
Towards a Developer-Oriented Process for

Verifying Behavioral Properties

in UML and OCL Models

Khanh-Hoang Doan, Martin Gogolla, and Frank Hilken

University of Bremen, Computer Science Department, 28359 Bremen, Germany
{doankh,gogolla,fhilken}@informatik.uni-bremen.de

Abstract. Validation and veri�cation of models in the software devel-
opment design phase have a great potential for general quality improve-
ment within software engineering. A system modeled with UML and
OCL can be checked thoroughly before performing further development
steps. Verifying not only static but also dynamic aspects of the model
will reduce the cost of software development. In this paper, we introduce
an approach for automatic behavioral property veri�cation. An initial
UML and OCL model will be enriched by frame conditions and then
transformed into a (so-called) �lmstrip model in which behavioral char-
acteristics can be checked. The �nal step is to verify a property, which
can be added to the �lmstrip model in form of an OCL invariant. In order
to make the process developer-friendly, UML diagrams can be employed
for various purposes, in particular for formulating the veri�cation task
and the veri�cation result.

Keywords: Validation and veri�cation, Model testing, UML and OCL
model, Behavior property veri�cation.

1 Introduction

In software development, Model-Driven Engineering (MDE) is playing now a
more and more important role. In recent years, the model-based approach has
been becoming accepted, in particular by combining the UML (Uni�ed Modeling
Language) [15], the OCL (Object Constraint Language) [3] and some e�cient
tools. Available techniques in tools can be employed for the veri�cation and
validation of both static and dynamic properties of a software system.

As model validation and veri�cation have been studied for a long time, a
variety of approaches have been introduced. Typical approaches following this
line have been discussed, e.g., the Dresden OCL tool [5], a toolset based on
Abstract State Machines [17], and the tool USE for UML and OCL model prop-
erty validation [7,9,19]. In [4] an approach for model consistency checking is
introduced, and several correctness properties are automatically checked in [2].
UML model properties such as consistency, independence and consequence are
validated in [9]. [16,13] present approaches for OCL constraint validation. How-
ever, many of these proposals concentrate on static aspects of the model, e.g.,



on consistency, independence, and consequences of and between OCL invari-
ants. In order to also validate dynamic aspects, the approach in [8] introduces
a transformation from UML and OCL models into so-called �lmstrip models
that represent sequences of system snapshots in a single object diagram. This
�lmstripping approach allows to check dynamic properties and will be applied
as a central step within the complete veri�cation process as described here.

In technical terms, the context of our work is the tool USE (UML-based
Speci�cation Environment) [7]. USE supports the description of a model in terms
of a UML class diagram (with e.g. classes, associations) and UML state machines
enriched by OCL constraints including class and state invariants as well as pre-
and postconditions for operations and transitions. USE can visually represent
class, object, sequence, statechart, and communication diagrams of a UMLmodel
and animate the model behavior based on command sequences. O�ering a precise
subset of UML and OCL can support the developer in employing a visual and
thus user-oriented language for formulating development artifacts, in particular
models and model properties. One central USE component is the so-called model
validator that supports the validation and veri�cation of properties based on the
Kodkod relational logic [18]. A further USE component that we will employ is
the so-called �lmstrip transformation. It transforms an application model (with
invariants and pre- and postconditions) into an equivalent so-called �lmstrip
model (with invariants only). This �lmstrip model will be checked and tested
with the model validator.

The remainder of the paper is organized as follows. Section 2 illustrates the
general idea of our approach for a process consisting of several steps, and a
simple example is introduced. Details of each veri�cation step are introduced
from Sect. 3 to Sect. 6. Particularly, Sect. 3 explains frame conditions and how to
formulate and add them to the original model. Sect. 4 describes �lmstrip models
and how to transform models with frame conditions into �lmstrip models. The
step for verifying a behavior property is presented in Sect. 5, and in Sect. 6 we
introduce the �nal step, transforming the veri�cation result back into a sequence
diagram of the original model. In Sect. 7 we discuss run-times of the veri�cation
tasks given in this paper before ending this contribution with some concluding
remarks.

2 General Idea and Running Example

2.1 General Idea

Our approach for behavioral property veri�cation can be divided into four steps
as illustrated in Fig. 1. The input is a UML model enriched by OCL constraints
and the output is a sequence diagram corresponding to a found scenario. The
general idea for the veri�cation process can be described as follows:

Step 1: Starting from an application model that describes structure and
behavior of a system, add frame conditions. An application model is a UML
model describing system structure and behavior completely in terms of OCL



Fig. 1. General idea for the proposed veri�cation process

and consisting of any number of classes, attributes, associations, and operations.
The class diagram is enriched by class invariants and operation pre- and post-
conditions in form of OCL constraints. A frame condition makes the frame of an
operation explicit. Particularly, it is a postcondition of an operation to assure
that everything that is not in the scope of the operation (the frame) remains
unchanged after the operation has been executed. Frame conditions will help the
model validator in Step 3 to construct a scenario in a correct way.

Step 2: Transform the frame-conditioned model into a �lmstrip model. In a
�lmstrip model, a single object diagram will describe a sequence of system states
and operation calls between them. Roughly speaking, we can use an object dia-
gram of a �lmstrip model to describe interactions between objects in sequential
order and the state transitions between the objects. Consequently, in the next
step, a dynamic property, which is related to state transitions, can be veri�ed
in the context of the �lmstrip model. The transformation step into the �lmstrip
model is performed automatically using the �lmstrip plugin of USE.

Step 3: Verify a behavioral property of the �lmstrip model. A behavioral
property can be presented as an application model sequence diagram and can
be analyzed by automatically constructing a scenario (an object diagram of
the �lmstrip model), in which a speci�ed property is satis�ed, or by showing
that a valid scenario cannot be constructed within a �nite search space. This
step is performed automatically using the validator plugin of USE employing a
con�guration �le describing the �nite search space.

Step 4: Transform the generated object diagram from Step 3 (if the behavior
property was satis�ed) into a corresponding sequence diagram in the context of
the application model. Presenting the veri�cation result as a sequence diagram
of the application model will increase readability and understandability of the
veri�cation process. The functionality of automatically transforming a �lmstrip



object diagram to an application model sequence diagram will become part of
the USE tool.

These four steps will be discussed in detail in the later parts of this paper.

2.2 Running Example

In this section a small example application model is given in order to demonstrate
our approach. Its class diagram is presented in the left part of Fig. 2. The model
describes synchronized tra�c lights with (a) three attributes: r for red, y for

Fig. 2. Class diagram of example application model and switching phases.

yellow, g for green; (b) three operations: init() that initializes the values for a new
tra�c light, switch() that switches the light to the next state; and connected()
that retrieves the connected light that is to be synchronized. Each tra�c light
is connected with at most one other tra�c light to achieve the synchronization.
The full model declaration including all invariants and pre- and postconditions is
presented in [6]. The listing below shows the OCL invariants and postconditions
of the switch() operation:

context TrafficLight

inv Ryg_RYg_ryG_rYg:

(r=null and y=null and g=null) or

(r and not y and not g) or (r and y and not g) or

(not r and not y and g) or (not r and y and not g)

inv oneLight_onePair:

(left→size()=1 and right→isEmpty()) or (left→isEmpty() and

right→size()=1)



inv synchronize:

(r<>null and y<>null) and

(r and not y implies not connected().r and not connected().y) and

(r and y implies not connected().r and connected().y) and

(not r and not y implies connected().r and not connected().y) and

(not r and y implies connected().r and connected().y)

context TrafficLight::switch()

post Ryg_2_RYg_2_ryG_2_rYg_2_Ryg:

(r<>null and y<>null) and

(r@pre and not y@pre implies r and y) and

(r@pre and y@pre implies not r and not y) and

(not r@pre and not y@pre implies not r and y) and

(not r@pre and y@pre implies r and not y)

The �rst invariant Ryg_RYg_ryG_rYg identi�es the states (values of attributes
r, y and g) of a tra�c light. In particular, a tra�c light can only be in one of four
states: red (r, not y, not g), red-yellow (r, y, not g), green (not r, not y, g), and
yellow (not r, y, not g). The invariant synchronize determines how a pair of
tra�c lights synchronizes. When the left tra�c light changes its state, the right
light automatically changes its state respectively, e.g., a tra�c light changes from
the green state to yellow state when the connected light changes from red to red-
yellow. As can be seen, the postcondition Ryg_2_RYg_2_ryG_2_rYg_2_Ryg only
de�nes the changes of the attributes r and y, but does not include the attribute g
for specifying the e�ect after the switch() operation has been executed. In a post-
condition, the tag @pre refers to the state given at precondition time. On the
other hand, we can see that the relationship between the r, y, and g attributes
is fully �xed by the invariant Ryg_RYg_ryG_rYg. Consequently, the value of at-
tribute g is fully determined by the value of r and y. The change of attribute
g would be ambiguous if one would consider only the switch() postconditions.
The question that comes up now is: what happens to attribute g? How will it be
changed by the switch() operation? These questions will be answered by using
the veri�cation technique introduced in Sect. 5.

3 Adding Frame Conditions to Application Models

Postconditions typically specify in a declarative way e�ects of an operation,
by expressing what they change. They often implicitly assume that everything
else (the frame) remains unchanged. For a veri�cation engine the question comes
up how they can infer from postconditions which model elements are not al-
lowed to change during an operation execution. This problem is called �frame

problem� [1] and can be addressed by adding so-called frame conditions in form
of OCL expressions. They indicate attributes and association ends that should
not be changed after an operation has been executed. To add a frame condi-
tion to a model, we formulate it as an OCL expression in form of a postcondi-
tion. Various approaches for determining and formulating frame conditions have
been introduced [11,12]. In this paper we apply the solution discussed in [14]
to specify which properties are not allowed to change during the execution of



the operations init() and switch(). Here we only explain how to formulate the
frame condition for operation switch(). As can be seen from the postcondition
Ryg_2_RYg_2_ryG_2_rYg_2_Ryg presented in Fig. 2, the properties r and y at
post-state (i.e., not marked with @pre) are referenced in this postcondition. Con-
sequently, properties r and y are variable to the switch() operation, which means
that these properties are allowed to change when switch() is executed. Property g
is not referenced in any postcondition, however it is referenced in the invariant
Ryg_RYg_ryG_rYg with the connection to the variable properties r and y. There-
fore, property g is also classi�ed as variable. On the other hand, the state of
the other tra�c light objects, except the connected one, should not be changed.
As the result, the frame conditions of the switch() operation is formulated as
follows:

context TrafficLight::switch()

post trafficLightUnchangedExcept: let x=self in

TrafficLight.allInstances@pre=TrafficLight.allInstances and

TrafficLight.allInstances→forAll(t|

(t.left@pre = t.left) and (t.right@pre = t.right) and

(t<>x and t<>x.connected() implies t.r@pre=t.r) and

(t<>x and t<>x.connected() implies t.y@pre=t.y) and

(t<>x and t<>x.connected() implies t.g@pre=t.g))

In summary, this postcondition says: the switch() operation called on the tra�c
light object `self' is only allowed to change the attributes r, y and g of self and
its connected tra�c light; everything else remains unchanged.

4 Transformation to Filmstrip Model

The application model enriched by frame conditions will be transformed into a
so-called �lmstrip model. A �lmstrip model can describe dynamic aspects of an
original application model, i.e., operations and state transitions, by static ele-
ments, i.e., UML classes and OCL invariants [10]. Particularly, each operation of
classes from the application model is transformed into an OperationCall class,
and a Snapshot object is created in the �lmstrip model to represent the appli-
cation model state at a point of time. With a �lmstrip model we can describe
information on the changes between the application model states and operation
calls in one object diagram. It o�ers many possibilities for validation and ver-
i�cation of dynamic aspects, e.g., behavioral properties. Some elements of the
application model are left unchanged, while others are converted with modi�ca-
tion compared to the application model [8]. More detail about �mstrip model
is introduced in [10]. The right part of Fig. 2 shows the class diagram of the
�lmstrip model after transforming the frame-conditioned model.

Most importantly, pre- and postconditions from the application model are
transformed into invariants of the �lmstrip model and realize behavioral prop-
erties, which are related to state transitions. These invariants can be checked in
a single �lmstrip model object diagram. One example of a transformed postcon-
dition is presented as follows:



context switch_TrafficLightOpC

inv post_Ryg_2_RYg_2_ryG_2_rYg_2_Ryg:

(aSelf.succ.r<>null and aSelf.succ.y<>null) and

((aSelf.r and not aSelf.y) implies

(aSelf.succ.r and aSelf.succ.y)) and

((aSelf.r and aSelf.y) implies

(not aSelf.succ.r and not aSelf.succ.y)) and

((not aSelf.r and not aSelf.y) implies

(not aSelf.succ.r and aSelf.succ.y)) and

((not aSelf.r and aSelf.y) implies

(aSelf.succ.r and not aSelf.succ.y))

The postcondition Ryg_2_RYg_2_ryG_2_rYg_2_Ryg of the operation switch()
is renamed and altered to the invariant post_Ryg_2_RYg_2_ryG_2_rYg_2_Ryg
of the new class switch_TrafficLightOpC in the �lmstrip model. aSelf is an
attribute of the TraffictLightOpC class, from which switch_TrafficLightOpC

inherits. This attribute refers to the tra�c light object on which the switch()
operation is called. And aSelf.succ is the successor of the aSelf object after the
switch() operation has been executed (i.e., the self object in the next snapshot).

Some new �lmstrip invariants are generated by the �lmstrip component.
These invariants prevent faulty executions that would have been possible and
thus bring the �lmstripping model in line with execution of the operations in
UML and OCL. In other words, they ensure correct behavior of the �lmstrip
model, e.g., by forbidding the snapshot object sequence to become a cycle (in-
variant cycleFree). More details of the complete �lmstrip model description
can be seen in [6].

5 Verifying Behavioral Properties

A behavioral property is a property related to a behavioral aspect of a design
model, typically in connection with the model operations. In other words, check-
ing a behavioral property is a type of veri�cation task, that tries to prove whether
a speci�c property can be reached or not reached under speci�c conditions, for
example, with an operation call sequence. In our approach, �rst of all, an OCL
expression for a behavioral property is added to the �lmstrip model. This can be
realized by the USE command constraints -load constraintFile, in which
constraintFile is name of the �le that contains the added OCL expression.
Next, we execute the model validator from the USE GUI or on the CLI through
the command mv -validate propertyFile. The propertyFile speci�es the
bounds for the search space of the model validator. For example, in the proper-
ties �le the number of OperationCall objects, the number of Snapshot objects,
or the number of links are stated. The model validator tries to construct a valid
system state (object diagram) within the speci�ed bounds. If successful, a sys-
tem state will be established, that means the property is proved. And if not, the
model validator reports that an object diagram cannot be found. This means
that the logically negated property has been proved within the given bounds.
Specifying proper bound numbers in the propertyFile for the model validator



is important. Bounds must be big enough so that the property can be proved,
but not too big so that the model validator can �nd answers within a small time
frame.

system trafficlightA trafficlightB

trafficlightA.r = true and trafficlightB.g = true

trafficlightA.r = true and trafficlightB.g = true

loop

alt

?OpCallA

?OpCallB

[1..?Bound]

Fig. 3. Veri�cation task for Example 1 as sequence diagram

Example 1. In this example, the behavior property to be proved is: �Is it possible
to construct a scenario (starting in a valid state and having transitions to future
states only by operation calls) in which a pair of synchronized tra�c light exists
that shows initially red and green and after a number of operation calls red and
green again?�. This property can be expressed with a UML sequence diagram
as in Fig. 3. The property can be made precise also with the following OCL
expression:

context TrafficLight inv rg_And_rg_Again:

TrafficLight.allInstances→exists(t|t.r and t.connected().g and

Set{t.succ}→closure(succ)→exists(t1|t1.r and t1.connected().g))

After loading this invariant to the �lmstrip model by running the command
constraints -load, we execute the model validator with parameters speci�ed
in a property �le. Fig. 4 presents the found object diagram [6]. The con�gura-
tion speci�es that the generated object diagram has exactly 10 TrafficLight

objects, 5 Snapshot objects and 4 switch_TrafficLightOpC objects. As can be
seen from the generated object diagram, a pair of synchronized tra�c lights, traf-
�clight1 and tra�clight10 (upper dashed oval), shows red-green and the later in-
carnation, i.e., tra�clight3 and tra�clight8 (lower dashed oval), shows red-green
again. From this we can con�rm the claim, that the property can be satis�ed
for the running example. The protocol in Fig. 5 shows the detailed commands
and the result. The run-times for verifying the property are speci�ed within the
outputs as well.

There are three run-times that the model validator shows in the result mes-
sage. The 1st `Translation time' (1200 ms) is the time needed to translate the



Fig. 4. Generated object diagram for Example 1

class diagram into the relational logic of Kodkod. This translation is only per-
formed one time when executing the model validator the �rst time in a working
session. The validator needs 1212 ms (2nd `Translation time') to translate the
relational formula and the con�guration into SAT (this step is performed by
Kodkod), and 180 ms (validator `Solving time') to solve the translated relational
formula by the underlying SAT solver. The total time for all veri�cation tasks
in this example with the speci�ed bounds parameters is 5941 ms.

Example 2. The behavior property to be checked in the second example is: �Is it
possible to construct a scenario in which one tra�c light exists so that between
two green states we have less than four transitions?�. The following listing is the
OCL expression for this property:

context TrafficLight inv lessthan_4transitions_between_2G:

TrafficLight.allInstances→ exists (t | t.g and not t.succ.g and

Set{t.succ}→closure(succ)→exists(t1|t1.g and

Set{t}→closure(succ)→size() - Set{t1}→closure(succ)→size()<4))

To emphasize the important role of frame conditions for a veri�cation task,
�rst we apply our process without Step 2 that adds the frame conditions to the
original application model. As the result, the validator �nds a satisfying scenario
as shown in Fig. 6. The con�guration requires exactly 16 TrafficLight objects,



use> constraints -load rg_And_rg_Again.invs

Added invariants:

TrafficLight:: rg_And_rg_Again

use> mv -validate trafficLight1.properties

ModelTransformator: Translation time: 1200 ms

ModelValidator: SATISFIABLE

ModelValidator: Translation time: 1212 ms Solving time: 180 ms

ModelValidator: Create object Diagram

Fig. 5. Detailed commands and result for verifying property 1

4 Snapshot objects and 3 switch_TrafficLightOpC objects. It can be seen from
Fig. 6, tra�clight6 shows green (at the point of time corresponding to snapshot1)
and its latest reincarnation, tra�clight7, shows green again after three system
state transitions (in the later point of time corresponding to snapshot2). These
tra�clight objects are marked with the left and right dash ovals respectively
in Fig. 6. In this case, the validator can �nd a satisfying scenario, because,
without frame conditions, the attributes of one light can be changed when the
switch() operation is executed on another light, which is not connected to the
considered light. Here we have that tra�clight6 changes from the green to red
when the switch() operation is executed on tra�clight5. On the other hand, when
we apply our full process, with the same con�guration, the validator answers
`Unsatis�able'. That means that such scenario cannot be constructed within the
bounds. Fig. 7 shows the detailed commands and the result `Unsatis�able'.

This example shows the importance of adding frame condition to the original
application model in the entire veri�cation process. Frame conditions support
the validator to go not into the wrong direction when �nding the answer.

6 Transforming Veri�cation Results to

Application Model Sequence Diagrams

The result of the model validator, if the veri�cation property is satis�ed, is a
scenario in form of a �lmstrip model object diagram. The ordinary developer,
who must not know all details of the �lmstripping approach, may �nd it di�cult
to understand and use the result in terms of the application model. Therefore, the
transformation of the �lmstrip model object diagram to an equivalent application
model sequence diagram, which is more readable and practical, is helpful. The
test case generated by the validator may be used in the later phases of software
development. Fig. 8 is the application model sequence diagram corresponding to
the generated �lmstrip model object diagram for Example 1 in Sect. 5.

To built the sequence diagram from the �lmstrip model object diagram,
�rstly, each application object (i.e., an object from a class of the original model)
connected to the �rst snapshot object is considered as an initial object involved
in the interaction (here, tra�clight1, tra�clight10). Each OperationCall object
in the �lmstrip model object diagram is turned into an operation call from the



Fig. 6. Generated object diagram for Example 2 without frame conditions



use> constraints -load lessthan_4transitions_between_2g.invs

Added invariants:

TrafficLight:: lessthan_4transitions_between_2g

use> mv -validate trafficLight2.properties

ModelTransformator: Translation time: 1248 ms

KodkodModelValidator: UNSATISFIABLE

KodkodModelValidator: Translation time: 1689 ms Solving time:

1964544 ms

Fig. 7. Detailed commands and result for verifying property 2

system trafficlight1 trafficlight10

switch()

switch()

switch()

switch()

trafficlight1.r = true and trafficlight10.g = true

trafficlight1.r = true and trafficlight10.g = true

There are other solutions as well.

Fig. 8. Application model sequence diagram for veri�cation result of Example 1

system actor to one of the corresponding initial objects. The sequence diagram
is complete when the last operation call has been handled.

7 Evaluation of Run-times for the Veri�cation Tasks

One of the biggest problem that any veri�cation tool has to deal with is the
state-space explosion, i.e., the number of system states (the search space) may be
huge even for relatively simple systems, or easily exceed the available computer
memory. In our approach, the number of OperationCall objects (determining
system transitions) is a key element that a�ects the search space, and that
number corresponds to the run-time of a veri�cation task.

We evaluate the run-time of our veri�cation tasks by executing the model
validator for the �lmstrip model using Example 1 with gradually increasing the
number of switch_TrafficLightOpC objects. Table 1 shows the resulting times.
As can be seen from the table, the run-time of the veri�cation tasks increases
rapidly when the number of OperationCall objects increases gradually. On the
other hand, from Fig. 7 we can see that the solving time for Example 2 is much
higher than those in Tab. 1 although there were only 3 OperationCall objects
con�gured for Example 2. In case of Example 2, the answer was �Unsatis�able�,



Table 1. Run-times of veri�cation tasks

Number of
operation objects

Translation time [ms] Solving time [ms] Total time [m]

4 1 212 180 0.04

8 3 610 2 640 0.12

12 8 402 29 697 0.65

16 20 234 84 963 1.77

20 48 232 462 997 8.54

24 86 946 600 703 11.48

and therefore the model validator had to test all possibilities within the given
bounds. Consequently, the solving time is high compared with the solving time
for Example 1, for which the answer was �Satis�able�.

The results show that scenarios, i.e., sequence diagrams, with about 20 op-
eration calls can be constructed in less than 10 minutes.

8 Conclusion and Future Work

This contribution has proposed a process for the veri�cation of a behavioral
property of a UML model enriched by OCL constraints. The inputs are an ap-
plication model in form of a USE �le and a property that needs to be veri�ed in
form of an OCL invariant or in form of a UML sequence diagram; the output is
typically a test scenario in form of a sequence diagram. The idea of combining
frame conditions, the �lmstrip model, and the model validator in a complete
process for behavior property veri�cation together with sequence diagrams for
veri�cation tasks and veri�cation results has not been discussed before. The last
step of our process, the transformation of �lmstrip object diagrams to a sequence
diagram, will increase the readability and understandability of the veri�cation
approach. Most of the steps in our process are automatically performed by the
USE tool and its plugins. The process will be adjusted and optimized in later
works.

Future work can be done in various directions. First of all, a functionality that
allows to automatically transform the generated �lmstrip model object diagram
to an application model sequence diagram will be worked out. Secondly, the idea
for automatically formulating and adding frame conditions to a UML and OCL
model should be studied further and supported by tool options. Future work has
also to consolidate the approach with larger case studies and has to improve the
e�ciency of the validator searching process in the presence of �lmstrip models.

References

1. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure speci-
�cations. Software Engineering, IEEE Transactions on 21(10), 785�798 (Oct 1995)



2. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A tool for the formal veri�cation of
UML/OCL models using constraint programming. In: Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software Engineering.
pp. 547�548. ASE '07, ACM, New York, NY, USA (2007)

3. Cabot, J., Gogolla, M.: Object constraint language (OCL): A de�nitive guide. In:
Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) Formal Methods for Model-
Driven Engineering, Lecture Notes in Computer Science, vol. 7320, pp. 58�90.
Springer Berlin Heidelberg (2012)

4. Dan, C., Mihai, P., Adrian, C., Cristian, B., Sorin, M.: Ensuring UML models
consistency using the OCL environment. Electronic Notes in Theoretical Computer
Science 102, 99 � 110 (2004), proceedings of the Workshop, OCL 2.0 - Industry
Standard or Scienti�c Playground?

5. Demuth, B., Wilke, C.: Model and object veri�cation by using Dresden OCL. In:
Russian-German WS Innovation Information Technologies: Theory and Practice
(2009)

6. Doan, K.H., Gogolla, M., Hilken, F.: Addendum to A Complete Process for Be-
havioral Properties Veri�cation. Tech. rep., University of Bremen (2016), http:
//www.db.informatik.uni-bremen.de/publications/intern/HOFM2016ADD.pdf

7. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based speci�cation environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1-3), 27�34 (Dec
2007)

8. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.: From applica-
tion models to �lmstrip models: An approach to automatic validation of model
dynamics. In: Modellierung (MODELLIERUNG'2014) (2014)

9. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and conse-
quences in UML and OCL models. In: Dubois, C. (ed.) Tests and Proofs, Lec-
ture Notes in Computer Science, vol. 5668, pp. 90�104. Springer Berlin Heidelberg
(2009)

10. Hilken, F., Hamann, L., Gogolla, M.: Transformation of UML and OCL models
into �lmstrip models. In: Di Ruscio, D., Varró, D. (eds.) Theory and Practice of
Model Transformations, Lecture Notes in Computer Science, vol. 8568, pp. 170�
185. Springer International Publishing (2014)

11. Kosiuczenko, P.: Speci�cation of invariability in OCL. Software & Systems Mod-
eling 12(2), 415�434 (2011)

12. Krieger, M.P., Knapp, A., Wol�, B.: Automatic and e�cient simulation of opera-
tion contracts. In: Proceedings of the Ninth International Conference on Genera-
tive Programming and Component Engineering. pp. 53�62. GPCE '10, ACM, New
York, NY, USA (2010)

13. Kuhlmann, M., Gogolla, M.: Modeling and validating mondex scenarios described
in UML and OCL with USE. Formal Aspects of Computing 20(1), 79�100 (2007)

14. Niemann, P., Hilken, F., Gogolla, M., Wille, R.: Extracting frame conditions from
operation contracts. In: ACM/IEEE 18th Int. Conf. Model Driven Engineering
Languages and Systems (MoDELS'2015) (2015)

15. Object Management Group � OMG: Uni�ed Modeling Language Speci�cation,
version 2.5 (2013), http://www.omg.org/spec/UML/

16. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In: Evans,
A., Kent, S., Selic, B. (eds.) UML 2000 � The Uni�ed Modeling Language, Lecture
Notes in Computer Science, vol. 1939, pp. 265�277. Springer Berlin Heidelberg
(2000)



17. Shen, W., Compton, K., Huggins, J.: A toolset for supporting UML static and dy-
namic model checking. In: Computer Software and Applications Conference, 2002.
COMPSAC 2002. Proceedings. 26th Annual International. pp. 147�152 (2002)

18. Torlak, E., Jackson, D.: Kodkod: A relational model �nder. In: Grumberg, O.,
Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science, vol. 4424, pp. 632�647. Springer Berlin
Heidelberg (2007)

19. Ziemann, P., Gogolla, M.: Validating OCL speci�cations with the USE tool: An
example based on the BART case study. Electronic Notes in Theoretical Computer
Science 80, 157 � 169 (2003), eighth International Workshop on Formal Methods
for Industrial Critical Systems (FMICS'03)


