClass}, is also shown in Fig. 4.

| Evaluate OCL expression

Enter OCL expression:
ssociation.alinstances().select(ala.endType-=

includes(DepartmentClass)).endType-=excluding(DepartmentClass)
[¥] Evaluate on UML meta model instance | Browser
Result: ’T
Bag{EmploveeClass} : Bag(Class) L
Close

Fig. 4: Model query example: Find related classes.
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Class diagram
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ES| Evaluate OCL expression

Enter OCL expression:
Class allinstances()-=select(clc.isAbstract=true)

| Conzuttanrt | | Manager ‘

[V] Evaluate on UML meta model instance | Browser
Result:
Set{EmployeeClass} : Set(Class) Clear
Close

Permanernthanacger

consultanthanager
—

name : String

Fig. 5: Model query example: Find abstract classes.

Another example for model querying is presented in Fig. 5. The example there is an
Employee hierarchy model, a typical subclass-superclass generalization model with a
four-level inheritance structure. For example, one might want to find all abstract classes
within this model. The OCL query to perform this task is stated in Fig. 5. In particular,
isAbstract is a Boolean attribute of the metaclass Class in order to define whether a class at
level M1 (in a user model) is abstract or not.

4 Model Quality Assessment with Reflective Constraints

Writing reflective constraints is now possible with our meta-modeling approach. Reflective
constraints can be exploited for many applications, one of them is model quality assessment.
Model quality assessment helps modelers to detect errors or mistakes on their models, to
fix bugs and to improve the models. These assessment properties might include design
properties: absence of isolated classes, respecting naming conventions (e.g., the name
of every element must obey the camelCase convention) or metrics properties (e.g., a
generalization hierarchy is not too deep). By visual inspection, we can identify several
quality problems in the example model in Fig. 5:

1. There is one isolated class, i.e., Director. An isolated class is a class which is not
involved in an association or in the inheritance hierarchy.

2. The name of the class consultantManager does not start with a capital letter (assuming
the class names should obey the camelCase convention).

3. The attribute name : String is repeated in all subclasses of the class Manager. It should
be defined in the superclass.

However, evaluating and detecting these kinds of quality problems on large and complicated
models might take time and might even be impractical. In this section, we introduce a
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Fig. 6: The workflow of model quality assessment process

proposal that employs OCL utilizing the meta-level modeling approach as presented before.
Thus, we can automatically evaluate quality properties of a user model.

Fig 6 shows the workflow of the model quality evaluation process. Firstly, the property must
be formulated by the developer as a Boolean-valued reflective OCL expression. The next
evaluation and analysis steps will be performed by tool USE. The reflective OCL expression
will be evaluated. If the evaluation yields True, the property is satisfied and the model
respects this property. On the contrary, if the property fails, the developer might be interested
in the parts of the model that violate the property. Returning to the example in Fig. 5, we
want to check the first problem mentioned in the section beginning, i.e., whether there are
isolated classes in the user model. To achieve this, we formulate an OCL expression for the

property.

Class.alllnstances()->select(c | c.typeElement->isEmpty() and
c.superClass->isEmpty() and c.subClass->isEmpty())->isEmpty())

In this example, we navigate from a metaclass c to related associations through the typeElement
role name. The superClass and subClass role names are used to navigate from the metaclass
c to its superclass and subclass, respectively. The assessment result is False as shown in
Fig. 7. That means the property is violated. It can be seen from the user class diagram in
Fig. 5 that there is one isolated class, i.e., the class Director.

In the case of simple models, one can manually figure out the elements that cause the
violation of an assumed property. However, with a large, complicated model, this can be
hard work and can sometimes be impossible. Our tool supports designers to analyze such
properties and to look for the reason for the unsatisfiability. Particularly the USE evaluation
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browser allows developers to dive into the details of the formula evaluation and identify the
spots in the object diagram that contribute to the fact that the formula is not satisfied.

The USE evaluation browser in the lower part of Fig. 7 can be obtained by clicking the
‘Browser’ button on the right hand side of the OCL expression evaluation window in Fig. 7.
The browser window decomposes the expression into sub-parts in a hierarchical structure,
and every part is evaluated. From the evaluation browser, we can see that there is only one
violating element, i.e., one isolated class, which is the Director class. For further analysis,
one can expand sub-expressions and explore the evaluation of other sub-parts of the formula
as shown in Fig .7.

5 Towards an Approach for Level-Crossing Constraints

Level-crossing plays an important role in multi-level modeling. Standard OCL, however,
only supports formulating constraints on the level of classes (M1) and their semantics
concerns the level of objects (MO0). That means it is impossible to write expressions on
objects at different linguistic levels, e.g., the expression “Class.allInstances().allInstances()”
is syntactically invalid in OCL. Looking back to our approach on three-level modeling,
we can see that developers now can access meta objects as well as run-time objects at the
same time. Therefore, we can say that our three-level modeling approach offers enough
semantics for extending OCL for multi-level-crossing constraints. Let us consider the
following level-crossing constraint, which is an invalid, ill-typed constraint in standard
OCL.

Class.allnstances().allinstances()->forAll(age > 18)

Assuming every class in the model has an age attribute with Integer type, this constraint
ensures that the value of the age attribute of all instances of all classes is over 18. As we can
see, the semantics of the first part of the constraint, i.e., Class.alllnstances(), concerns the meta-
level, and the semantics of the second part of the expression, i.e., allinstances()->forAll(age > 18),
concerns the model level. The result of the meta-level part has type Set(Class). Unfortunately,
the allinstances() operation (in standard OCL [Ob06]) is applicable only on type Class.

To overcome this issue, one could work with the forAll collection operation between the
meta-level expression and the model-level expression. If we handle a term of type Set(Class)
with the forAll iterator this gives the option to access a single Class, on which the model-level
expression can be applied.

Class.allinstances()->forAll(c | # c.allinstances()->forAll(age > 18) #)

Naturally, we have to distinguish meta-level sub-expressions and model-level sub-expressions.
In other words, we have to indicate in OCL, which sub-expression belongs to which
level (meta-level or model-level). To achieve this, we introduce an additional notation in
OCL expressions, i.e., #...#. This indicates that the expression within #...# is a model-level
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expression. As the result, we propose a formula template for a level-crossing constraint as
shown below.

<meta-level OCL expression>->forAll(c | # <model-level OCL expression> #)

Generally speaking, using this formula template, one can write constraints that go from the
M2 to the MO level through the M1 level. This capability supports writing more powerful and
flexible constraints. Instead of using the universal quantification it would also be possible to
use an existential quantification. Other OCL collection operations, e.g. one, are feasible as
well. Working out details is subject to future work. Our proposed level-crossing formula
template has a few restrictions: (a) the meta-level expression must return the type Set(Class),
(b) the model-level expression must be a Boolean-valued expression, and (c) the result of
the overall level-crossing expression is always a Boolean value.

6 Related Work

There is a number of other proposals, which are related and similar to our work, that have
been introduced in recent years. The tool Melanee [AG12] is designed as an Eclipse plug-in,
supports strict multi-level metamodeling and facilitates general purpose languages as well as
domain specific languages. Another tool is MetaDepth [dLG10] allowing linguistic as well
as ontological instantiation with an arbitrary number of meta-levels supporting the potency
concept. The framework Modelverse introduced in [Mil4] can be used to model a four-level
language hierarchy. The work in [BKK16, IGS14] uses F-Logic as an implementation
basis for multi-level models including constraints. In contrast to these approaches, our
contribution deals with traditional two-level UML/OCL modeling approaches by extending
them for meta-modeling and exploits added meta-data for writing reflective constraints and
level-crossing constraints with OCL. One commonality between our work and these above
mentioned approaches is the introduction of elements in the middle level that have both
type and instance facets.

The idea of copying the M2-model instance to lower levels in the MOF meta-model
architecture and exploiting it for reflective constraint writing is also presented in [Dr16]. In
that paper, the meta instance is added to the MO level, together with the run-time instances,
through instantiation and reification processes. Adding elements to the MO level is a major
difference between the work in [Dr16] and our approach, because in our work, the meta
instance is generated and added to the M1 level. Therefore, in order to write a reflective
constraint or query with our approach, we only need to go from the M2 level to the M1 level.
This means we do not need to extend the OCL for writing reflective constraints or queries.

7 Conclusion

This contribution has proposed an extension of the tool USE that supports three-level
modeling where the middle level can be seen at the same time as an object diagram, i.e.,
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the instantiation of the upper level model, and as a class diagram, i.e., the type model for
the lower level. Based on these ideas, we present an approach for reflective constraints
and queries within the extended tool and the application of this approach to model quality
assessment. A first proposal towards level-crossing constraints was also introduced: a
proposal that offers writing more powerful and flexible constraints.

Future work includes the following topics. First of all, we would like to work out within
our approach formal definitions for notions like potency or strictness. Developer support
for these notions should then be explored. The user interface in our tool USE for model
querying and quality evaluation can be strengthened as well. For instance, one option might
be to highlight the result of meta-level queries in the user class diagram. Another open item
would be to implement a library of pre-defined quality assessment properties. With the
integration of three-level modeling in the tool USE, more work on model metrics seems to
be a promising direction for a USE extension. The proposal for level-crossing constraints
must be implemented and extended to cover other formula templates. Last but not least,
complex examples and case studies, especially case studies from large applications, must
check the practicability of the proposal.
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