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Abstract. In software development a system is often viewed by various
models at different levels of abstraction. It is very difficult to maintain
the consistency between them for both structural and behavioral seman-
tics. This paper focuses on a formal foundation for presenting scenar-
ios and reasoning the synchronization between them. We represent such
a synchronization using a transition system, where a state is viewed
as a triple graph presenting the connection of current scenarios, and
a transition is defined as a triple graph transformation rule. As a re-
sult, the conformance property can be represented as a Computational
Tree Logic (CTL) formula and checked by model checkers. We define the
transition system using our extension of UML activity diagrams together
with Triple Graph Grammars (TGGs) incorporating Object Constraint
Language (OCL). We illustrate the approach with a case study of the re-
lation between a use case model and a design model. The work is realized
using the USE tool.

1 Introduction

In software development a system is viewed by various models at different lev-
els of abstraction. Models are defined in different modeling languages such as
UML [1] and DSMLs [2]. It is often very difficult to maintain the consistency
between them as well as to explain such a relation for both structural and be-
havioral semantics.

There are several approaches as introduced in [3, 2, 4] for behavioral semantics
of modeling languages. The behavior semantics can be defined as trace-based,
translation-based, denotation-based, and execution-based semantics. Such a se-
mantics can also be obtained by semantics mappings as pointed out in [5, 6]. The
semantics can be represented by different formal methods such as graph trans-
formation in [7], Z in [5, 8] for a full formal description for the Unified Modeling
Language (UML), and Alloy in [9] for a semantics of modeling languages. Meta-
modeling is another approach which allows us to define structural semantics of
models. Models from modeling languages like UML must conform to the corre-
sponding metamodels, i.e., their well-formedness needs to be ensured. Constraint
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languages for metamodels such as the Object Constraint Language (OCL) [10]
allow us to express better structural semantics of models. In this context the re-
lation between models can be obtained based on mappings between metamodels.
On the mappings, transformation rules are defined for a model transformation.
This principle is the core of many transformation tools and languages [11, 12] as
well as the Object Management Group (OMG) standard for model transforma-
tion, Query/View/Transformation (QVT) [13].

This paper aims to describe an integrated view on two modeling languages
in order to characterize the semantics relation between them. Models within our
approach are viewed as a set of execution scenarios of the system. We develop a
formal foundation for presenting scenarios and reasoning the synchronization be-
tween scenarios. We represent such a synchronization using a transition system,
where a state is viewed as a triple graph presenting the connection of current
scenarios, and a transition is defined as a triple graph transformation rule. As
a result, the conformance property can be represented as a Computational Tree
Logic (CTL) fomula and checked by model checkers. We define the transition
system using our extension of UML activity diagrams together with Triple Graph
Grammars (TGGs) [14] incorporating Object Constraint Language (OCL) [15].

We illustrate our approach with a case study explaining the relation between
a use case model and a design model. Use cases [1, 16–18] have achieved wide
acknowledgement for capturing and structuring software requirements. Our ap-
proach not only allows us to check the conformance between use case and design
models but also to describe operational semantics of use cases in particular and
modeling languages in general. We implement our approach based within the
UML-based Specification Environment (USE) tool [19].

The rest of this paper is organized as follows. Section 2 presents preliminaries
for our work. Section 3 explains scenarios and the synchronization between them
in an informal way. Section 4 focuses on the syntax and semantics aspects of
scenarios in order to form a formal foundation for scenario synchronization. The
core is a transition system for the synchronization. Section 5 shows the CTL
formula for the conformance property and explains our implementation in USE.
Section 6 discusses related work. This paper is closed with a summary.

2 Preliminaries

This section presents preliminaries for our work. The definitions explained in
this section are adapted from the work in [20]. Models in our work are seen as
graphs. They are defined by a corresponding metamodel, which is represented
as a type graph.

Definition 1. (Graphs and Graph Morphisms). A graph G =
(GV , GE , sG, tG) consists of a set GV of nodes, a set GE of edges, and two
functions sG, tG : GE → GV , the source and the target function.

Given graphs G, H a graph morphism f = (fV , fE) : G→ H consists of two
functions fV : GV → HV and fE : GE → HE that preserve the source and the
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target function, i.e., fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE. Graphs and graph
morphisms define the category Graph. A graph morphism f is injective if both
functions fV , fE are injective.

Definition 2. (Typing). A tuple (G, typeG) of a graph G = (V,E, s, t) together
with a graph morphism typeG : G→ TG, where TG is a graph, is called a typed
graph. Then, TG is called a type graph. Given typed graphs G = (G, typeG) and
H = (H, typeH), a typed graph morphism f is a graph morphism f : G → H,
such that typeH ◦ f = typeG.
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Fig. 1. Statechart as a typed graph conforms to the metamodel as a type graph

Example. Model as graph; Metamodel as type graph: The simplified
metamodel which defines the structure of statecharts is represented by a type
graph as shown in Fig. 1. Instances of these node types (Statechart, State, Tran-
sition, and Event) have to be linked according to the edge types between the
node types as well as attributed according to note type attributes.

In order to relate pair of models to each other, we will consider such a combi-
nation as a triple graph. Then, a triple graph transformation allows us to build
states of the integration.

Definition 3. (Triple Graphs and Triple Graph Morphisms).
Three graphs SG, CG, and TG, called source, connection, and target graph,

together with two graph morphisms sG : CG → SG and tG : CG → TG form a

triple graph G = (SG
sG← CG

tG→ TG). G is called empty, if SG, CG, and TG

are empty graphs.
A triple graph morphism m = (s, c, t) : G → H between two triple graphs

G = (SG
sG← CG

tG→ TG) and H = (SH
sH← CH

tH→ TH) consists of three
graph morphisms s : SG → SH, c : CG → CH and t : TG → TH such
that s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective, if morphisms s, c
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and t are injective. Triple graphs and triple graph morphisms form the category
TripleGraph.
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Fig. 2. Triple graph for an integrated SC2EHA model

Example. Triple graph: The graph in Fig. 2 shows a triple graph containing
a statechart together with correspondence nodes pointing to the extended hier-
archical automata (EHA). References between source and target models denote
translation correspondences. For a detailed explanation of the transformation,
we refer to the work in [21].

Definition 4. (Triple Graph Transformation Systems).

A triple rule tr = L
tr
→ R consists of triple graphs L and R and an injective

triple graph morphisms tr.

(SL

(SR

CL

CR

TL)

TR)

ts

sR tR

tL
s
L

L   =

R   =

tr c

Given a triple rule tr = (s, c, t) : L→ R, a triple graph G and a triple graph
morphism m = (sm, cm, tm) : L → G, called triple match m, a triple graph

transformation step G
tr,m
=⇒ H from G to a triple graph H is given by three objects

SH, CH and TH in category Graph with induced morphisms sH : CH → SH

and tH : CH → TH. Morphism n = (sn, cn, tn) is called comatch.

4



(SG

(SH

CG

CH

TG)

TH)

t’s’

sH tH

G   =

H   =

tr

SL

SR

CL

CR

TL

TR

tmsm

c’

cm

tnsn cn

A triple graph transformation system is a structure TGTS = (S, TR) where
S is an initial graph and TR = {tr1, tr2, ...., trn} is a set of triple rules. Triple
graphs in the set {G|S ⇒∗ G} are referred to as reachable states.

s2e:SC2EHA

s:SimpState

name

sc:Statechart

sH:StateH

name
s2sH:S2SH

eha:EHA

aut:Automata

name

{new}
{new}

{new}

Fig. 3. Triple rule for SC2EHA model transformation

Example. Triple rule: The rule in Fig. 3 is part of a triple graph transformation
system that generates statecharts and corresponding EHA models, as introduced
in [21]. This rule may create a simple state of a statechart and its corresponding
state of the corresponding EHA model at any time.

3 Scenarios and Synchronization

This section explains scenarios and scenario synchronization in an informal way.
We focus on activity diagrams and their extensions as a means to present scenar-
ios. Activity diagrams normally allow us to present scenarios at different levels
of abstraction, ranging from the very high level such as workflows to lower levels
such as execution scenarios of programs. However, they only emphasize the flows
in scenarios, and the meaning of actions is not available so that the information
of scenarios is often not completely captured by this kind of diagrams. We re-
fine activity diagrams by adding into each action a pair of interrelated object
diagrams attached with OCL conditions as pre- and postconditions of the action.

With the extension the semantics of activity diagrams needs to be updated.
The key question is how a scenario is defined for each system execution from
a specification using extended activity diagrams. Normally, pre- and postcon-
ditions for each action do not completely capture the effect of the action, we
refer to such activity diagrams as declarative activity diagrams. Figure 4 shows
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Require system to process 
as a car is returned

Retrieve information of 
the rental

Supply information
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Update information
to finish the rental

Process the payment
for the rental

Actor System
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oclUndefined(String)]

mileage_Car:RealCls
[mileage_Car.real<>
 oclUndefined(Real)]

Return Late

cust:Customer
rental:Rental
id_Cust:StringCls
(cust,rental):Registration
[cust.id=id_Cust.string]

[else]

[T]

post

post

rental:Rental
car:Car
mileage_Car:RealCls
(rental,car):UsingCar

rental:Rental
car:Car
mileage_Car:RealCls
(rental,car):UsingCar
[car.mileage=
 mileage_Car.real]

pre

post

rental:Rental
toDay:DateCls
[rental.finish
 <today.date]

1

2

3

4

5

Fig. 4. Scenarios at the use case level of the use case “ReturnCar” presented by declar-
ative activity diagrams

an example for declarative activity diagrams. This diagram presents scenarios
of the use case “ReturnCar”, which describes a fragment of the service of a car
rental system. In the diagram, use case snapshots, which include objects, links,
and OCL conditions, are denoted by rectangles. Here, we use concepts of the
conceptual domain of the system in order to present use case snapshots. System
and actor actions, e.g., the actions (1) and (4) are denoted by rounded rectan-
gles. Use case actions, e.g., the action (5) are denoted by the double-line rounded
rectangles. A conditional action, e.g., the action (2) is denoted by the dashed-line
rounded rectangles. The extension point, e.g., the Return Late extension point
of the action (4), is denoted by the six-sided polygons.

At the design level, effect of each action is fully reflected by its pre- and post-
conditions, and scenarios reflecting the system behavior, are completely deter-
mined. We refer to the kind of activity diagrams as operational activity diagrams.
Figure 5 shows an example for operational activity diagrams. This diagram cap-
tures scenarios at the design level of the use case “ReturnCar”, refining by the
diagram depicted in Fig. 5. Snapshots at the level are used to specify pre- and
postconditions in action contracts and the branch conditions. Actions in a sce-
nario at the design level are organized in a hierarchy by action groups. This
hierarchy originates from mappings between a sequence diagram and a corre-
sponding extended activity diagram: The interaction sequence between objects
(by messages) is represented by an action sequence. Each message sent to a life-
line in the sequence diagram corresponds to an action or an action group which
realizes the object operation invoked by this message. The action group includes
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actions and may include other action groups. An action group always links to
an object node at the corresponding lifetime line.

Boundary

getRentalInfo getCustomer getRental
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cust:Customer

pre/post

1 2
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rental:Rental
today:DateCls
[today.date < rental.finish]

guard

Fig. 5. Scenarios at the design level of the use case “ReturnCar” presented by opera-
tional activity diagrams

Scenarios of a declarative activity diagram will depend on scenarios of the
operational diagram which refines the activity diagram. We need to clarify sce-
narios in extended activity diagrams as well as to maintain the conformance
between a declarative activity diagram and a corresponding operational activ-
ity diagram. Specifically, we need to relate action effects for scenarios at these
diagrams to each other. This is based on the refinement of actions in the declar-
ative activity diagram by an action group in the operational activity diagram. A
current action at this activity diagram will correspond to a current action at the
other activity diagram. In this way a synchronization of scenarios at operational
and declarative activity diagrams is formed for each system execution.
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4 Scenarios and Synchronization, Formally

First, we focus on the syntax of extended activity diagrams in order to present
scenarios. Then, we consider the semantics aspect, where an operational seman-
tics for extended activity diagrams is defined. We aim to build a transition system
reflecting the synchronization between scenarios.

4.1 Syntax Aspect

Similar to the work in [22], we also restrict our consideration to well-structured
activity diagrams: The building blocks are only sequences, fork-joins, decisions,
and loops. We define new meta-concepts in addition to the UML metamodel in
order to present extended activity diagrams. Due to the limited space, concepts
of the metamodels are only shown in triple rules in the Appendix section, instead
of a detailed explanation. Here, we refer to them, i.e., metamodels of declarative
and operational activity diagram as graphs DG and OG, respectively.

Definition 5. (Declarative Activity Diagrams). A declarative activity di-
agram is a graph typed by the graph DG, where DG is a graph corresponding to
the metamodel for declarative activity diagrams.

Definition 6. (Operational Activity Diagrams). An operational activity
diagram is a graph typed by the graph OG, where OG is a graph corresponding
to the metamodel for operational activity diagrams.

Note that each Action object node in the DG and OG graphs, which rep-
resent an action, is attached with SnapshotPattern object nodes, which express
pre- and postconditions of the action, respectively. The attribute snapshot of a
SnapshotPattern node is a graph whose nodes are variables. This graph is typed
by the graph CD, which is a graph corresponding to the class diagram of the
system (i.e., a system state is a graph typed by CD). For example, Fig. 4 shows
SnapshotPatterns as the pre- and postcondition of the action marked by (4).

Well-formedness of extended activity diagrams can be ensured using OCL
conditions. For example, it ensures that an activity diagram has exactly one
InitialNode and ActivityFinalNode.

4.2 Semantics Aspect - Synchronization by a Transition System

Activity diagrams basically have a Petri-like semantics. However, as discussed
in Sect. 3 scenarios from declarative and operational activity diagrams depend
with each other. In order to obtain an operational semantics for these extended
activity diagrams, we have to define a pair of scenarios in synchronization for
each system execution. This section clarifies what a current state of the synchro-
nization is and which transitions are used for it.
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State of Scenario Synchronization. In order to form a semantics domain
for extended activity diagrams, we define new meta-concepts connecting the
metamodels DG and OG to each other. In this way a type graph EG for triple
graphs is established. We add the new concept ExecControl into the correspon-
dence part of the triple graph in order to mark current actions of the declarative
and operational activity diagrams.

Definition 7. (State of Scenario Synchronization). Let dG be a declarative
activity diagram, and oG be a corresponding operational activity diagram. The
state of the scenario synchronization between dG and oG is a triple graph eG ∈
EG connecting dG and oG to each other:

– The current actions of dG and oG are the set of actions currDG = {a ∈
dG|∃e : ExecControl · (e, a) ∈ EeG} and currOG = {a ∈ oG|∃e :
ExecControl · (e, a) ∈ EeG}, respectively.

– The current snapshot corresponding to the action a1 ∈ currDG and a2 ∈
currOG is the snapshot sp1 : SnapshotPattern|(a1, sp1) ∈ EdG ∧ ∃e :
ExecControl · (e, sp1) ∈ EeG and sp2 : SnapshotPattern|(a2, sp2) ∈
EoG ∧ ∃e : ExecControl · (e, sp2) ∈ EeG, respectively.

Example. Figure 6 shows a current state of the synchronization between sce-
narios shown in Fig. 5 and Fig. 4.

getRentalInfo getCustomer

retCar:ReturningCar -> getRentalInfo()

precondition

cust:Customer
id_Cust:StringCls
[cust.id=id_Cust.string]

Require system to process
as a car is returned

Retrieve information of
the rental

Current Execution Control

snapshotUC
Declarative Activity Diagram

(Use case level)

Operational Activity Diagram

(Design level)

precondition

current action

current snapshot

current action

current snapshot
:SysAction:SnapshotPattern

:ExecControl

:Action

:ActGrp

:SnapshotPattern

Simplified Triple Graph

(Current State)

:Corr

current snapshot

current snapshot current action

current action

precondition

precondition

Fig. 6. Current synchronization state of scenarios shown in Fig. 5 and Fig. 4.

Transitions. A transition of the system is defined by a graph transformation
rule in two cases: (1) The rule is used to transform the current snapshot as the
precondition of the current action into the next snapshot as the postcondition;
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(2) The rule is used to transform the current state (as a triple graph) to the next
state by selecting the next current actions. The first case is referred to as snapshot
transitions. The transition rules are defined according to the specification of
the system. The second case is referred to as action transitions. The transition
rules are defined based on the refinement relation between a declarative activity
diagram and an operational activity diagram as discussed in Sect. 3. The rules
are independent with a concrete system.

Definition 8. (Snapshot Transition). A snapshot transition is a triple rule
which allows us to transform a state eG1 to the next state eG2 such that the
current actions are unchanged and only the current snapshot of dG or oG is
changed from as the precondition snapshot to the postcondition snapshot by a
corresponding graph transformation rule. This postcondition snapshot needs to
be fulfilled.

Example. Let us consider the synchronization between scenarios shown in Fig. 5
and Fig. 4. A snapshot transition will transfer from the current state, which refers
to the action (4) and its precondition snapshot (as depicted in Fig. 4), to the
next state which refers to the postcondition snapshot of this action.

Definition 9. (Action Transition). An action transition is a triple rule which
allows us to transform a state eG1 to the next state eG2 such that the current
actions and the current snapshots are changed and the current snapshots as the
precondition of the current actions in eG2 are fulfilled.

Example. An action transition will transfer from the current state, which refers
to the action (4) shown in Fig. 4 and the action (8) shown in Fig. 5, to the next
state which refers to the action (5) and action (9) of these scenarios.

Definition 10. (Sound and Conformance Property). Let TS = (S,→, s0)
be a transition system, where s0 is the initial state, i.e., the current actions are
the initial actions of the declarative and operational activity diagrams dG and
oG; S is a set of reachable states from s0 by snapshot transitions SR and action
transitions AR. The activity diagrams dG and oG are sound and conformed to
each other if and only if the following conditions hold:

1. ∀s ∈ S · ∃sys0, ..., sysn : CD · (si
rk∈SR
−→ si+1 ⇒ sysk

rk→ sysk+1) ∧ ∃e :
ExecControl · ∀sp : SnapshotPattern · (e, sp) ∈ Es ⇒ isV alid(sp, sysn),
where isV alid(sp, sysn) indicates the graph sp conforms to the graph sysn.

2. ∀sys : CD · ∃s1, ..., sn ∈ S · (si → si+1∧ isF inalState(sn)∧ (si
rk∈SR
−→ si+1 ⇒

sysk
rk→ sysk+1) ∧ sys0 = sys, where isF inalState(sn) indicates sn is the

final state, i.e., the ExecControl object node of this triple graph points to the
final nodes of dG and oG.

In this definition Condition 1 ensures that each snapshot in the snapshot
sequence corresponding to the scenario from dG and oG is valid. Condition 2
ensures that we can always define a pair of scenarios for a system execution
starting from a sys state.
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5 Conformance Property and Tool Support

We aim to obtain an automatic check for the sound and conformance property
mentioned above. To utilize model checkers for the goal we need to translate the
conditions of Def. 10 into CTL, i.e., the notion of temporal logic most model
checkers understand. Now we briefly define the CTL formulas we will use to
express our conditions. Note that this is only a subset of CTL.

Definition 11. (CTL Formulas). Let TS = (S,→, s0) be a transition system
by snapshot transitions and action transitions. Let Comp(s0) be all possible com-
putations starting with the state s0: Comp(s) := {s0s1s2...|(si, si+1) ∈→}, and
let p be some atomic proposition. Then

TS |= AG(p)⇔ ∀s0s1... ∈ Comp(s0)∀k ∈ N : p holds in sk

TS |= AF(p)⇔ ∀s0s1... ∈ Comp(s0)∃k ∈ N : p holds in sk

TS |= EF(p)⇔ ∃s0s1... ∈ Comp(s0)∃k ∈ N : p holds in sk

We are now ready to formulate our theorem.

Theorem 1. Let dG and oG be the declarative and operational activity dia-
grams, respectively. Let TS = (S,→, s0) be a transition system by snapshot
transitions and action transitions (S contains exactly those states which are
reachable from s0). dG and oG are sound and conformed to each other if and
only if the following CTL formulas hold for TS:

1. TS |= AG(isV alidSnapshot), where that isV alidSnapshot holds in the
state s, denoted as s |= isV alidSnapshot, means the current SnapshotPat-
tern objects of s are valid.

2. TS |= EF(AtFinalState), where that AtFinalState holds in the state s, de-
noted as s |= AtFinalState, means the ExecControl object node of this triple
graph (s) points to the final nodes of dG and oG.

Proof. We start by pointing out the equivalence of the first condition of
Def. 10 and Theor. 1. We have TS |= AG(isV alidSnapshot) ⇔ ∀s0s1... ∈
Comp(s0)∀k ∈ N : sk |= isV alidSnapshot ⇔ ∀s0s1... ∈ Comp(s0)∀k ∈

N · ∃sys0, sys1, ..., sysm : CD · (si
rl∈SR
−→ si+1 ⇒ sysl

rl→ sysl+1) ∧ (sk |=
isV alidSnapshot). Since sk |= isV alidSnapshot ⇔ ∃e : ExecControl · ∀sp :
SnapshotPattern · (e, sp) ∈ Esk

→ isV alid(sp, sysm) this induces the equiva-
lence of the first condition of Def. 10 and Theor. 1.

We will show that Condition 2 of Def. 10 and Theor. 1 is equivalent.
We have TS |= EF(AtFinalState) ⇔ ∃s0s1... ∈ Comp(s0)∃k ∈ N : sk |=
AtFinalState ⇔ ∀sys0 : CD · ∃s0s1... ∈ Comp(s0)∃k ∈ N∃sys1, ..., sysm :

CD · (si
rl∈SR
−→ si+1 ⇒ sysl

rl→ sysl+1) : sk |= AtFinalState ⇔ ∀sys0 : CD ·

∃s0, ..., sk ∈ S ·(si → si+1)∧isF inalState(sk)∧(si
rl∈SR
−→ si+1 ⇒ sysl

rl→ sysl+1).
This induces the equivalence Condition 2 of Def. 10 and Theor. 1.�

Our formal framework has been applied for the running example as depicted
in Fig. 4 and Fig. 5: It allows us to check the conformance between use case and
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design models. With the case study we have defined 10 triple rules for action
transitions. Due to the limited space of this paper, they are only shown in the
Appendix section for reviewers.

We employ the USE tool and its extensions for the implementation. This
tool allows us to animate and validate such a scenario synchronization. With
USE we can present the declarative and operational activity diagrams as well-
formed models since USE supports the specification of metamodels together with
OCL conditions. Snapshot transitions and action transitions will be realized as
operations in USE. Then, we can carry out transitions of our TS transition
system and animate states as object diagrams. Currently, the process is realized
in a semi-automatic way. This is suitable for designers to check their design at
the early phase of the development process. For an automatic check, we plan to
employ the USE feature which supports generating snapshots [23]. Then, CTL
formulas can be automatically checked. This point belongs to future work.

6 Related Work

Triple Graph Grammars (TGGs) [14] have been a promising approach for
explaining relationships between models, especially, bidirectional transforma-
tions. Several tools support model transformation based on TGGs such as
MOFLON [12] and AToM3 [24].

Many approaches to model transformation have been introduced. ATL [11]
and Kermeta [25] are well-known systems supporting transformation lan-
guages. They aim to realize the Query/View/Transformation (QVT) [13] stan-
dard for model transformation, which is proposed by the Object Management
Group (OMG).

Many researches as surveyed in [26] have been attempted to introduce rigor
into use case descriptions. The works in [27, 28] propose viewing use cases from
the different levels of abstraction. Many works focus on defining a formal seman-
tics of use cases. They are strongly influenced by UML. The formal semantics
of use cases in the works is often based on activity diagram or state charts. The
works in [29, 30] employ the metamodel approach in order to form a conceptual
frame for use case modeling. The work in [27] proposes use case charts as an
extension of activity diagram in order to define a trace-based semantics of use
cases. The works in [31–33] propose using state charts to specify use cases. Their
aim is to generate test cases from the use case specification.

The works in [22, 7] propose using graph transformation to specify use cases,
which are seen as activity diagrams. Those works employ the technique analyzing
a critical pair of rule sequences in order to check the dependency between use
case scenarios. Our work for design scenarios is similar to that work. Unlike them
we employ OCL conditions in order to express action contracts.

This paper continues our proposal for the approach to use cases in [34, 35].
The core of this approach is viewing use cases as a sequence of use case snap-
shots and using the integration of TGGs and OCL to define this sequence. The
integration of TGGs and OCL is proposed in our previous work in [15, 36].
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7 Conclusion and Future Work

We have introduced a novel approach to explain the relation of behavioral se-
mantics between models at different levels of abstraction. The heart of it is
to analyse scenarios and scenario synchronization. We have developed a theory
framework for the aim. This framework is examined with the case study con-
cerning the relation between a use case model and a design model. It brings out
a method to check the conformance between use case and design models. This
work is implemented using the USE tool.

In future we continue to refine our theory framework so that we can analyse
better on scenarios. Exploring triple rules as transitions of the transition sys-
tem for scenario synchronization is also a focus of our future work. Besides, we
will enhance the USE tool in order to obtain more support for the new tasks,
especially, for checking CTL formulas.
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Appendix (only for reviewers)

Triple rules incorporating OCL for the relation between use case and
design models.
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Fig. 7. Triple rule to start the sce-
nario Fig. 8. Triple rule for the next actor action
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Fig. 9. Triple rule for the next actor action
with guard conditions

Fig. 10. Triple rule for the next system ac-
tion
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Fig. 11. Triple rule for the next action at
the design level

Fig. 12. Triple rule for the next action with
guard conditions at the design level
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Fig. 13. Triple rule for the next action
in a new action group

Fig. 14. Triple rule for the next action in a new
action group with guard conditions
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Fig. 15. Triple rule for the next use case action
Fig. 16. Triple rule to finish the sce-
nario
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