
An Approach for Quality Assurance of
Model Transformations

Duc-Hanh Dang
Department of Software Engineering,

VNU - University of Engineering and Technology,
144 Xuan Thuy, Hanoi, Vietnam

hanhdd@vnu.edu.vn

Martin Gogolla
Department of Computer Science,

University of Bremen
D-28334 Bremen, Germany

gogolla@informatik.uni-bremen.de

Abstract—Model transformation is an important building
block for model-driven approaches. It puts forward a necessityas
well as a challenge for validating and verifying transformations.
This paper proposes a specification method and an OCL-based
framework for model transformations. The approach is based
on an integration of Triple Graph Grammars and the Object
Constraint Language (OCL) as a formal foundation. The OCL-
based transformation framework offers an on-the-fly verification
of model transformations and means for transformation quality
assurance.

Index Terms—Model Transformation, Graph Transformation,
OCL, Validation&Verification, Pre- and Postcondition, Invariant.

I. I NTRODUCTION

Model transformation can be seen as the heart of model-
driven approaches [1]. Transformations are useful for different
goals such as (1) to relate views of the system to each
other; (2) to reflect about a model from other domains for an
enhancement of model analysis; and (3) to obtain a mapping
between models in different languages. In such cases it is
necessary to ensure the correctness of transformations. This
is also a challenge because of the diversity of models and
transformations.

Many approaches to model transformation have been intro-
duced [2]. The works in [3], [4] offer mechanisms for trans-
formations in line with the Query/View/Transformation (QVT)
standard [5]. The ideas in [6], [7] focus on the approach based
on graph transformation for unidirectional transformations.
Triple Graph Grammars (TGGs) [8] are a similar approach
for bidirectional transformations. In addition to specification
and realization of transformations as proposed by these works,
several papers discuss how to ensure the correctness of trans-
formations. In [9] the authors introduce a method to derive
Object Constraint Language (OCL) invariants from declarative
transformations like TGGs and QVT in order to enable their
verification and analysis. The work in [10] aims to establish
a framework for transformation testing. Up to now, to offer
a suitable approach for model transformation which supports
for quality assurance of transformations is still a “hot” issue.

In this paper we focus on an integration of TGGs and OCL
as a foundation for model transformation. Incorporating OCL
conditions in triple rules allows us to express better transfor-
mations. Our approach targets both declarative and operational

features of transformations. Within the approach a new method
to extract invariants for TGG transformations is introduced.
We propose a specification method of transformations and an
OCL-based framework for model transformation. We realize
the approach in USE [11], a tool with full OCL support. This
offers an on-the-fly verification of transformations and means
for quality assurance of transformations.

The rest of this paper is structured as follows. Section II
explains our basic idea. Section III focuses on the formal
foundation for specification and realization of transformations.
Section IV explains an OCL-based framework for transforma-
tion quality assurance. Section V shows how the approach
is realized in the USE tool. Section VI comments on related
work. The paper is closed with a conclusion and a discussion
of future work.

II. T HE BASIC IDEA

We focus on the SC2EHA transformation between a stat-
echart and an extended hierarchical automaton in order to
illustrate our approach. Models in this example [12] represent
a traffic supervisor system for a crossing of a main road and
a country road (Fig. 1). The lamp controller provides higher
precedence to the main road as follow: If more than two cars
are waiting at the main road (this information is provided
by a sensor), the lamp will be switched from red to red-
yellow immediately, instead of a waiting period as usual. A
camera allows the system to record cars running illegally in
the crossing during the red signal.

A. Overview of the Transformation

1) Motivation of the transformation:The UML statechart
(state machine) [13] is a light-weight notation for describing
the system behavior. In order to model-check statecharts,
it is necessary to transform them and represent them in
a mathematical formalism like Extended Hierarchical Au-
tomata (EHAs). EHAs have been proposed in [14] as an inter-
mediate format to facilitate linking new tools to a statechart-
based environment. This formalism uses single-source/single-
target transitions (as in usual automata), and forbids interlevel
transitions. The EHA notation is a simple formalism with
a more restricted syntax than statecharts which nevertheless
allows us to capture the richer formalism [14].

Source Restriction={Count2}

Target Determination

= {Green, CameraOff}

Target Determination

= {Count0}

Statechart of the traffic light example

Extended Hierarchical Automata

 (EHA)

Fig. 1. Statechart and extended hierarchical automaton for the traffic light example (adapted from [12])

2) Example Statechart:Figure 1 shows the example stat-
echart. The system has two basicstatesOn and Off, re-
flecting whether the system is turned on or off. There is
a concurrent decomposition of theOn state. The region on
the left corresponds to the lamp state, and the region on the
right corresponds to the camera state. Each of these regions
is concurrently active. TheOn state is referred to as an
orthogonal state, i.e., acomposite statecontaining more than
one region. TheOff state, which does not have sub-states, is
referred to as asimple state.

3) Example Extended Hierarchical Automaton :Figure 1
presents the example EHA as another representation of the
example statechart. This EHA consists of foursequential au-
tomata(denoted by rectangles), each of which containssimple
statesand transitions. States can be refined by concurrently
operating sequential automata, imposing a tree structure on
them. In Fig. 1 the refinement is expressed by the dotted
arrows, e.g., theOn state is refined by two sequential automata.

Interlevel transitionsin statecharts are transitions which do
not respect the hierarchy of states, i.e., those that may cross
borderlines of states. The EHA expresses them using labeled
transitions in the automata representing the lowest composite
state that contains all the explicit source and target states of
the original transition. For example, the interlevel transition
from Count2 to RedYellow in the statechart is represented
by the transition fromRed to RedYellow together with the
label Count2 in the corresponding automaton. This label
is referred as asource restriction. The transition isenabled
only if its source and all state in the source restriction set
({Count2}) are active. The interlevel transition fromOff to
On is represented by the similar transition in the corresponding
automaton together with labelsGreen and CameraOff,

called atarget determination. When taking the transition, the
target and all states in the target determination set ({Green,
CameraOff}) areenteredand become active.

4) The SC2EHA Transformation:The transformation needs
to show intuitive correspondences between statecharts and
EHA models as follows.

• Initial state. The initial state of an automaton, e.g., the
Off state, corresponds to a state of the statechart marked
by an initial pseudo state.

• Simple state.Each simple state of the statechart corre-
sponds to a unique state of the sequential automaton.

• Concurrent state. The concurrent state of the statechart,
e.g., theOn state, is mapped to a state of the sequential
automaton. Each region of the concurrent state corre-
sponds to an automaton. These automata refine the state
of the sequential automaton.

• Non-concurrent composite state.The non-concurrent
composite state of the statechart, e.g., theRed state, is
mapped to the state of the sequential automaton together
with an automaton refining it.

• Transitions. Each transition in the statechart is uniquely
mapped to a transition of the EHA. In case the transition
is an interlevel one, the transition of the EHA needs
to be labelled with the source restriction and target
determination sets.

B. Requirements for Transformation Quality Assurance

Quality assurance for transformations means systematic
monitoring and evaluation of various aspects so that the
transformation meets modeler expectations. Here we focus
on the questions “is the transformation right?” and “is this
the right transformation?” that characterize verificationand
validation.

2

1) Verification: We need to check if there are any defects
in a transformation. Here we consider a transformation as a
program taking the source and target model as the input and
output respectively. Based on such a transformation model,we
could expect several reasonable assumptions to be satisfied.
For example, with the SC2EHA transformation, the input
statechart and the output EHA model need to fulfill restrictions
at the metamodel level for well-formedness criteria. Failing
to satisfy such criteria will be a symptom of an incorrect
transformation.

2) Validation: The validation of a transformation is the
process of applying the transformation in various scenarios
and comparing the de facto result with the expected outcome.
The process cannot be fully automated: The modeler often
has to define relevant scenarios together with the expected
outcome, so-called test cases, and then to compare the ob-
tained and expected result. The process often depends on a
semi-automated solution, where test cases may be generated
automatically, the execution may be animated and debugged,
and the difference between the result and the expected outcome
may be highlighted.

C. Central Steps of the Methodology

Let us explain the central steps of the transformation de-
velopment method that we propose: (1) Models as the input
and output of transformations are defined by metamodels
together with OCL restriction. (2) Our transformation models
are established based on the incorporation of triple rules and
OCL at two levels, declarative and operational specification
of transformations. (3) For a transformation quality assurance
framework, the reasonable assumptions of transformationsin
our focus include the following OCL properties: model proper-
ties, invariants of transformations, well-formedness of models,
and pre- and postconditions of transformation operations.

III. SPECIFICATION AND REALIZATION OF

TRANSFORMATION

This section explains our approach based on TGGs and OCL
for specification and realization of transformation.

State

name:String

Statechart
trOwner

Transition* *
*

src

0..1owner

*dst

*

* trigger0..1

1

1

Metamodel - Type graph

On Off

Switch

Model in concrete syntax

:State

name = 'Off'

:State

name = 'On'

:Statechart

:Event

name = 'Switch'

Event
name:String

:Transition

Model in abstract syntax - Typed graph

src

dst

owner

owner trOwner

Fig. 2. A typed graph conforms to the metamodel as a type graph

A. Preliminaries of Transformation Based on TGGs

The definitions explained in this section are adapted from
the work in [15]. Models in our work are seen as graphs. They
are defined by a corresponding metamodel, which is repre-
sented as a type graph. Figure 2 shows a simplified metamodel
as a type graph which defines the structure of statecharts. The
full version of the metamodel is shown in Fig. 7. Instances
of the node types (Statechart, State, Transition, and Event)
have to be linked according to the edge types between the
node types and have to be attributed according to node type
attributes.

In order to obtain a mapping between a pair of models, we
consider such a combination as a triple graph. Triple graph
transformations allow us to build states of the integration.

Definition 1. (Triple Graphs; Triple Graph Morphisms)
Three graphsSG , CG , andTG , called source, connection,

and target graph, together with two graph morphismssG :
CG → SG and tG : CG → TG form a triple graphG =

(SG
sG← CG

tG→ TG). G is said to be empty, ifSG , CG , and
TG are empty graphs. A triple graph morphismm = (s, c, t) :

G → H between two triple graphsG = (SG
sG← CG

tG→

TG) andH = (SH
sH← CH

tH→ TH) consists of three graph
morphismss : SG → SH , c : CG → CH and t : TG → TH

such thats ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective,
if the morphismss, c and t are injective. Triple graphs and
triple graph morphisms form the categoryTripleGraph .

:Statechart

refined

eha:EHAs2e:SC2EHA

c2s1:S2SH

s2a1:St2Aut

c2s2:S2SH

s2a2:St2Aut

onStateH:StateH

name = 'On'

lampAut:Automata

name = 'Lamp'

redStateH:StateH

name = 'Red'

counterAut:Automata

name = 'Red'

onState:CompState

isConcurr=true

name='On'

lampState:CompState

isConcurr=false

name='Lamp'

redState:CompState

isConcurr=false

name='Red'

ownerowner
owner

container

refined

owner

owner

container

container

ehasc

Fig. 3. Triple graph for an integrated SC2EHA model

Example. Triple graph: The graph in Fig. 3 shows a triple
graph containing a statechart together with correspondence
nodes pointing to the extended hierarchical automata (EHA).
References between source and target models denote transla-
tion correspondences.

Definition 2. (Triple Graph Grammar)
A triple rule tr = L

tr
→ R consists of triple graphsL and

R and an injective triple graph morphismstr.

(SL

(SR

CL

CR

TL)

TR)

ts

sR tR

tL
s
L

L =

R =

tr c

3

Given a triple ruletr = (s, c, t) : L → R, a triple graph
G and a triple graph morphismm = (sm, cm, tm) : L→ G,
called triple matchm, a triple graph transformation stepG

tr,m
=⇒

H from G to a triple graphH is given by three objectsSH ,
CH andTH in categoryGraph with induced morphismssH :
CH → SH andtH : CH → TH . Morphismn = (sn, cn, tn)
is called comatch.

(SG

(SH

CG

CH

TG)

TH)

t’s’

sH tH

G =

H =

tr

SL

SR

CL

CR

TL

TR

tmsm

c’

cm

tnsn cn

A triple graph grammar is a structureTGG = (TG , S,TR)
whereTG is a triple type graph,S is an initial graph, and
TR = {tr1, tr2,, trn} is a set of triple rules. Triple graph
language ofTGG is the set{G|∃ triple graph transformation
S ⇒∗ G}.

w}

w}

w}

w}

w}

Fig. 4. Triple rule for the SC2EHA transformation

Example. Triple rule: The rule in Fig. 4 is part of a triple
graph grammar that generates statecharts and corresponding
EHA models. This rule may create a simple state of a
statechart and its corresponding state of the corresponding
EHA model at any time.

A triple rule allows us to derive new rules for forward
and backward transformation, model integration, and model
co-evolution. LetTGG = (TG , S,TR) be a triple graph
grammar,VL be the language ofTGG , andVLs, VLc, and
VLt be the source, correspondence, and target language as the
result of the projection onto the source, correspondence, and
target part ofVL, respectively.

Definition 3. (Forward Transformation)
Let a graphGS ∈ VLs be given. A forward transformation
from GS to GT is a computation to define the graphGT ∈
VLt through a triple derivationS

∗

⇒ (GS ← GC → GT).

Definition 4. (Backward Transformation)
Let a graphGT ∈ VLt be given. A backward transformation
from GT to GS is a computation to define the graphGS ∈
VLs through a derivationS

∗

⇒ (GS ← GC → GT).

Definition 5. (Model Integration)
Let the graphsGS ∈ VLt and GT ∈ VLs be given. A
model integration ofGS andGT is a computation to define a
derivationS

∗

⇒ (GS ← GC → GT).

Definition 6. (Model Co-Evolution)
Let ES ∈ VLs andET ∈ VLt be graphs as source and target
parts of a triple graphE, respectively. A model co-evolution
from (ES ,ET) to (FS ,FT) is a computation to define graphs
FS ∈ VLs and FT ∈ VLt through the derivation(ES ←
EC → ET)

∗

⇒ (FS ← FC → FT).

Definition 7. (Derived Triple Rules)
Each triple ruletr = L→ R derives forward, backward, and
integration rules as follows:

(SR

(SR

CL

CR

TR)

TR)

integration rule trI

c id

sR tR

t o t
L

(SR

(SR

CL

CR

TL)

TR)

forward rule trF

tcid

sR tR

tLs o s
L

(SL

(SR

CL

CR

TR)

TR)

backward rule trB

s c id

sR tR

sL
t o t

L

id

s o s
L

whereid is the identify function.

Theorem 1. (Derived Rules for Forward Transformation)
Let TGG = (TG , S,TR) be a triple graph grammar and
(GS ← SC → ST) be a triple graph typed byTG . We
can define a forward transformation fromGS to GT as the
following conditions are fulfilled.

(i) (GS ← SC → ST)
trF1,m1
=⇒ . . .

trFn,mn
=⇒ (GS ← GC →

GT), wheremi = (smi, cmi, tmi) are triple matches.
(ii) ∀i > 0, 0 < j < i, snj(SRtrj \ SLtrj) ∩ sni(SRtri \

SLtri) = ∅, where(sni, cni, tni) is the comatch ofmi.

Proof: Suppose that at theith step of the transformation in
(ii), we can define the triple graphGi such thatS = (SS ←

SC → ST)
tr1,m1
=⇒ . . .

tri,mi
=⇒ Gi = (Gi

S ← Gi
C → Gi

T)
and G1 ⊂ G2 . . . ⊂ Gi ⊂ GS . Now at the i + 1th step
the condition(ii) allows us to defineGi+1 such thatGi ⊂

Gi+1 ⊂ GS andGi = (Gi
S ← Gi

C → Gi
T)

tri+1,mi+1

=⇒ Gi+1 =
(Gi+1

S ← Gi+1

C → Gi+1

T). Therefore, by indution there exists

a transformationS = (SS ← SC → ST)
tr1,m1
=⇒ . . .

trn,mn
=⇒

Gn = (GS ← GC → GT). This is what we need to prove.
For the backward, and integration transformation between

GS andGT , we can obtain a similar result. The (ii) condition
in this case is shown respectively as follow.

(SS ← SC → GT)
trB1,m1
=⇒ . . .

trBn,mn
=⇒ (GS ← GC → GT),

(GS ← SC → GT)
trI1,m1
=⇒ . . .

trIn,mn
=⇒ (GS ← GC → GT)

{new}

{new}

{new}

{new}

Fig. 5. A forward transformation step by the forward rule derived from the
rule shown in Fig. 4

Example.Figure 5 shows a transformation step for the forward

4

transformation from a statechart to an EHA model. The
forward rule is derived from the rule shown in Fig. 4

B. Incorporation of OCL and Triple Rules

We propose to employ OCL conditions as restrictions on
the applicability of triple rules. It allows us to increase
the expressiveness of triple rules. For example, with the
rule shown in Fig. 3, we could attach it with the OCL
precondition cps.isConcurr = false and the postcondi-
tion s.name <> oclUndefined(String) ∧ aut1.name <>

oclUndefined(String). OCL application conditions of a
triple rule can be defined as a combination of OCL conditions
in parts of the triple rule. Formally, they are defined as follows.

Definition 8. (OCL Application Conditions)
OCL application conditions (BACs1) of a triple rule consist of
OCL conditions in source, target, and correspondence partsof
the triple rule. BACs within the LHS and RHS of the triple
rule are application pre- and postconditions, respectively:

• BACpre = BACSL ∪BACCL ∪BACTL,
• BACpost = BACSR ∪BACCR ∪BACTR, and
• BAC = [BACpre, BACpost],

where BACxx with xx ∈
{‘SL′, ‘SR′, ‘CL′, ‘CR′, ‘TL′, ‘TR′} are BACs in the
LHS and RHS of the source, correspondence, and target parts
of the triple rule, respectively;BACpre and BACpost are
application pre- and postconditions, respectively.

Definition 9. (Application Condition Fulfillment)
A triple rule with BACs is a tupletr = (L,R,BAC),
where BAC includes OCL application conditions. A triple
graph H is derived from a triple graphG by a triple rule
tr = (L,R,BAC) and a triple matchm iff:

• H is derived by(L→ R,m) and
• BAC is fulfilled in the rule applicationG

r
⇒ H,

wherer : L→ R is the rule which is obtained by viewing the
triple graphs LHS and RHS of thetr rule as plain graphs.

Theorem 2. (Pre- and Postconditions of Derived Rules)
Let a triple rule tr be given. Preconditions of triple rules
derived fromtr are defined as follows.

• BACtrF
pre = BACtr

SR∗
∪BACtr

CL ∪BACtr
TL,

• BACtrB
pre = BACtr

SL ∪BACtr
CL ∪BACtr

TR∗
, and

• BACtrI
pre = BACtr

SR∗
∪BACtr

CL ∪BACtr
TR∗

Postconditions of derived rules are defined as follows.

• BACtrF
post = BACtr

SR∗
∪BACtr

CR ∪BACtr
TR,

• BACtrB
post = BACtr

SR ∪BACtr
CR ∪BACtr

TR∗
, and

• BACtrI
post = BACtr

SR∗
∪BACtr

CR ∪BACtr
TR∗

,

where

• BACtrF
pre , BACtrB

pre , and BACtrI
pre are the precondition

of derived rules for forward, backward, and integration
transformation, respectively;BACtrF

post, BACtrB
post, and

BACtrI
post are the postcondition of the derived rules,

1BACs stands for Boolean Application Conditions

• BACtr
xx with xx ∈ {‘SL′, ‘SR′, ‘CL′, ‘CR′, ‘TL′, ‘TR′}

are BACs in the LHS and RHS of parts of the triple rule
tr, respectively, and

• BACtr
SR∗

, BACtr
CR∗

, andBACtr
TR∗

are BACs excepting
ones with ‘@pre’ inSR, CR, andTR , respectively.

Proof: According to Theorem 1, a derivation with derived

triple rules, e.g.,(MS ← φ → φ)
trF1,m1
=⇒ . . .

trFn,mn
=⇒

(MS ← MC → MT), is always defined in relation to a
corresponding derivation with the original triple rules, i.e.,
(φ ← φ → φ)

tr1,m1
=⇒ . . .

trn,mn
=⇒ (MS ← MC → MT).

Therefore, we can formulate pre- and postconditions of derived
triple rules in such a way.

C. The RTL Transformation Language

We define the RTL2 language in order to specify triple rules
incorporating OCL. The declarative specification in textual
form can generate the different operations for transformation
scenarios as explained in Subsect. III-A. We realize the op-
erations by taking two views on them: Declarative OCL pre-
and postconditions are employed as operation contracts, and
imperative command sequences are taken as an operational
realization. Figure 6 illustrates the RTL specification of triple
rules and the generated corresponding OCL operations.

IV. QUALITY ASSURANCE OFTRANSFORMATIONS

This section discusses how our OCL-based transformation
framework offers means for transformation quality assurance.

A. Verification of Transformation

We explain the aim in a formal way: LetMM S andMM T

be metamodels for source and target models, respectively. Let
TGTS = (S,TR) be a triple graph transformation system,
which relates source and target models to each other. With
respect toTGTS we define an RTL specification of the
transformation. For each source modelMS the RTL speci-
fication allows us to define a corresponding target modelMT

by forward operations. Note that we only focus on forward
transformation since the verification for other transformation
scenarios can be similarly obtained. We need to check if the
target modelMT is correctly defined.

1) Check invariants of transformations:We can see triple
rules as templates establishing mappings between source and
target models. Therefore, the transformation is correct only if
such mappings conform to triple rules. For example, with the
triple rule shown in Fig. 4 a mapping that conforms to the
rule must include 11 objects and 14 links. For the check we
aim to maintain “traces” for such mappings. We propose to
add a new node into the correspondence part of each rule.
The new node represents an instance of a class whose name
coincides with the rule name. The node is linked to all nodes
in the correspondence part so that from this node we can
navigate to them within an OCL expression. We can define an
OCL condition in order to represent the pattern of this rule.
For example, the following OCL condition represents for the
triple ruleCompStateNest shown in Fig. 4: An invariant of
the CompStateNest class is defined. The transformation is
correct only if such an invariant are valid.

2RTL stands for Restricted Graph Transformation Language

5

c
o
n
t
e
x
t

R
u
l
e
C
o
l
l
e
c
t
i
o
n
:
:
s
i
m
p
S
t
a
t
e
T
o
p
_
c
o
E
v
o
l
(

m
a
t
c
h
S
L
:
T
u
p
l
e
(
s
c
:
S
t
a
t
e
c
h
a
r
t
,
_
s
_
n
a
m
e
:
S
t
r
i
n
g
)
,

m
a
t
c
h
T
L
:
T
u
p
l
e
(
e
h
a
:
E
H
A
,
a
u
t
:
A
u
t
H
)
,

m
a
t
c
h
C
L
:
T
u
p
l
e
(
s
2
e
:
S
C
2
E
H
A
)
)

p
r
e

s
i
m
p
S
t
a
t
e
T
o
p
_
c
o
E
v
o
l
_
p
r
e
:

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
m
a
t
c
h
S
L
:
T
u
p
l
e
(
s
c
:
S
t
a
t
e
c
h
a
r
t
,
_
s
_
n
a
m
e
:
S
t
r
i
n
g
)

l
e
t

s
c
:

S
t
a
t
e
c
h
a
r
t

=

m
a
t
c
h
S
L
.
s
c

i
n

l
e
t

_
s
_
n
a
m
e
:
S
t
r
i
n
g

=

m
a
t
c
h
S
L
.
_
s
_
n
a
m
e

i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
m
a
t
c
h
T
L
:
T
u
p
l
e
(
e
h
a
:
E
H
A
,
a
u
t
:
A
u
t
H
)

l
e
t

e
h
a
:

E
H
A

=

m
a
t
c
h
T
L
.
e
h
a

i
n

l
e
t

a
u
t
:

A
u
t
H

=

m
a
t
c
h
T
L
.
a
u
t

i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
m
a
t
c
h
C
L
:
T
u
p
l
e
(
s
2
e
:
S
C
2
E
H
A
)

l
e
t

s
2
e
:

S
C
2
E
H
A

=

m
a
t
c
h
C
L
.
s
2
e

i
n

-
-
S
_
p
r
e
c
o
n
d
i
t
i
o
n

-
-
T
_
p
r
e
c
o
n
d
i
t
i
o
n

e
h
a
.
a
u
t
H
-
>
i
n
c
l
u
d
e
s
A
l
l
(
S
e
t
{
a
u
t
}
)

a
n
d

a
u
t
.
r
e
f
i
n
e
d
=
e
h
a
.
t
o
p

a
n
d

-
-
C
_
p
r
e
c
o
n
d
i
t
i
o
n

S
e
t
{
s
2
e
.
s
c
}
-
>
i
n
c
l
u
d
e
s
A
l
l
(
S
e
t
{
s
c
}
)

a
n
d

S
e
t
{
s
2
e
.
e
h
a
}
-
>
i
n
c
l
u
d
e
s
A
l
l
(
S
e
t
{
e
h
a
}
)

p
o
s
t

s
i
m
p
S
t
a
t
e
N
e
s
t
_
c
o
E
v
o
l
_
p
o
s
t
:

ru
le

 s
im

p
S

ta
te

T
o

p

c
h

e
c
k
S

o
u

rc
e

(

s
c
:S

ta
te

c
h

a
rt

){
s
:S

im
p

S
ta

te

(s

c
,s

):
O

w
n

s
S

ta
te

[s

.n
a

m
e

<
>

o
c
lU

n
d

e
fi
n

e
d

(S
tr

in
g

)]

[s

.c
o

n
ta

in
e

r=
o

c
lU

n
d

e
fi
n

e
d

(C
o

m
p

S
ta

te
)]

}c
h

e
c
k
T
a

rg
e

t(

e

h
a

:E
H

A

a

u
t:

A
u

tH

(e

h
a

,a
u

t)
:O

w
n

s
A

u
tH

[a

u
t.
re

fi
n

e
d

=
e

h
a

.t
o

p
]

){
s
H

:S
ta

te
H

(a

u
t,
s
H

):
C

o
n

ta
in

s
S

ta
te

H

}c
h

e
c
k
C

o
rr

(

(s

c
,e

h
a

)
a

s
 (

s
c
,e

h
a

)
in

 s
2

e
:S

C
2

E
H

A

){
((

S
ta

te
)s

,s
H

)
a

s
 (

s
c
,e

h
a

)
in

 s
2

s
H

:S
2

S
H

S

2
S

H
:[
s
e

lf
.e

h
a

.n
a

m
e

=
s
e

lf
.s

c
.n

a
m

e
]

}e
n

d (a
)

ru
le

 s
p
e

c
if
ic

a
ti
o
n

 i
n
 R

T
L

(b
)

th
e
 g

e
n
e

ra
te

d
 o

p
e

ra
ti
o

n
 f
o

r
c
o

-e
v
o

lu
ti
o
n

Fig. 6. RTL specification of triple rules and generated OCL operations

context CompStateNest inv isMatch:
let s2e:SC2EHA = self.s2e in
let s2a:St2Aut = self.s2a in
let s2sH:S2SH = self.s2sH in
let s2a1:St2Aut = self.s2a1 in
s2e.isDefined and s2a.isDefined and
s2sH.isDefined and s2a1.isDefined and
s2e.includes(sc) and s2e.includes(eha) and
s2a.includes(cps) and s2a.includes(autH) and
s2sH.includes(s) and s2sH.includes(sH) and
s2a1.includes(s) and s2a1.includes(aut1) and
s2a.aut.includes(sH) and s2a.aut.includes(eha)
and s2a1.aut1.includes(sH) and
s2a1.aut1.includes(eha) and s2a.cps.includes(s)
and s2e.sc.includes(s) and s2e.sc.includes(cps)

2) Check contract fulfillment of transformation steps:
According to the algorithm for translating triple rules into
OCL operations [16], it follows that the sequence of oper-
ation applications for a transformation corresponds to a triple
derivation for forward transformation:dtr : (MS ← φ →

φ)
trF1,m1
=⇒ . . .

trFn,mn
=⇒ (MS ← MC → MT), where trF i

are forward rules andmi are triple matches. In order to
check the correctness of the transformation we check if each
operation application realizes correctly a rule application. By

checking the contract of the operation, i.e., a pair of pre-
and postconditions it allows us to ensure the correctness of
the transformation step. It offers an on-the-fly verification for
different transformation properties.

3) Check model properties:The declarative language OCL
allows us to navigate and to evaluate queries on models.
Therefore, we can employ OCL to express properties of
models at any specific moment in time. For example, the
following OCL condition expresses the property“There is a
transition from the ‘Red’ state to the ‘Yellow’ state.”

Trans.allInstances()->exists(t|
t.src.name=’Red’ and
t.dst.name=’Yellow’)

4) Check well-formedness of models:The transformation
with triple rules may maintain the conformance relationship
between a model as a typed graph and its metamodel as
a type graph. However, when the metamodel is restricted
by OCL conditions, models during a transformation may no
longer conform to their metamodel. A model conforms to
the metamodel, i.e., it is well-formed only if such restricting
invariants are fulfilled. For example, during the SC2EHA
transformation, the following invariantownsChildState
needs to be valid. The invariant expresses the condition“Every
child state of a composite state belongs to the same statechart
with the parent state.”

context Statechart inv ownsChildState:
self.state->forAll(p:State|
if p.oclIsTypeOf(CompState) then
p.oclAsType(CompState).content->
forAll(c:State|self.state->includes(c))

else true endif)

B. Validation of Transformation

This section focuses on features of the RTL transformation
that might provide support for a semi-automated solution to
validate transformations.

1) Model integration for test cases:Given a test case
including the source modelMS and the expected target model
MT . To check the transformation with the test case means we
check ifMT coincides with the resulting modelM

′

T . Instead
of this, we could employ integration rules in order to obtain
an integration ofMS and MT : A mapping between these
models is established. The derivation is such that(MS ← φ→

MT)
trI1,m1
=⇒ . . .

trIn,mn
=⇒ (MS ←MC →MT), wheretrI i are

integration rules andmi are triple matches. In this way the
transformation can be better animated for the modeler.

2) Animation of transformation:After each transformation
step, we can see the combination of the source, correspon-
dence, and target part as a whole model. We could employ
OCL expressions in order to explore such a model. Mappings
within the current rule application can be highlighted by OCL
queries. This makes it easier for the modeler to check if the
rule application is correct.

V. TOOL SUPPORT

Our approach for verification and validation of transfor-
mation is realized with the support of USE [11], which is
a tool for analysis, reasoning, verification and validationof
UML/OCL specifications. Specifically, USE allow us to check

6

class invariants, pre- and postconditions of operations, and
properties of models, which are expressed in OCL. In USE
system states are represented as object diagrams. System
evolution can be carried out using operations based on basic
state manipulations, such as (1) creating and destroying objects
or links and (2) modifying attributes. In this way a framework
for model transformation based on the integration of TGGs
and OCL are completely covered by USE. Figure 7 shows
metamodels for the SC2EHA transformation in USE. Due to
space limitations, the full realization for the transformationis
only shown in the long version of this paper [17].

The RTL specification of a transformation is translated into
transformation operations in OCL. The operation is realized by
taking two views on it: Declarative OCL pre- and postcondi-
tions are employed as operation contracts, and USE command
sequence are taken as an operational realization. With the full
OCL support, USE allows us to realize the verification and
validation of transformations as discussed in Sect. IV.

VI. RELATED WORK

Triple Graph Grammars (TGGs) have been proposed in [8].
Since then, many works have extended TGGs for software
engineering [18]. Here we focus on the incorporation of TGGs
and OCL as a foundation for transformations as proposed in
our previous work [19], [16]. Note that our previous work
mostly focuses on how triple rules incorporating OCL are op-
erationalized. In this paper, we concentrate on the correctness
and validation of such a transformation, towards an OCL-based
framework for transformation quality assurance. Contributions
in this paper include the following points: (1) to define pre-
and postconditions of triple rules, which are derived from TGG
rules incorporating OCL (specified in the RTL language), (2)
an enhancement to extract invariants from declarative TGG
rules so that we could check if a transformation step is valid,
and (3) a discussion of a framework for quality assurance of
transformation.

Many approaches have been proposed for model transforma-
tion. Most of them are in line with the standard QVT [5] such
as ATL [3] and Kermeta [4]. Like our work, they allow the
developer to precisely present models using metamodels and
OCL. The advantage of our approach is that it is based on the
integration of TGGs and OCL, which allows the developer to
automatically analyze and verify transformations, and supports
for bidirectional model transformation.

Our approach for model transformation is based on graph
transformation like the work in VMTS [6] and Fujaba [18].
Many other works focus on the translation of the transforma-
tion to a formal domain for model checking such as Alloy
in [20], Promela in [21], and Maude in [22].

In [9] the authors propose a method to derive OCL invariants
from TGG and QVT transformations in order to enable their
verification and analysis. Our approach targets to support for
both declarative and operational features of transformations.
We also introduce a new method to extract invariants for TGG
transformations. Several other works focus on approaches for
verification and validation of transformation. The proposal Fig. 7. Metamodels for the SC2EHA transformation

7

in [23] introduces a method to check semantic equivalence
between the initial model and the generated code. The ap-
proach in [7] verifies transformation correctness with respect
to semantic properties by model checking the transition system
of the source and target models. The work in [10] aims at
developing frameworks for transformation testing.

VII. C ONCLUSION

We have introduced an approach for quality assurance of
model transformations: (1) The foundation of the approach
is based on the integration of TGGs and OCL. We have
further formulated operation contracts for derived triplerules
in order to realize them as OCL operations with the two views:
Declarative OCL pre- and postconditions are employed as
operation contracts, and imperative command sequences are
taken as an operational realization. (2) Both declarative and
operational views are obtained by an automatic translation
from the specification of transformations into the RTL lan-
guage. (3) This work also embodies a new method to extract
invariants for transformations. The central idea is to view
transformations as models. (4) An OCL-based framework for
model transformation is established. As being realized on afull
OCL support environment like USE, the framework offers a
support for validation and verification of transformations.

Our future work includes the following issues. We aim to
enhance the technique to extract invariants for transformation
models. A control structure like sequence diagram for the RTL
specification is also in the focus of our future work. The goal
is to increase the efficiency of transformations. The technique
to generate test cases from the RTL specification will also be
explored. We will focus on other properties of transformations
such as the determinateness of transformation. These are
efforts towards a full framework for quality assurance of
model transformations. Larger case studies must give detailed
feedback on the proposal.

ACKNOWLEDGEMENT

This work has been supported by the project CN.11.03
of VNU-University of Engineering and Technology. We also
thank anonymous reviewers for their comments on the earlier
version of this paper.

REFERENCES

[1] S. Sendall and W. Kozaczynski, “Model Transformation: the Heart and
Soul of Model-Driven Software Development,”IEEE Software, vol. 20,
no. 5, pp. 42– 45, 2003.

[2] K. Czarnecki and S. Helsen, “Classification of Model Transformation
Approaches,” inProc. of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, 2003.

[3] F. Jouault, F. Allilaire, J. B́ezivin, and I. Kurtev, “ATL: A Model
Transformation Tool,”Science of Computer Programming, vol. 72, no.
1-2, pp. 31–39, Jun. 2008.

[4] P.-A. Muller, F. Fleurey, and J.-M. Jéźequel, “Weaving Executability
into Object-Oriented Meta-languages,” inModel Driven Engineering
Languages and Systems, vol. 3713. Springer Berlin, 2005, pp. 264–278.

[5] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Final Adopted Specification ptc/07-07-07. OMG, 2007.

[6] L. Lengyel, T. Levendovszky, and H. Charaf, “Validated Model
Transformation-Driven Software Development,”Int. J. Comput. Appl.
Technol., vol. 31, no. 1/2, pp. 106–119, 2008.

[7] D. Varró and A. Pataricza, “Automated Formal Verification of Model
Transformations,” inCSDUML 2003: Critical Systems Development in
UML; Proceedings of the UML’03 Workshop, J. J̈urjens, B. Rumpe,
R. France, and E. B. Fernandez, Eds. Technische Universität München,
2003, pp. 63–78.

[8] A. Schürr, “Specification of Graph Translators with Triple Graph Gram-
mars,” in Proceedings of the 20th International Workshop on Graph-
Theoretic Concepts in Computer Science, ser. LNCS, M. Schmidt, Ed.,
vol. 903. Springer-Verlag, 1995, pp. 151–163.

[9] J. Cabot, R. Clariśo, E. Guerra, and J. d. Lara, “Verification and
Validation of Declarative Model-to-model Transformations Through
Invariants,” Journal of Systems and Software, vol. 83, no. 2, pp. 283–
302, 2010.

[10] Y. Lin, J. Zhang, and J. Gray, “A Framework for Testing Model
Transformations,” inModel-driven Software Development - Research
and Practice in Software Engineering, S. Beydeda, M. Book, and
V. Gruhn, Eds. Springer, 2005, pp. 219–236.

[11] M. Gogolla, F. B̈uttner, and M. Richters, “USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL,”Science of Computer
Programming, 2007.

[12] G. Pint́er and I. Majzik, “Modeling and Analysis of Exception Handling
by Using UML Statecharts,” inScientific Engineering of Distributed
Java Applications, vol. 3409. Springer Berlin, 2005, pp. 58–67.

[13] J. Rumbaugh, I. Jacobson, and G. Booch,The Unified Modeling Lan-
guage Reference Manual, 2nd Edition. Addison-Wesley Professional,
2004.

[14] E. Mikk, Y. Lakhnechi, and M. Siegel, “Hierarchical automata as model
for statecharts,” inAdvances in Computing Science, vol. 1345. Springer
Berlin, 1997, pp. 181–196.

[15] H. Ehrig, C. Ermel, and F. Hermann, “On the Relationship ofModel
Transformations Based on Triple and Plain Graph Grammars,” inPro-
ceedings of the Third International Workshop on Graph and Model
Transformations. Leipzig, Germany: ACM, 2008, pp. 9–16.

[16] D.-H. Dang and M. Gogolla, “On Integrating OCL and Triple Graph
Grammars,” inModels in Software Engineering, Workshops and Sym-
posia at MODELS 2008, Toulouse, France, September 28 - October
3, 2008. Reports and Revised Selected Papers, M. Chaudron, Ed., vol.
5421. Springer, 2009, pp. 124–137.

[17] D. Dang and M. Gogolla, An Approach for Quality Assur-
ance of Model Transformations (Long Version). VNU Report,
http://www.uet.vnu.edu.vn/ hanhdd/publications/rtl.pdf, 2012.

[18] J. Greenyer and E. Kindler, “Reconciling TGGs with QVT,” in Model
Driven Engineering Languages and Systems, 10th International Confer-
ence, MoDELS 2007, Nashville, USA, September 30 - October 5,2007,
Proceedings, ser. LNCS, G. Engels, B. Opdyke, D. C. Schmidt, and
F. Weil, Eds., vol. 4735. Springer, 2007, pp. 16–30.

[19] D.-H. Dang and M. Gogolla, “Precise Model-Driven Transformation
Based on Graphs and Metamodels,” inSeventh IEEE International
Conference on Software Engineering and Formal Methods, SEFM 2009,
Hanoi, Vietnam, 23-27 November, 2009, D. V. Hung and P. Krishnan,
Eds. IEEE Computer Society Press, 2009, pp. 307–316.

[20] K. Anastasakis, B. Bordbar, and J. M. Küster, “Analysis of Model
Transformations via Alloy,” inProceedings of 4th Workshop on Model-
Driven Engineering, Verification and and Validation (MoDeVVA’07),
2007, pp. 47–56.

[21] D. Varró, “Automated Formal Verification of Visual Modeling Lan-
guages by Model Checking,”Software and Systems Modeling, vol. 3,
no. 2, pp. 85–113, 2004.

[22] J. E. Rivera, E. Guerra, J. d. Lara, and A. Vallecillo, “Analyzing
Rule-Based Behavioral Semantics of Visual Modeling Languages with
Maude,” in Software Language Engineering, vol. 5452. LNCS, 2008,
pp. 54–73.

[23] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner, “Towards
Verified Model Transformations,” inProc. of the 3rd International Work-
shop on Model Development, Validation and Verification (MoDeV2a),
Genova, Italy, D. Hearnden, J. G. S̈uß, B. Baudry, and N. Rapin, Eds.
Le Commissariat l’Energie Atomique - CEA, 2006, pp. 78–93.

8

