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Abstract—Model transformation is an important building features of transformations. Within the approach a new atkth
block for model-driven approaches. It puts forward a necessityas to extract invariants for TGG transformations is introdiice
well as a challenge for validating and verifying transformations. We propose a specification method of transformations and an

This paper proposes a specification method and an OCL-based . -
framework for model transformations. The approach is based OCL-based framework for model transformation. We realize

on an integration of Triple Graph Grammars and the Object the approach in USE [11], a tool with full OCL support. This
Constraint Language (OCL) as a formal foundation. The OCL- offers an on-the-fly verification of transformations and mea
based transformation framework offers an on-the-fly verificaion  for quality assurance of transformations.
gfsg?gsééransformatnons and means for transformation quality  The rest of this paper is structured as follows. Section I
I ndex Térms—ModeI Transformation, Graph Transformation, explamg our baS'C_ !de"’_" Section I.” chuses on th_e formal
OCL, Validation&Verification, Pre- and Postcondition, Invariant. ~ foundation for specification and realization of transfotiorzs.
Section IV explains an OCL-based framework for transforma-
tion quality assurance. Section V shows how the approach
|. INTRODUCTION is realized in the USE tool. Section VI comments on related
Model transformation can be seen as the heart of modelerk. The paper is closed with a conclusion and a discussion
driven approaches [1]. Transformations are useful foed#ifit of future work.
goals such as (1) to relate views of the system to each
other; (2) to reflect about a model from other domains for an Il. THE BASIC IDEA
enhancement of model analysis; and (3) to obtain a mapping\Ve focus on the SC2EHA transformation between a stat-
between models in different languages. In such cases iteishart and an extended hierarchical automaton in order to
necessary to ensure the correctness of transformations. Thustrate our approach. Models in this example [12] repnés
is also a challenge because of the diversity of models aadraffic supervisor system for a crossing of a main road and
transformations. a country road (Fig. 1). The lamp controller provides higher
Many approaches to model transformation have been intyorecedence to the main road as follow: If more than two cars
duced [2]. The works in [3], [4] offer mechanisms for transare waiting at the main road (this information is provided
formations in line with the Query/View/Transformation () by a sensor), the lamp will be switched from red to red-
standard [5]. The ideas in [6], [7] focus on the approach thasgellow immediately, instead of a waiting period as usual. A
on graph transformation for unidirectional transformatio camera allows the system to record cars running illegally in
Triple Graph Grammars (TGGs) [8] are a similar approadhe crossing during the red signal.
for bidirectional transformations. In addition to spedcifion ) .
and realization of transformations as proposed by thesksyor”: Overview of the Transformation
several papers discuss how to ensure the correctness sf tranl) Motivation of the transformationThe UML statechart
formations. In [9] the authors introduce a method to deriystate machine) [13] is a light-weight notation for desitrip
Object Constraint Language (OCL) invariants from declagat the system behavior. In order to model-check statecharts,
transformations like TGGs and QVT in order to enable theit is necessary to transform them and represent them in
verification and analysis. The work in [10] aims to establisa mathematical formalism like Extended Hierarchical Au-
a framework for transformation testing. Up to now, to offetomata (EHAs). EHAs have been proposed in [14] as an inter-
a suitable approach for model transformation which sugpornediate format to facilitate linking new tools to a statatha
for quality assurance of transformations is still a “hotSue. based environment. This formalism uses single-sourggésin
In this paper we focus on an integration of TGGs and OCiarget transitions (as in usual automata), and forbidslevel
as a foundation for model transformation. IncorporatingLOCtransitions. The EHA notation is a simple formalism with
conditions in triple rules allows us to express better ti@ms a more restricted syntax than statecharts which neveshele
mations. Our approach targets both declarative and opaedti allows us to capture the richer formalism [14].
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Fig. 1. Statechart and extended hierarchical automatorhotraffic light example (adapted from [12])

2) Example StatechartFigure 1 shows the example statcalled atarget determinationWhen taking the transition, the
echart. The system has two basitatesOn and O f, re- target and all states in the target determination §ét éen,
flecting whether the system is turned on or off. There Banmer aCf f }) areenteredand become active.

a concurrent decomposition of ti@n state. The region on 4) The SC2EHA Transformatiohe transformation needs
the left corresponds to the lamp state, and the region on tieeshow intuitive correspondences between statecharts and
right corresponds to the camera state. Each of these regiGf$A models as follows.

is concurrently active. TheOn state is referred to as an . Initial state. The initial state of an automaton, e.g., the

orthogonal statei.e., acomposite stateontaining more than O f state, corresponds to a state of the statechart marked
one region. The&X f state, which does not have sub-states, is by an initial pseudo state.
referred to as @imple state « Simple state.Each simple state of the statechart corre-

sponds to a unique state of the sequential automaton.
Concurrent state. The concurrent state of the statechart,
e.g., theOn state, is mapped to a state of the sequential
automaton. Each region of the concurrent state corre-
sponds to an automaton. These automata refine the state
of the sequential automaton.

Non-concurrent composite state.The non-concurrent
composite state of the statechart, e.g., Resel state, is
mapped to the state of the sequential automaton together
with an automaton refining it.

Transitions. Each transition in the statechart is uniquely
mapped to a transition of the EHA. In case the transition
is an interlevel one, the transition of the EHA needs
to be labelled with the source restriction and target
determination sets.

3) Example Extended Hierarchical AutomatonFigure 1
presents the example EHA as another representation of thé&
example statechart. This EHA consists of fe@quential au-
tomata(denoted by rectangles), each of which containsple
statesand transitions States can be refined by concurrently
operating sequential automata, imposing a tree structare o
them. In Fig. 1 the refinement is expressed by the dotted®
arrows, e.g., thén state is refined by two sequential automata.

Interlevel transitiondn statecharts are transitions which do
not respect the hierarchy of states, i.e., those that magscro
borderlines of states. The EHA expresses them using labeled
transitions in the automata representing the lowest coitgpos
state that contains all the explicit source and target state
the original transition. For example, the interlevel titon
from Count 2 to RedYel | owin the statechart is represented
by the transition fromRed to RedYel | ow together with the B- Requirements for Transformation Quality Assurance
label Count 2 in the corresponding automaton. This label Quality assurance for transformations means systematic
is referred as aource restriction The transition isenabled monitoring and evaluation of various aspects so that the
only if its source and all state in the source restriction s&nsformation meets modeler expectations. Here we focus
({Count 2}) are active. The interlevel transition fro8f f to on the questions ‘“is the transformation right?” and “is this
On is represented by the similar transition in the correspagpdithe right transformation?” that characterize verificatiamnd
automaton together with label& een and CaneraCf f, validation.



1) Verification: We need to check if there are any defectd. Preliminaries of Transformation Based on TGGs

in a transformation. Here we consider a transformation as arpe definitions explained in this section are adapted from
program taking the source and target model as the input fd \ork in [15]. Models in our work are seen as graphs. They
output respectively. Based on such atransfprmanon mudgl, are defined by a corresponding metamodel, which is repre-
could expect seyeral reasonable assumptlons_ to be sgtlsf@]ted as a type graph. Figure 2 shows a simplified metamodel
For example, with the SC2EHA transformation, the inpus 5 tyne graph which defines the structure of statechares. Th
statechart and the output EHA model need to fulfill resitsi ;| yersion of the metamodel is shown in Fig. 7. Instances
at the_ metamodellle\{el fqr well-formedness cnterlr?\. Rl of the node types (Statechart, State, Transition, and Event
to satisfy such criteria will be a symptom of an incorregiaye to be linked according to the edge types between the
transformation. node types and have to be attributed according to node type
2) Validation: The validation of a transformation is theattributes.
process of applying the transformation in various scesario |n order to obtain a mapping between a pair of models, we
and comparing the de facto result with the expected outcong@nsider such a combination as a triple graph. Triple graph

The process cannot be fully automated: The modeler oftgansformations allow us to build states of the integration
has to define relevant scenarios together with the expected

outcome, so-called test cases, and then to compare the igfinition 1. (Triple Graphs; Triple Graph Morphisms)
tained and expected result. The process often depends on &Nree graphsG, CG, and T'G, called source, connection,
semi-automated solution, where test cases may be gener&@d target graph, together with two graph morphisss:
automatically, the execution may be animated and debuggéd? — G ?”d te : CG — TG form a triple graphG =
and the difference between the result and the expectedraatcd SG ¢ CG =% TG). G is said to be empty, i5G, CG, and

may be highlighted. TG are empty graphs. A triple graph morphism= (s, ¢, t) :
G — H between two triple graph&’ = (SG & CG g
C. Central Steps of the Methodology TG) andH = (SH ¥ CH 4 TH) consists of three graph

morphismss : SG — SH, ¢: CG — CH andt: TG — TH
Let us explain the central steps of the transformation deuch thats o s¢ = sy o c andtotg =ty o c. It is injective,
velopment method that we propose: (1) Models as the inggithe morphismss, ¢ and¢ are injective. Triple graphs and

and output of transformations are defined by metamodetfple graph morphisms form the categdFsipleGraph .
together with OCL restriction. (2) Our transformation misde

are established based on the incorporation of triple rutes a

OCL at two levels, declarative and operational specificatio _ sc
of transformations. (3) For a transformation quality aasce o owner owner|
framework, the reasonable_ assumptions of transformations f)nState:C_ZompState m T
our focus include the following OCL properties: model prepe ff;:gf}g:tme o _ "~ Tname = 'On’
ties, invariants of transformations, well-formedness oteis, container [ rfined
and pre- and postconditions of transformation operations. lampAut:Automata
lampState:CompState 74 s2a1:St2Aut ki name = 'Lamp'
isConcurr=false 1 container
[1l. SPECIFICATION AND REALIZATION OF N — 0s2:S0SH | redStateH:StateH
TRANSFORMATION name = 'Red
SFO © redState:CompState [ refined
. . . isConcurr=false - counterAut:Automata
This section explains our approach based on TGGs and OCL |name=Red | s2a2:SRAutl o ey
for specification and realization of transformation. Fig. 3. Triple graph for an integrated SC2EHA model
Switch _E t . . . .
e Example. Triple graph: The graph in Fig. 3 shows a triple
oM 0T 0. TN Quner * |iager graph containing a statechart together with corresporedenc
Model in concrete syntax State s« ‘*Tra;sgmon nodes pointing to the extended hierarchical automata (EHA)
name:Sting i it ¥ References between source and target models denote transla
Metamodel - Type graph

tion correspondences.

:State
name = 'Off Definition 2. (Triple Graph Grammar)

dst . tr : :
S e Event A triple rule tr = L. = R consists of triple graph& and
name = 'On’ |sro name = ‘Switch' R and an injective triple graph morphisms.

Model in abstract syntax - Typed graph sy 7
Fig. 2. A typed graph conforms to the metamodel as a type graph L = (SL¢ CL > TL)
tri Si cl tl

R = (SR<E-cR-E5TR)




Given a triple ruletr = (s,¢,t) : L — R, a triple graph Definition 6. (Model Co-Evolution)
G and a triple graph morphism = (sm,cm,tm) : L — G, Let Eg € VL, and Ey € VL, be graphs as source and target
called triple matchn, a triple graph transformation step=%  parts of a triple grapt¥, respectively. A model co-evolution
H from G to a triple graphH is given by three objectsH, from (Es,Er) to (Fs,Fr) is a computation to define graphs
CH and TH in categoryGraph with induced morphismsy : s € VLs and Fr € VL, through the derivationEs <«
CH — SH andty : CH — TH. Morphismn = (sn,cn,tn) Ec — Er) = (Fs < Fo — Fr).

is called comatch. Definition 7. (Derived Triple Rules)

SL CL TL . .
/" om/ | ,m/ Each triple ruletr = L — R derives forward, backward, and
G = (SG cG 7G) integration rules as follows:
SR¢-==--1-- Rt TR W b son, 1o
,,ﬂ J SR i R . /> (SREZE oL T1) (L el TR) (SREL oL TR)
. S,_'I‘/ sn C;.?/ cn ke in id J, Ci tl si Cl r'dl ,vdl Cl /'dl
Bo= oH H ) (SR<E-cR—BTR) (SR<E-CR—B5TR)  (SRE-CR-Z5TR)
forward rule trF backward rule trB integration rule trl

A triple graph grammar is a structuGG = (TG, S, TR)
where T'G' is a triple type graphS is an initial graph, and whereid is the identify function.
TR = {trq,trq,....,tr, } is a set of triple rules. Triple graph

: . : Theorem 1. (Derived Rules for Forward Transformation)
I fTGG is th H{G|3 tripl ht f t )
;ngl:agf © 's the sef |3 triple graph transformation Let TGG = (TG, S, TR) be a triple graph grammar and

(Gs < Sc — Sr) be a triple graph typed byI'G. We
can define a forward transformation frodg to G+ as the

following conditions are fulfilled.
mer] e owner - oUNeL-" [owner . trFy, trF, ,my
S [~ — " (i) (Gg < S¢ — Sp) =" "2 Gy — Go —
CpsCompaitate N .
Ecenarany| [szasizau] } ) Gr), wherem; = (sm;, cm;, tm;) are triple matches.
e container (||) Vi > 0,0 < 7 <1, snj(SRtrj \SLtrj) n sni(SRtTi \
‘Container {new} SLy-) =0, where(sn;, cn;, tn;) is the comatch ofn;.
s:CompState {new} <HStateH ‘ ’ ’
isConeurr [ @—4 name L[?ff”” Proof: Suppose that at thé¢" step of the transformation in
(new} “""ﬁ—% [zutiautn (ii), we can define the triple grapf® such thatS = (Sg «
try, tri,m; ; ; ; ;
_ _ {new) Leems Se — Sp) B TR G = (G« G — Gh)
Fig. 4. Triple rule for the SC2EHA transformation and Gl c G2... c G C Gs. Now at thei + 1th step

the condition(ii) allows us to defingz*! such thatG’ C
Example. Triple rule: The rule in Fig. 4 is part of a triple G'™' C Gg andG' = (G% + G& — GY) LMt g
graph grammar that generates statecharts and corresgonds’ ' < G — G4). Therefore, by indution there exists
EHA models. This rule may create a simple state of & transformationS = (Sg < S¢ — Sr) L e
statechart and its corresponding state of the correspgndin™ = (G5 < G¢ — G7). This is what we need to proves
EHA model at any time. For the backward, and integration transformation between

A triple rule allows us to derive new rules for forwardGg andGr, we can obtain a similar result. The (i) condition
and backward transformation, model integration, and mOdﬂ|thiS case is shown respective|y as follow.

co-evolution. Let TGG = (TG, S, TR) be a triple graph (Ss < Sc — Gr) Gs + Go — Gr),
grammar, VL be the language of GG, and VL,, VL., and trly,m

VL, be the source, correspondence, and target language adffie < Sc = Gr) = .. Gs ¢ Go = Gr)
result of the projection onto the source, correspondenue, a

trB1,m1 trBy, ,my
Bugm | trBugme

trl,,my,
— (

target part of VL, respective|y_ Slotectdmsnl 7 e
sc.Statechart |°© s2e:SC2EHA ehalchaEra
Definition 3. (Forward Transformation) owner| e on State:Compstate]. ] o |
Let a graphGs € VL, be given. A forward transformation AN T i Py ey
from Gg to G is a computation to define the grajghy € ./ contamer refined
. . . * —= /autH
VL, through a triple derivatiort = (Gs < G¢ — Gr). [anL_State,Comastate | .. @_L‘%
L. ) —onL' name="'0nL"
Definition 4. (Backward Transformation) B taner contaimer
Let a graphGr € VL; be given. A backward transformation|[ g sese.compstate ] -. fnew) | RO ___refined __lautn
. . . isConcurr—false @_‘ '3 | StateH1 StateH AutH1:AutH
from Gr to G is a computation to define the graghs € | — neme=Red' | |name=Red
VL, through a derivatior§ = (G + G¢ — Gr). | T ——
L . Fig. 5. A forward transformation step by the forward rule ded from the
Definition 5. (Model Integration) ru?e shown in Fig. 4 e

Let the graphsGs € VL, and Gy € VLg be given. A
model integration of7s and G is a computation to define a
derivation S = (Gs « Go — Gr). Example. Figure 5 shows a transformation step for the forward



transformation from a statechart to an EHA model. The « BAC!" withzz € {!SL’,*SR',*CL',*CR',‘TL',‘TR'}

forward rule is derived from the rule shown in Fig. 4 are BACs in the LHS and RHS of parts of the triple rule
_ _ tr, respectively, and
B. Incorporation of OCL and Triple Rules e BACY,,, BACE,,, and BACY,, are BACs excepting

We propose to employ OCL conditions as restrictions on ©ones with ‘@pre’ inSR, CR, andTR , respectively.

:Ee applicability of trifplf_ rlules.l It agows us t(l) incrtehaﬁ Proof: According to Theorem 1, a derivation with derived
e expressiveness of triple rules. For example, with the | os o (hrg « ¢ - ) L By

rule Shdo.V.V” n F|g. 3, we iOUId attachd 'thw'th the %Q‘(MS +~ Mc — Mry), is always defined in relation to a

precon ition CPS'Z‘SCO”CUW. B fal;e and the postcondi- corresponding derivation with the original triple rulesg.j

tion s.name <> oclUndefined(String) A autl.name <> tr1,my -~

oclUnde fined(String). OCL application conditions of a (¢« ¢ = ¢) = ... =" (Ms « Mg — Mr).

triple rule can be defined as a combination of OCL conditiong €"€fore. we can formulate pre- and postconditions oieeri

in parts of the triple rule. Formally, they are defined ascioli, 1 PI€ rules in such a way. u

Definition 8. (OCL Application Conditions) C. The RTL Transformation Language

OCL application conditions (BAG3 of a triple rule consist of ~ We define the RTE language in order to specify triple rules
OCL conditions in source, target, and correspondence partgncorporating OCL. The declarative specification in tektua
the triple rule. BACs within the LHS and RHS of the tripleform can generate the different operations for transfoiomat
rule are application pre- and postconditionS, respegtivel scenarios as explained in Subsect. IlI-A. We realize the op-

e BAC,.. = BACs; UBACcy UBACyy, erations by ta_k_ing two views on them: Decla_lrative OCL pre-

« BAC,y., = BACsg UBACqr U BACrg, and _and postcondltlons are employed as operation contracts, an
. BAsz [BAC,re, BAC,0st], imperative command sequences are taken as an operational
where BAZ‘ P with o . realization. Figure 6 illustrates the RTL specification ible

: rules and the generated corresponding OCL operations.
{SL',*SR',*CL',*CR',*TL',‘TR'} are BACs in the g P g P
LHS and RHS of the source, correspondence, and target parts IV. QUALITY ASSURANCE OFTRANSFORMATIONS

of the triple rule, respectivelyBAC),,. and BAC)..; aré  This section discusses how our OCL-based transformation
application pre- and postconditions, respectively. framework offers means for transformation quality asscean

Definition 9. (Application Condition Fulfillment) A. Verification of Transformation
A triple rule with BACs is a tupletr = (L,R,BAC),

where BAC' includes OCL application conditions. A triple We explain the aim in a formal way: Let/M s and MMy

graph H is derived from a triple graple by a triple rule be metamodels for source and target models, re;pectively. L
Ir = (L, R, BAC) and a triple matchn iff TGTS = (S, TR) be a triple graph transformation system,
VT ' which relates source and target models to each other. With

« H is derived by(L — R, m) and respect to TGTS we define an RTL specification of the

« BAC is fuffilled in the rule applicatiorG = H, transformation. For each source models the RTL speci-
wherer : L — R is the rule which is obtained by viewing thefication allows us to define a corresponding target mddel
triple graphs LHS and RHS of the rule as plain graphs. by forward operations. Note that we only focus on forward
transformation since the verification for other transfotiora
scenarios can be similarly obtained. We need to check if the
target modelM - is correctly defined.

Theorem 2. (Pre- and Postconditions of Derived Rules)
Let a triple rule tr be given. Preconditions of triple rules

derived from¢r are defined as follows. 1) Check invariants of transformationde can see triple
. BAC;?? = BACY,, UBACY, UBACY,, rules as templates establishing mappings between soudce an
. BAC},’;E = BACY, UBACY, UBACY,,, and target models. Therefore, the transformation is corregt dn
« BACUT — BACIT. U BACH. U BAC! such mappings conform to triple rules. For example, with the
pre SRx CcL TR+ triple rule shown in Fig. 4 a mapping that conforms to the
Postconditions of derived rules are defined as follows. rule must include 11 objefcts an% 14 links. Fo\rNthe check we
i . i o aim to maintain “traces” for such mappings. We propose to
. BAC;gquit = BAC%R* U BAC;-CR UBAC;TR' add a new node into the correspondence part of each rule.
o BAC;; = BACGR UBACt; U BACTE,, and The new node represents an instance of a class whose name
o BAC!IL, = BACYy,, U BACE, U BACK,,, coincides with the rule name. The node is linked to all nodes
where in the correspondence part so that from this node we can

navigate to them within an OCL expression. We can define an

« BACIT, BACITB, and BAC!"! are the precondition OCL condition in order to represent the pattern of this rule.

of derived rules for forward, backward, and integratiorFor example, the following OCL condition represents for the
transformation, respectivelyBAC!"F.. BAC'B, and triple rule CompStateNest shown in Fig. 4: An invariant of

I post? . post the CompStateNest class is defined. The transformation is
trl . N . .
BAC;;, are the postcondition of the derived rules, 5 ect only if such an invariant are valid.

1BACs stands for Boolean Application Conditions 2RTL stands for Restricted Graph Transformation Language



checking the contract of the operation, i.e., a pair of pre-
and postconditions it allows us to ensure the correctness of
the transformation step. It offers an on-the-fly verificatior
different transformation properties.

3) Check model propertiestThe declarative language OCL
allows us to navigate and to evaluate queries on models.
Therefore, we can employ OCL to express properties of
models at any specific moment in time. For example, the
following OCL condition expresses the propeffyhere is a
transition from the ‘Red’ state to the ‘Yellow’ state”

s_name in

matchSL.sc in
matchSL.

matchTL:Tuple (eha:EHA,aut:AutH),

matchCL:Tuple(s2e:SC2EHA))
pre simpStateTop coEvol pre:

:simpStateTop coEvol(

matchCL.s2e in

matchTL.aut in

matchTL.eha in

Trans. al | I nstances() - >exi sts(t|
t.src.nane=" Red’ and
t.dst.nane="Yel |l ow)

eha.top and

Statechart
S name:String
SC2EHA

EHA

4) Check well-formedness of modelshe transformation
with triple rules may maintain the conformance relatiopshi
between a model as a typed graph and its metamodel as
a type graph. However, when the metamodel is restricted
by OCL conditions, models during a transformation may no
longer conform to their metamodel. A model conforms to
the metamodel, i.e., it is well-formed only if such resirigt
invariants are fulfilled. For example, during the SC2EHA
transformation, the following invarianbwnsChi | dSt at e
needs to be valid. The invariant expresses the condikvery
child state of a composite state belongs to the same statecha
with the parent state.”

(b) the generated operation for co-evolution

--T precondition

eHa.autH->includesAll(Set{aut}) and

aut.refined
--C_precondition

Sgt{SZe.sc}—>includesAll(Set{sc}) and

Set{s2e.eha}->includesAll(Set{eha})

matchSL:Tuple(sc:Statechart, s name:String),
post simpStateNest coEvol post:

--S precondition

let aut: AutH

—-matchCL:Tuple(s2e:SC2EHA)

let sc:
let eha:
let s2e:

let

—--matchTL:Tuple(eha:EHA,aut:AutH)

—--matchSL:Tuple(sc:Statechart, s name:String)

context RuleCollection:

self.sc.name]

context Statechart inv ownsChil dState:
self.state->forAl | (p: State|
if p.ocllsTypeOf (ConpState) then
p. ocl AsType( ConpSt at e€) . cont ent - >
forAll(c:State|sel f.state->includes(c))
el se true endif)

oclUndefined(CompState)]

eha.top]

(sc,eha) as (sc,eha) in s2e:SC2EHA

{
((State)s,sH) as (sc,eha) in s2sH:S2SH

[s.name<>oclUndefined(String)]
S2SH:[self.eha.name:
(a) rule specification in RTL

(aut,sH):ContainsStateH

(eha,aut):OwnsAutH
}checkCorr(

[aut.refined

X

sc:Statechart
i
s:SimpState
(sc,s):OwnsState
[s.container:
}checkTarget(
eha:EHA

aut:AutH

rule simpStateTop
sH:StateH

o | checkSource(

el
c
(3]

-~

)

B. Validation of Transformation

RTL specification of triple rules and generated OCkraions This section focuses on features of the RTL transformation
that might provide support for a semi-automated solution to
validate transformations.

1) Model integration for test casesGiven a test case
including the source modél/s and the expected target model

I
@

cont ext ConpStateNest inv isMatch:
l et s2e: SC2EHA = self.s2e in

| et s2a:St2Aut = self.s2a in M. To check the transformation with the test case means we
let s2sH: S2SH = self.s2sH in check if Mt coincides with the resulting modél/,.. Instead
et s2al: St2Aut = self.s2al in of this, we could employ integration rules in order to obtain

s2e.isDefined and s2a.isDefined and
s2sH. i sDefined and s2al.isDefined and
s2e.includes(sc) and s2e.includes(eha) and

an integration ofMg and Mr: A mapping between these
models is established. The derivation is such tfidt + ¢ —

s2a.includes(cps) and s2a.includes(autH and M) REEE G E G (Mg < Mc — Mry), wheretrl; are
s2sH.includes(s) and s2sH.includes(sH and integration rules andn, are triple matches. In this way the

s2al.includes(s) and s2al.includes(autl) and transformation can be better animated for the modeler.
s2a. aut.includes(sH) and s2a.aut.includes(eha)

and s2al. aut 1.1 ncl udes(sH) and 2) Animation of transforme}tior_]After each transformation
s2al. aut 1. i ncl udes(eha) and s2a.cps.includes(s) Step, we can see the combination of the source, correspon-
and s2e.sc.includes(s) and s2e.sc.includes(cps) dence, and target part as a whole model. We could employ
i i OCL expressions in order to explore such a model. Mappings

2) Check contract fulfillment of transformation steps: \yithin the current rule application can be highlighted bylOC

According to the algorithm for translating triple rules ant q,eries. This makes it easier for the modeler to check if the
OCL operations [16], it follows that the sequence of opef e application is correct.

ation applications for a transformation corresponds tapgetr

derivation for forward transformationd;, : (Mg + ¢ — V. TooL SUPPORT
®) rhga g (Mg <+ Mc — Mr), where trF; Our approach for verification and validation of transfor-

are forward rules andn; are triple matches. In order tomation is realized with the support of USE [11], which is
check the correctness of the transformation we check if eaghtool for analysis, reasoning, verification and validatfn
operation application realizes correctly a rule applmatiBy UML/OCL specifications. Specifically, USE allow us to check



class invariants, pre- and postconditions of operations, a
properties of models, which are expressed in OCL. In USE
system states are represented as object diagrams. Syster
evolution can be carried out using operations based on basic
state manipulations, such as (1) creating and destroyijagisb

or links and (2) modifying attributes. In this way a framewor
for model transformation based on the integration of TGGs
and OCL are completely covered by USE. Figure 7 shows
metamodels for the SC2EHA transformation in USE. Due to
space limitations, the full realization for the transfotioais

only shown in the long version of this paper [17].

The RTL specification of a transformation is translated into
transformation operations in OCL. The operation is redlizg
taking two views on it: Declarative OCL pre- and postcondi-
tions are employed as operation contracts, and USE command
sequence are taken as an operational realization. Withuthe f
OCL support, USE allows us to realize the verification and
validation of transformations as discussed in Sect. IV.

VI.

Triple Graph Grammars (TGGs) have been proposed in [8].
Since then, many works have extended TGGs for software
engineering [18]. Here we focus on the incorporation of TGGs
and OCL as a foundation for transformations as proposed in
our previous work [19], [16]. Note that our previous work
mostly focuses on how triple rules incorporating OCL are op-
erationalized. In this paper, we concentrate on the caresst
and validation of such a transformation, towards an OCledas
framework for transformation quality assurance. Contitins
in this paper include the following points: (1) to define pre-
and postconditions of triple rules, which are derived fro&3
rules incorporating OCL (specified in the RTL language), (2)
an enhancement to extract invariants from declarative TGG
rules so that we could check if a transformation step is yalid
and (3) a discussion of a framework for quality assurance of
transformation.

Many approaches have been proposed for model transforma-,
tion. Most of them are in line with the standard QVT [5] such
as ATL [3] and Kermeta [4]. Like our work, they allow the
developer to precisely present models using metamodels and
OCL. The advantage of our approach is that it is based on the
integration of TGGs and OCL, which allows the developer to
automatically analyze and verify transformations, ancsuis
for bidirectional model transformation.

Our approach for model transformation is based on graph
transformation like the work in VMTS [6] and Fujaba [18].
Many other works focus on the translation of the transforma-
tion to a formal domain for model checking such as Alloy
in [20], Promela in [21], and Maude in [22].

In [9] the authors propose a method to derive OCL invariants
from TGG and QVT transformations in order to enable their
verification and analysis. Our approach targets to support f
both declarative and operational features of transfoonati

RELATED WORK

We also introduce a new method to extract invariants for TGG
transformations. Several other works focus on approaadbes f
verification and validation of transformation. The prodosa
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Metamodels for the SC2EHA transformation




in [23] introduces a method to check semantic equivalencg] D. Varrd and A. Pataricza, “Automated Formal Verification of Model
between the initial model and the generated code. The ap- Transformations,” inCSDUML 2003: Critical Systems Development in

. ipe . . UML; Proceedings of the UML'03 Workshpg. dirjens, B. Rumpe,
proach in [7] verifies transformation correctness with ezsp

) g ) = R. France, and E. B. Fernandez, Eds. Technische Unigehitnchen,
to semantic properties by model checking the transitiotesys 2003, pp. 63-78.

of the source and target models. The work in [10] aims alfl A. Schurr, "Specification of Graph Translators with Triple Grapha@-

d loDi f ks f f . . mars,” in Proceedings of the 20th International Workshop on Graph-
eveloping frameworks for transtormation testing. Theoretic Concepts in Computer Scienser. LNCS, M. Schmidt, Ed.,

vol. 903. Springer-Verlag, 1995, pp. 151-163.
[9] J. Cabot, R. Claris, E. Guerra, and J. d. Lara, “Verification and

We h introd d h f lit f Validation of Declarative Model-to-model Transformationdirdugh
€ have Introauced an approach for quality assurance o Invariants,” Journal of Systems and Softwam®l. 83, no. 2, pp. 283—

model transformations: (1) The foundation of the approach 302, 2010.
is based on the integration of TGGs and OCL. We hal#?] Y- Lin, J. Zhang, and J. Gray, A Framework for Testing Mbd
further f lated . for derived tri Transformations,” inModel-driven Software Development - Research
.urt er rormu a:te operation contracts. or e.'rlve tl‘lp.lldE.S and Practice in Software Engineering. Beydeda, M. Book, and
in order to realize them as OCL operations with the two views: V. Gruhn, Eds. Springer, 2005, pp. 219-236.
Declarative OCL pre- and postconditions are employed B3] M- Gogolla, F. Bittner, and M. Richters, "USE: A UML-Based Specifi-

. . . cation Environment for Validating UML and OCL3cience of Computer
operatlon contracts, and |mperat|ve command sequences are Programming 2007.
taken as an operational realization. (2) Both declarativé aj12] G. Pinér and I. Majzik, “Modeling and Analysis of Exception Harmji
operational views are obtained by an automatic translation by Using UML Statecharts,” irScientific Engineering of Distributed
f h ificati f f . . he RTL | Java Applicationsvol. 3409. Springer Berlin, 2005, pp. 58-67.
rom the sDeC_' ication of trans ormatlons into the an[13] J. Rumbaugh, I. Jacobson, and G. Boothe Unified Modeling Lan-
guage. (3) This work also embodies a new method to extract guage Reference Manual, 2nd EditionAddison-Wesley Professional,
invariants for transformations. The central idea is to view 2004 _ _ _ _
t f fi dels. (4) An OCL-b df K fBM] E. Mikk, Y. Lakhnechi, and M. Siegel, “Hierarchical amata as model
ransrormations as_ m(? els. ( ) n : ‘T"Se r{imewor I for statecharts,” ilAdvances in Computing Sciene®l. 1345. Springer
model transformation is established. As being realized foili a Berlin, 1997, pp. 181-196.
OCL support environment like USE, the framework offers 5] H. Ehrig, C. Ermel, and F. Hermann, *On the RelationshipMdel

f lidati d verification of transformation Transformations Based on Triple and Plain Graph Grammars?raa
support for valida an ana vericatio 0 a stormatio S ceedings of the Third International Workshop on Graph andd®lo
Our future work includes the following issues. We aim to  Transformations Leipzig, Germany: ACM, 2008, pp. 9-16.

enhance the technique to extract invariants for transfooma [16] D.-H. Dang and M. Gogolla, “On Integrating OCL and TepGraph
Grammars,” inModels in Software Engineering, Workshops and Sym-

VIl. CONCLUSION

models. A control structure like sequence diagram for the RT
specification is also in the focus of our future work. The goal
is to increase the efficiency of transformations. The tegmmi

to generate test cases from the RTL specification will also [)lg]
explored. We will focus on other properties of transformiasi
such as the determinateness of transformation. These [k J- Greenyer and E. Kindler, “Reconciling TGGs with QVin Model
efforts towards a full framework for quality assurance of
model transformations. Larger case studies must givelddtai

feedback on the proposal.
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