
Logical Reasoning with Object Diagrams

in a UML and OCL Tool

Khanh-Hoang Doan(�) and Martin Gogolla

University of Bremen, Computer Science Department, 28359 Bremen, Germany
{doankh,gogolla}@informatik.uni-bremen.de

Abstract. In this contribution, we introduce an approach to visualize
and analyze logical reasoning problems in a UML and OCL tool by us-
ing logical puzzles represented with UML diagrams. Logical reasoning
is formalized as a UML class diagram model enhanced by OCL restric-
tions. Puzzle rules and questions are expressed as either partial object
diagrams or OCL formulas within the model. Solutions can be found and
explored by a tool as object diagrams.

Keywords: Logical reasoning, UML and OCL model, Object diagram

1 Introduction

UML diagrams, such as class and object diagrams, are utilized to diagrammat-
ically represent real-world system at an abstract level with some constraints
formulated in OCL. Taking this as a basis, UML and OCL can be a promising
solution for representing and visualizing logical reasoning problems. One ap-
proach for that will be introduced in this paper. A logical reasoning problem
is represented as a UML class model enhanced by OCL restrictions. Rules and
questions are formulated as either partial diagrams or OCL formulas within the
model. The solutions can be found using a deduction system integrated in a tool
and represented as object diagrams. This contribution focuses on representa-
tion and analysis of logical reasoning problems, in the context of the tool USE
(Uml-based Speci�cation Environment) [2].

Recently, the application of diagrammatic representation for reasoning has
been a widely considered topic. For example, the approaches for reasoning with
diagrams, i.e., Euler, Spider diagrams and Graphs, have been presented recently
in [6], [5], and [4], respectively. In contrast to these approaches, our contribu-
tion uses UML diagrams, i.e. class and object diagrams, to visualize and analyze
logical reasoning problems. In next section we will illustrate the idea of repre-
senting and visualizing a logical reasoning problem with our tool USE. In the
last section, the paper ends with concluding remarks.

2 Solving and Representing Logical Reasoning Problems

Running example: In order to demonstrate our approach, an example of a
logical reasoning problem is discussed. The deduction problem that we introduce

1

here is `Einstein's Puzzle', a very well-known logic puzzle which sometimes is
used as an example in teaching logic and formal methods [3].

Fig. 1. Einstein's puzzle.

The problem can be described as follows: Let us assume that there are �ve
houses of di�erent colors next to each other on the same road. In each house
lives a man of a di�erent nationality. Every man has his favorite drink, his
favorite brand of cigarettes, and keeps a particular pet. There are �fteen clues
of deduction that are listed below, and Fig. 1 illustrates the reasoning problem.

01. The Briton lives in the red house.

02. The Swede keeps dogs as pets.

03. The Dane drinks tea.

04. Looking from in front, the green house
is just to the left of the white house.

05. The green house's owner drinks co�ee.

06. The person who smokes Pall Malls
raises birds.

07. The owner of the yellow house smokes
Dunhill.

08. The man living in the center house
drinks milk.

09. The Norwegian lives in the leftmost
house.

10. The man who smokes Blends lives
next to the one who keeps cats.

11. The man who keeps a horse lives next
to the man who smokes Dunhill.

12. The owner who smokes Bluemasters
also drinks beer.

13. The German smokes Prince.
14. The Norwegian lives next to the blue

house.
15. The man who smokes Blends has a

neighbor who drinks water

Construct a model: Firstly, a model corresponding to the problem being
solved must be constructed. Depending on the problem, the model must include
all necessary information, i.e., classes, attributes and associations, so that the
model can simulate the problem.

Person

nationality : String

housecolor : String

pet : String

drink : String

cigarettes : String

right

left

Fig. 2. Model of the logical
reasoning problem.

For Einstein's Puzzle, we have formulate a
model with �ve attributes: nationality, house-
colour, pet, drink, cigarettes, and one association
that represents the neighborhood relationship be-
tween the persons. Fig. 2 presents the class dia-
gram of the model.

Formulate invariants: After constructing a
suitable model, a collection of OCL invariants
must be formulated on the model, one invariant
for each clue (rule). As mentioned before, it is im-
portant that the model must cover all information
from all clues. Therefore, we formulate 15 invari-
ants corresponding to 15 rules of the puzzle. For

2

instance, the following listing is the invariant corresponding to the rule 08 �The
man living in the center house drinks milk�`.

context Person inv clue08:

Person.allInstances()→one(p|Set{p} →closure(left)→size()=Set{p}

→closure(right)→size() and p.drink='Milk')

In addition to the textual representation, some rules can be represented as a
partial object diagram, which can enhance the understandability. For example,
the diagrammatic visualization for the rule 08 is shown in Fig .3.

:Person :Person :Person :Person:Person

drink = Milk

Fig. 3. The diagrammatic visualization of rule 08.

The other invariants are formulated analogously. The full model including all
invariants is presented in [1].

Solving the problem with the model validator: After constructing a
suitable model with all necessary invariants corresponding to all clues, we apply
the model validator to solve the problem and �nd the answer. In the case of
Einstein's puzzle, the model validator �nds a solution as an object diagram,
which is shown in Fig. 4. We arranged the 5 persons (objects) according to
their neighborhood relationships from left to right. In the found solution we can
easily check that some simple rules, e.g., rules 01, 02, 03, 13, are satis�ed. Further
analysis of the satisfaction of more complicated rules (invariants) on the found
solution can be done with our tool with the `Evaluation browser' functionality.

person2:Person

nationality='German'
housecolor='Green'
pet='Fish'
drink='Coffee'
cigarettes='Prince'

person3:Person

nationality='Swede'
housecolor='White'
pet='Dogs'
drink='Beer'
cigarettes='Bluemasters'

person1:Person

nationality='Dane'
housecolor='Blue'
pet='Horse'
drink='Tea'
cigarettes='Blends'

person5:Person

nationality='Norwegian'
housecolor='Yellow'
pet='Cats'
drink='Water'
cigarettes='Dunhill'

person4:Person

nationality='Briton'
housecolor='Red'
pet='Birds'
drink='Milk'
cigarettes='Pall Malls'

Fig. 4. Found solution for Einstein's Puzzle.

The search space of the model validator is de�ned by a con�guration. There-
fore we can speed up the solving process by setting a suitable con�guration.
Setting a proper con�guration plays an essential role in the context of solving
reasoning problem with the model validator. To archive this, one can go through
the description of the problem and underline the number of objects (man/per-
son) and the values which are given corresponding to the class attributes. As a
result, the following list is the con�guration for Einstein's puzzle.

Person_min_max = 5..5

Person_nationality =

Set{'Norwegian','Dane','Briton','German','Swede'}

Person_housecolor = Set{'Red','Yellow','Blue','Green','White'}

Person_pet = Set{'Cats','Birds','Horse','Fish','Dogs'}

Person_drink = Set{'Water','Tea','Milk','Coffee','Beer'}

3

Person_cigarettes =

Set{'Dunhill','Prince','Blends','Pall Malls','Bluemasters'}

Connecting_min_max = 4..4

Explore solution universe: In a case of having more than one solution, the
model validator also provides an option to explore all of them. Naturally, this will
be possible only if the solution universe is relatively small. To achieve all solutions
we use the command mv -scrollingAll <PropertyFile>, and the additional
succeeding command mv -scrollingAll [prev|next|show(<N>)] allows us to
scroll through the solution interval and show each of them as an object diagram.
For example, after executing the command mv -scrollingAll show(1), the
�rst (and only) solution is shown as an object diagram presented in Fig. 4.

3 Conclusion and Future Work

In this contribution we have described our method for visualizing and analyzing
logical reasoning problems in the tool USE. We have used diagrammatic repre-
sentations and puzzles as a cheap-prized entry to formal methods. Beside the
Einstein's Puzzle, we have been applied the introduced approach for several pop-
ular logical reasoning examples, e.g. Sudoku puzzles or scheduling problems; the
details can be seen in [1]. As future work we have identi�ed to handle the various
puzzle examples present in the literature in our approach. A further option is to
develop a particular USE plugin particularly aiming at puzzle representation and
to handle their solutions, as well as to allow the speci�cation of OCL expressions
with (partial object) diagrams.

References

1. Doan, K.H., Gogolla, M.: Addendum to Logical Reason-
ing with Object Diagrams in a UML and OCL Tool. Tech.
rep., University of Bremen (2017), http://www.db.informatik.uni-
bremen.de/publications/intern/ReasoningwithUSE.pdf

2. Gogolla, M., Hilken, F.: Model Validation and Veri�cation Options in a Con-
temporary UML and OCL Analysis Tool. In: Proc. Modellierung (MODEL-
LIERUNG'2016). pp. 203�218. GI, LNI 254 (2016)

3. Spichkova, M.: "Boring Formal Methods" or "Sherlock Holmes Deduction Meth-
ods"? In: STAF 2016 Workshops: DataMod, GCM, HOFM, MELO, SEMS,
VeryComp. LNCS 9946. pp. 242�252 (2016)

4. Takemura, R.: A logical investigation of heterogeneous reasoning with graphs in
elementary economics. In: Diagrammatic Representation and Inference - 9th Inter-
national Conference, Diagrams 2016. pp. 98�104 (2016)

5. Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith: A diagrammatic rea-
soner for spider diagrams. In: Diagrammatic Representation and Inference - 7th
International Conference, Diagrams 2012. pp. 163�177 (2012)

6. Zelazek, F.: Diagrammatically explaining peircean abduction. In: Diagrammatic
Representation and Inference - 8th International Conference, Diagrams 2014. pp.
308�310 (2014)

4

