
Generating OCL Constraints from
Test Case Schemas for Testing Model Behavior

Nisha Desai and Martin Gogolla

University of Bremen, Department of Mathematics and Computer Science,
D-28334 Bremen, Germany

{nisha,gogolla}@informatik.uni-bremen.de

Abstract. This contribution studies testing behavioral aspects of a given
UML and OCL model. In our approach, a so-called model validator can
automatically generate test cases (object models) by using configura-
tions for the object models and manually formulated OCL invariants.
But expressing OCL invariants can be complex and difficult, especially
for novel or occasional modelers. In this contribution, we present an ap-
proach to automatically transform a diagrammatic test case schema into
a corresponding OCL invariant. The schema is a visual representation of
a behavioral test scenario constructed by the developer and which is in-
stantiated by the model validator to achieve different concrete test cases.
This approach enhances the underlying testing technique in making it
developer-friendly and independent of OCL expertise.

1 Introduction
As the size and complexity of models grow, there is an increasing need for testing
their correctness. Today, modeling languages such as the UML along with the
OCL are used to describe structural and behavioral aspects of a system.

For checking such crucial properties of a UML and OCL model, the tool
USE can be employed to transform a given application model into an equivalent
so-called filmstrip model [5]. In USE, a model validator (MV) can automatically
generate valid object diagrams based on given configurations (determining finite
sets of objects, links and attribute values) and external OCL invariants. For the
validation process, external OCL invariants are currently manually formulated.
However, writing OCL expressions is a difficult and time-consuming task and
often results in erroneous constraints. To address this problem, we propose an
approach where developers can express a scenario by constructing a so-called
test case schema (TC schema) which then can automatically be transformed
into an OCL invariant. Furthermore, the MV is used to instantiate the abstract
TC schema in order to generate multiple concrete test cases.

The rest of the paper is structured as follows. Section 2 provides the back-
ground and motivation of our work. Section 3 describes TC schemas with an
example and its transformation to an OCL invariant is explained in Sect. 4. In
Sect. 5, we show test case generation using the MV. Section 6 presents related
work and we conclude our paper with future work in Sect. 7.

1



2 Background

The MV in USE is specifically designed for structural analysis of models. There-
fore, we use our filmstrip approach which transforms invariants (structural prop-
erties) and operation pre- and postconditions (behavioral properties) of an ap-
plication model into a filmstrip model which possesses only invariants.

Fig. 1. Application model and filmstrip model.

The filmstripping approach can be explained best in terms of an example.
A simple SocialNetwork model in which a user can invite, accept and reject
a friendship request is chosen as an example. The upper part of Fig. 1 shows
the class diagram of the filmstrip model. The original application model, con-
sisting of the classes Profile and Friendship with the associations Invite

and Invitee, is completely contained in the filmstrip model and indicated in a
gray-shaded style. The small sequence diagram also represents elements of the
application model. The application model is automatically transformed with a
plug-in into the filmstrip model: the non-gray shaded classes and invariants (not
shown) are added. In essence, the application model sequence diagram becomes
a filmstrip model object diagram. Snapshot objects explicitly allow to capture
single system states from the application model. Operation call objects (suf-
fix OpC) describe operation calls from the application model. Basically, each
operation is transformed into an OperationCall class with attributes for the
self objects and for the operation parameters. Thus, for example, the call
profile3.accept(profile1) (dotted box) from the sequence diagram is repre-
sented by the object accept profileopc1 in the filmstrip object diagram. The
effect of the operation call is represented by the differences between the left and
the right snapshot: The accept operation call changes the attribute status. The

2



four Profile and the two Friendship objects represent different object states
before and after the operation call. So one could say that the object profile2
is a later incarnation of the object profile1.

Fig. 2. Overview on filmstrip validation (gray box) with TC schema approach (dotted
box).

The gray highlighted part in Fig. 2 gives an overview on the existing filmstrip
transformation and model validation process. In the validation process, exter-
nal OCL invariants are specified to guide the object diagram generation into a
particular direction, e.g., for attesting that objects or links with particular prop-
erties exist (for example, for the initial or final scenario state) [5]. Up to now,
these external OCL invariants had to be written manually. Thus, we propose
an approach where a TC schema, which is a diagrammatic representation of
a scenario, can automatically be transformed into an OCL invariant for model
validation in order to make the validation process free of OCL expertise.

3 Test Case Schema Example

A TC schema is basically a partial filmstrip object diagram consisting of differ-
ent snapshots which represent system states, and these snapshots can contain
application model objects and links. The objects of different snapshots can be
connected through filmstrip (pred,succ) links. We now show the construction of
a TC schema for an example scenario of the SocialNetwork model.

Fig. 3. TC schema of the test scenario.

The description of the user defined test scenario is as follows: There have to
exist two user profiles. In the initial state, they are not linked with each other,
and in the final state, they are linked with each other through a friendship
request. Figure 3 shows the TC schema for this scenario. In Snapshot1, there
exist two user profiles which are not linked with each other. In Snapshot3, the

3



Profile3 is linked to Profile6 through Invite and Invitee links as well as a
Friendship object. For each snapshot, developers have a choice between a so-
called open snapshot and a closed snapshot, and the specification of snapshots
will be according to the expected scenario generation. If a snapshot is classified
as closed, only the stated links (if any) are allowed between the snapshot objects
in a generated test case; if a snapshot is classified as open, other links are allowed
between the snapshot objects in a generated test case. More details about the
classification of snapshots and their OCL representations are discussed below.

4 Transformation of a TC Schema into an OCL Invariant

As previously stated, a TC schema is comprised of snapshots (application objects
and links) and filmstrip links. So during the transformation from a TC schema
to an OCL invariant, these elements must be transformed into OCL expressions.
The OCL expressions for the filmstrip (pred,succ) links which connect different
snapshot objects are directly generated using the succ role name. However,
different OCL representations are possible for the snapshots, as they can be
classified as an open or closed. In the open case, the mentioned objects and
links are fixed by the generated OCL invariant, but it is possible that more
links are present in generated test case. However, in the closed case, apart from
the mentioned objects and links, other possible application links which are not
explicitly mentioned, are excluded by the generated OCL invariant. To illustrate
the generation of an OCL invariant, we continue with the TC schema shown in
Sect. 3. The generated OCL invariant is as follows:

context Snapshot inv FirstLastClosedSnapshots:

Profile.allInstances->exists(p1,p2,...,p6|Set{p1,p2,..,p6}->size()=6 and

p1.succ=p2 and p2.succ=p3 and p4.succ=p5 and p5.succ=p6 and

Friendship.allInstances->exists(f1|

p1.friendshipR.invitee->excludes(p4) and // Snapshot1

p1.friendshipE.inviter->excludes(p4) and

p4.friendshipR.invitee->excludes(p1) and

p4.friendshipE.inviter->excludes(p1) and

p3.friendshipR->includes(f1) and f1.inviter = p3 and // Snapshot3

p6.friendshipE->includes(f1) and f1.invitee = p6 ))

For the closed snapshots, OCL expressions are generated guaranteeing (a) the
absence of links between Profile1 and Profile4 in Snapshot1 and (b) the
presence of links between Profile3 and Profile6 in Snapshot3. In the open
snapshot, OCL expressions are not generated, as there are no links.

5 Applying the Model Validator for Scenario Generation

The MV uses a given configuration and the generated OCL invariant for setting
the sequence of operation calls by fixing (a) attribute values and (b) objects and
links that have been left open in the TC schema in order to construct different
test cases. We check the feasibility of our approach by transforming a TC schema
into an OCL invariant and analyze the generated test cases.

4



Fig. 4. Automatically generated test case 1

Fig. 5. Automatically generated test case 2

From many generated test cases (filmstrip object diagrams), two are shown
in Figs. 4 and 5: one test case is an invite; accept; the other one is an invite;

invite. In the TC schema, one friendship is expected between two profiles. In
order to satisfy the scenario at least one invite operation call should exist, and
another operation call could be an accept, decline or invite as the attribute
status of the friendship object is not specified. In both test cases, the test
schema is satisfied (highlighted with dashed rectangles). The objects and links
in the open snapshots have been decided by the MV depending on the operation
calls.

In both shown test cases, the expected test scenario is precisely generated.
These show the successful transformation of an OCL invariant from a given TC

5



schema, and validate that our concept of distinguishing between open and closed
snapshots lead to the desired results. Various other larger models and larger test
case schemas have been developed. Due to space limitations we stick to the small
demonstration example.

6 Related Work
There are several contributions discussing techniques and approaches for OCL
transformation and test case generation. In [1], the authors are using the Seman-
tic Business Vocabulary and Rules (SBVR) to transform constraints written in
natural language to OCL statements. In [6], the tool MoMuT::UML is presented
to generate fault based test cases for UML state machine models. In [4], the
authors describe symbolic scenarios as operation sequences to generate func-
tional test cases. In [2], the authors propose a method to generate test data on
a higher-order representation of OCL models. In [3], the tool UMLtoCSP allows
a developer to perform verification and validation of a UML/OCL model based
on Constraint Logic Programming. In contrast to all these works, our approach
is the only one generating OCL constraints automatically from a developer-
specified scenario to generate concrete test cases for behavior model validation.

7 Conclusion
This contribution proposed a transformation for automatically generating an
OCL invariant from a TC schema. We showed scenario generation using a model
validator which constructed valid behavioral scenarios with different sequences of
operation calls based on the generated OCL invariant. Future work will consider
more options for attribute specification in the transformation, as this should help
developers to express a scenario more effectively. More and larger case studies
must check the applicability of the approach.

References

1. Bajwa, I.S., Bordbar, B., Lee, M.G.: OCL constraints generation from natural lan-
guage specification. In: Proc. of the 14th IEEE Int. Enterprise Distributed Object
Computing Conf. pp. 204–213. IEEE Computer Society (2010)

2. Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B.: A specification-based test case
generation method for UML/OCL. In: Models in Software Engineering - Workshops
at MODELS. pp. 334–348. Springer (2010)

3. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. pp. 547–548. ACM (2007)

4. Castillos, K.C., Dadeau, F., Julliand, J.: Scenario-based testing from UML/OCL
behavioral models - application to POSIX compliance. STTT 13(5), 431–448 (2011)

5. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From Applica-
tion Models to Filmstrip Models: An Approach to Automatic Validation of Model
Dynamics. In: Proc. Modellierung. pp. 273–288. GI, LNI 225 (2014)

6. Krenn, W., Schlick, R., Tiran, S., Aichernig, B.K., Jöbstl, E., Brandl, H.: MoMut: :
UML model-based mutation testing for UML. In: 8th IEEE Int. Conf. on Software
Testing, Verification and Validation. pp. 1–8. IEEE Computer Society (2015)

6


