
Using Models at Runtime to Address Assurance
for Self-Adaptive Systems

Betty H.C. Cheng1, Kerstin I. Eder2, Martin Gogolla3, Lars Grunske4, Marin Litoiu5,
Hausi A. Müller6, Patrizio Pelliccione7, Anna Perini8, Nauman A. Qureshi9,

Bernhard Rumpe10, Daniel Schneider11, Frank Trollmann12, and Norha M. Villegas6,13

1 Michigan State University, US
chengb@cse.msu.edu
2 University of Bristol, UK

Kerstin.Eder@bristol.ac.uk
3 Universität Bremen, Germany

gogolla@informatik.uni-bremen.de
4 TU Kaiserslautern, Germany

grunske@informatik.uni-kl.de
5 York University, Canada
mlitoiu@yorku.ca

6 University of Victoria, Canada
hausi@cs.uvic.ca
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Abstract. A self-adaptive software system modifies its behavior at runtime in
response to changes within the system or in its execution environment. The ful-
fillment of the system requirements needs to be guaranteed even in the presence
of adverse conditions and adaptations. Thus, a key challenge for self-adaptive
software systems is assurance. Traditionally, confidence in the correctness of a
system is gained through a variety of activities and processes performed at de-
velopment time, such as design analysis and testing. In the presence of self-
adaptation, however, some of the assurance tasks may need to be performed at
runtime. This need calls for the development of techniques that enable contin-
uous assurance throughout the software life cycle. Fundamental to the develop-
ment of runtime assurance techniques is research into the use of models at runtime
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(M@RT). This chapter explores the state of the art for using M@RT to address the
assurance of self-adaptive software systems. It defines what information can be
captured by M@RT, specifically for the purpose of assurance, and puts this defi-
nition into the context of existing work. We then outline key research challenges
for assurance at runtime and characterize assurance methods. The chapter con-
cludes with an exploration of selected application areas where M@RT could
provide significant benefits beyond existing assurance techniques for adaptive
systems.

1 Introduction

A self-adaptive system (SAS) modifies its behavior at runtime in response to changes in
the system itself or in its environment.1 An SAS generally comprises a component that
delivers the basic function or service, often referred to as the target or managed system,
and another component that controls or manages that target system through an adaptation
process, often referred to as the controller [MAB+02] or autonomic manager [KC03].
The target system can be viewed as a steady-state program [ZC06a, GCZ08]. It is not
adaptive and is applicable to a specific execution environment. The SAS controller can,
via the invocation of an adaptation process that implements adaptive logic [ZC06a],
transform this steady-state program to a different steady-state program—one that is suit-
able for a different set of environmental conditions [ZC06a]. As such, the steady-state
program that delivers the basic function or service of an SAS is the target of the adaptation
process that is managed by the controller. During the adaptation process, it is important
to provide assurance that the system does not become inconsistent (e.g., no data is lost
and transactions are not interrupted) [KM90, ZCYM05, ZC06b].

The IEEE Standard Glossary of Software Engineering Terminology defines assurance
as “a planned and systematic pattern of all actions necessary to provide adequate confi-
dence that an item or product conforms to established technical requirements” [IEE90].2

For non-adaptive systems, assurance is typically performed at design and development
time. In practice, assurance tasks comprise verification, validation, test, measurement,
conformance to standards, and certification. Collectively, these tasks all contribute to
gaining confidence that both the processes employed and the end product satisfy es-
tablished technical requirements, standards, and procedures. In the presence of runtime
adaptations in an SAS, the fulfillment of the system requirements need to be guaranteed at
runtime, even during the adaptation process [ZC05, ZC06b, VMT+11b]. Thus, software
assurance becomes a critical runtime concern, giving rise to the need for continuous as-
surance over the entire life cycle of a software system. Given the increasing use of SASs
in safety-critical applications (e.g., power-grid management, transportation management
systems, telecommunication systems, and health-monitoring), assurance for SASs is of
paramount importance. The development of rigorous methods and techniques that extend

1 This chapter uses the acronym SAS to refer to any software-based system that exposes self-*
features.

2 This chapter uses the term software assurance rather than the more specific term software
quality assurance to not only include software quality concerns but also safety, reliability, and
security concerns.
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assurance from development time to runtime is therefore a high priority on the research
agenda for the SAS research community.

Assurance is required for both functional properties (i.e., those describing specific
functions of the system such as the result of a computation) and non-functional prop-
erties (i.e., those describing the operational qualities of the system such as availability,
efficiency, performance, reliability, robustness, security, stability, and usability)
[VMT+11b]. Guaranteeing these properties at runtime in SASs is particularly challeng-
ing due to the varying assurance needs posed by a changing system or execution en-
vironment, both fraught with uncertainty [RJC12, EM13]. Nevertheless, the properties
specified in the system requirements need to hold before, during, and after adaptation
[ZC06a, ZC06b, ZGC09].

Continuous assurance throughout the entire software life cycle provides unprece-
dented opportunities for monitoring, analyzing, guaranteeing, and predicting system
properties throughout the operation of a software system. The fact that many variables
that are free at development time are bound at runtime enables us to tame the state space
explosion, thus enabling the exploration of states that could not have been considered at
development time. This reduction in state space provides new opportunities for runtime
verification and validation (V&V), leading to assurance of critical system properties at
runtime [TVM+12]. Fundamental to the development of runtime assurance techniques
is research into models that can be used at runtime.

This chapter presents models at runtime (M@RT) as a foundation for the assurance
of SASs and discusses related research challenges. Section 2 reviews assurance criteria,
both functional and non-functional, whose fulfillment depends on or can be affected by
self-adaptation and therefore requires assurance at runtime. Section 3 classifies different
types of models used for M@RT and discusses the application of M@RT to support a
spectrum of assurance issues. Section 4 identifies research challenges in the area of
M@RT for SAS assurance tasks. Section 5 characterizes existing methods used for
assurance of SASs. Section 6 describes selected application areas that exhibit the type of
assurance challenges that we consider amenable to the use of M@RT. Finally, Section 7
concludes the chapter.

2 Assurance Criteria for Self-Adaptive Software Systems

Assurance criteria for SASs include functional and non-functional requirements whose
fulfillment depends on or can be affected by self-adaptation. It is important to distin-
guish between assurance criteria applicable to the target system (i.e., criteria that relate
to properties of the current or a potential future state of that system), and assurance
criteria applicable to the adaptation process itself. Sections 2.1 and 2.2 respectively
discuss functional and non-functional requirements as fundamental assurance criteria
for SASs.

2.1 Functional Requirements

A functional requirement specifies a function that a system or system component must
be able to perform [IEE90]. Functional requirements are typically formulated as pre-
scriptive statements to be satisfied by the system. While it is still a common practice
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to describe functional requirements using natural language, the potential for misinter-
pretation of such descriptions is considerable due to the inherent ambiguity of natural
languages [Ber08, CNdRW06]. Formal languages with well-defined semantics provide
a more rigorous and reliable means for specifying functional requirements in the context
of system design. The following discussion is limited to formal descriptions.

Functional requirements decribe the behavioral objectives of the functions f of a sys-
tem. They are typically defined in terms of relating the inputs I to the system with the
outputs O of the system, with the expectation that f : I → O. A function f may be some
type of computation, data manipulation, or other specific functions that the system should
execute. Accordingly, the input I may be data from a user, values from a sensor, such as
a temperature value or a sequence of images. Similarly, the output O may be pictures,
continuous video, a braking signal for a car, or the opening of a valve. It is important ot
note that functional requirements describe the system behavior that is visible at the system
boundaries (i.e., system interfaces) [ZJ97]. The boundaries can be at the human-computer
interface, sensors, actuators, or even at the boundaries between interacting systems. As
such, functional requirements describe “what” the system has to provide in terms of its
functional behavior to meet the expectations of its users, leaving “how” this functionality
will be achieved to the design and implementation of the system.

System adaptation may become necessary to handle changes in the requirements or
in the environment that are visible at its boundaries and influence its behavior externally.
These adaptations may lead to internal changes that manifest as changed behavior ob-
servable at the system boundary. While the former is a reaction to the system context
and leads to retaining the functional behavior in the presence of external change, the
latter is a reaction to changing user needs or system configuration needs and leads to
behavioral adaptations to accommodate the new requirements.

Because an SAS tends to respond to changes in the environment, functional require-
ments should take into account the context of the system as well as explicit assump-
tions about its behavior. Adaptation provides a means to alter the way a system satisfies
its functional requirements, including the use of machine learning techniques [KM07],
agent-based techniques [SAS14], bio-inspired techniques [BSG+09, MV14], and se-
lecting specific target configuration from a collection of different target configurations
[GCH+04, ZC06a], each of which satisfies the functional requirements, but may be bet-
ter suited for a specific context and/or set of environmental conditions. The functional
requirements may be formalized in an “assume/guarantee” style [JT96]—assuming a set
of conditions or restrictions holds, then the application of the function guarantees that
the results satisfy a set of required properties. The definition of pre- and postconditions
is an example of this style of functional requirements specification.

Common formalisms used to express functional requirements are Linear-Time Tem-
poral Logic (LTL) [Pnu81] and Computational Tree Logic (CTL) [BAMP81], both of
which are included in the logic CTL* [CE82]. Several languages have been proposed to
facilitate the specification of functional properties; examples range from basic assertion
languages such as PSL [Acc04], used in electronic system design, to scenario-based
visual languages, such as Message Sequence Charts [HT04] or Property Sequence
Charts [AIP07]. These languages are often less expressive than pure temporal logic,
but are designed to be intuitive and user friendly.
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Beyond property-based specification, various algebraic specification and system
modeling techniques have been developed, including Statecharts [Har87]; set-theoretic
approaches, such as VDM [BJ78] and Z [ASM80]; process or operational-oriented, in-
cluding SDL [Uni99], the B Method [Abr88], Event-B[ABH+10]; object-oriented lan-
guages, such as UML and its numerous variants3; architectural description languages
[Cle96]; and Matlab/Simulink4 to name a few representative examples. Traditionally,
these techniques are used during system design and development to achieve increased
confidence in the functional correctness of the system. Several of the above listed tech-
niques support automatic code generation from the system model as well as formal
verification at varying levels of abstraction.

Several complementary approaches have been used to specify functional require-
ments of an SAS, where uncertainty of the execution environment is implicitly or ex-
plicitly acknowledged by allowing more flexibility in how requirements can be satisfied.
The SAS determines at runtime how to realize the specified functionality when placed in
its target environment. This flexibility can be achieved by describing functional require-
ments in terms of policies that encode high-level specifications of functional objectives
together with a set of operational constraints. This implicit approach to acknowledg-
ing uncertainty in the execution environment can utilize utility functions and a rule-
based approach in the context of a goal-oriented functional requirements specification.
Another approach is to explicitly acknowledge specific system functionality affected
by uncertainty and thus allow specific points of flexibility in satisfying the require-
ments, such as that provided by the RELAX [WSB+09, CSBW09, RFJB12, FDC14a]
and FLAGS [BPS10, PS11] approaches. Section 5.1 provides further details on these
approaches.

2.2 Non-functional Requirements

If we consider functional requirements of a software system to be a function f that di-
rectly maps input I to output O ( f : I → O), then non-functional requirements refer to
properties about f , I, O or relationships between I and O [CPL09]. Non-functional re-
quirements such as performance, dependability, safety, security, and their corresponding
quality attributes such as latency, throughput, capacity, confidentiality, and integrity can
include assurance concerns from the perspective of both the target system and the adap-
tation mechanism. Avižienis et al. [ALRL04] and Barbacci et al. [BKLW95] provide
two comprehensive taxonomies of software quality attributes useful for the identifica-
tion of assurance criteria in SASs.

It is necessary to validate and continually monitor non-functional requirements on
both the target system and the adaptation process using techniques such as probabilis-
tic monitoring [GZ09, Gru11], requirements monitoring [FF95], [FFvLP98], or utility
function monitoring [GCH+04, RC11]. At runtime, the desired properties of the target
system may no longer hold due to changes in the target system’s context of use (e.g.,
user, platform, or environment context [SCF+06]), or side effects introduced by adapta-
tions. In the latter case, it is possible to derive the impact of adaptations on properties of

3 www.uml.org
4 http://www.mathworks.com

www.uml.org
http://www.mathworks.com
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the target system by analyzing adaptation properties such as stability, accuracy, settling
time, small overshoot, and robustness. Specifically, it may be possible to take advantage
of this relation to detect consequences of adaptations performed by controllers [KC03]
or consequences of a changing environment (e.g., a failing component or a deficient
Internet connection).

Several non-functional assurance criteria may be more easily guaranteed at runtime
than at design time. For example, it is easier to assess latency when it is possible to
measure and continually monitor delay times in the running system. Table 1 presents
examples of non-functional assurance criteria with corresponding quality attributes (cf.
Columns 1 and 2). Adaptation properties (cf. Column 3), defined as assurance criteria
that concern the adaptation process [VMT+11b], can be mapped to quality attributes
measurable at runtime for both the target system and the adaptation mechanism. Where
to measure a given property, either in the adaptation process or in the target system, will
depend on its definition and its assessment metric. For example, settling time defined as
the time required for the adaptation process to take the target system to a desirable state,
must be measured on the target system since the need for the adaptation and the condi-
tions for a desired state can only be observed at this level. Moreover, settling time can be
measured through different quality attributes, depending on the specific non-functional
property that must be satisfied. For example, if the concern is performance, settling time
can be observed in terms of the time the system takes to perform a particular process.
When the accepted time limit for this process is exceeded, the adaptation process will
be invoked. Once the process execution time is back within desired limits, the target
system will have reached its desired state. As such, settling time is the time elapsed
between the moment at which the need for adaptation was detected and the moment
at which the system reaches the desired new state. Villegas et al. [VMT+11b] provide
a comprehensive catalogue of adaptation properties and the corresponding quality at-
tributes needed to identify the assurance criteria applicable to the adaptation process.
This study also surveys definitions for the assurance criteria presented in Table 1.

Table 1. Examples of non-functional assurance criteria that are better guaranteed at run-
time than at design time (including their mapping to quality attributes and adaptation proper-
ties) [VMT+11b]

Assurance Criteria Quality Attribute Adaptation Properties

Latency Performance Stability, accuracy, settling time, overshoot, scalability
Throughput Performance Stability, accuracy, settling time, overshoot, scalability
Capacity Performance Stability, accuracy, settling time, overshoot, scalability
Safety Dependability Stability
Availability Dependability Robustness, settling time
Reliability Dependability Robustness
Confidentiality Security Security

Assuring these criteria at runtime requires effective monitoring mechanisms and
M@RT to analyze, guarantee, and predict the qualities of the target system and the
adaptation process dynamically. Implementing these mechanisms effectively requires
a thorough analysis of the interdependencies between non-functional assurance crite-
ria, quality attributes, and adaptation properties as presented in Table 1. This mapping
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constitutes a valuable starting point to identify assurance criteria and adaptation prop-
erties. On the one hand, this mapping supports the identification of assurance crite-
ria according to the target system’s desired quality attributes. (For example, latency,
throughput and capacity are relevant assurance criteria when performance is the nego-
tiated quality attribute.) On the other hand, it is useful to identify adaptation properties,
relevant to quality attributes, that are applicable to the adaptation mechanism. (For ex-
ample, when performance is a key quality attribute for the target system, then stability,
accuracy, settling time, small overshoot, and scalability constitute relevant properties to
be guaranteed in the adaptation process.) Of course these mappings also depend on the
actual target system, its technical implementation, and the performed adaptations.

3 Models at Runtime

SASs require rethinking the notion of the software life cycle for which the distinction
between development time and execution time stages is no longer starkly
apparent (e.g., PLASTIC,5, SMScom6). Recent approaches recognize the need to pro-
duce, manage, and maintain software models all along the software’s life time to as-
sist the realization and validation of system adaptations while the system executes
[Inv07, BBF09, BG10, ACR+11, BDM+11, VTM+12, MV14] [CVM14].

Continuing with this line of reasoning, our objective is to explore models of different
aspects of the application (e.g., requirements, specification, design, architecture, im-
plementation, infrastructure, instrumentation, and context-of-use) and life cycle phases
(e.g., design time, development time, configuration time, load time, and runtime) to
deal with the inherent dynamics of self-adaptation in software systems. These abstrac-
tions, combined with suitable instrumentation, could provide effective techniques for
monitoring, analyzing, guaranteeing, and predicting system properties throughout the
operation of an SAS.

The kind of models used at runtime can be classified by (1) their purpose—predictive,
prescriptive, constructive, or descriptive; (2) their underlying modeling languages—for
example, the 14 UML 2.2 structural and behavioral diagrams, State-charts, Petri Nets,
and logic based models (e.g., Temporal Logics); and (3) the aspects they describe—data
structure, task or process state, I/O behavior, or interaction pattern.

One of the main principles of using M@RT for assurance is to exploit the causal
connection [Mae87] between the model and the system under development at runtime.
This connection determines synchronization between the model and the running sys-
tem. For example, M@RT can be updated to reflect changes in the running system
—we say that they are in descriptive causal connection. This type of modeling enables
assurance techniques to analyze abstract models instead of the actual implementation of
the application when collecting information for assurance. In contrast, the model can be
changed to cause an adaptation of the application (i.e., prescriptive causal connection).
This use of modeling can be used to implement adaptations of the running system that
are required to assure system properties.

5 FP6 IST EU PLASTIC project http://www.ist-plastic.org
6 Carlo Ghezzi, Self-Managing Situated Computing Grant, ERC Advanced Investigator Grant

N. 227977, European Union, 2008–2013

http://www.ist-plastic.org
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In the scope of assurance, M@RT can be used as a basis for assuring functional as
well as non-functional properties of the system (cf. Section 2). From this perspective,
models can play various roles. Depending on what the models describe, they can be
used as a source of information about aspects of the running system. For instance, goal
models can represent the requirements that need to be assured, the current state of the
system, adaptations, or the context of use. M@RT can have several purposes for run-
time assurance. Among others, they can be used as information sources for monitoring
aspects of a running system, to influence the system via model manipulation, and as a
basis for analysis methods, such as model-based verification and model-based simula-
tion. For analysis methods, models are usually beneficial as they provide easy to use
high-level knowledge about the system.

Development-time modeling approaches already exploit these advantages and enable
the assertion of certain properties of a developed system. The use of M@RT has the
advantage that some of the analysis constraints are relaxed as the current runtime state is
available for reasoning, reaction, and regulation. At development time, full assurance is
required to reason about all possible states. Several of these variables that are unknown
at development time are bound at runtime and can allow for a more focused analysis
of the current state and possibly several neighboring ones. This variable instantiation
is especially useful for factors that can only be estimated at development time (e.g.,
network delay). A running system can continually monitor these aspects and react to
them. The remainder of this section describes the dynamics of adaptive systems and the
use of models during the adaptation process.

3.1 M@RT and the Dynamics of Self-Adaptive Software

The Software Engineering for Adaptive and Self-Managing Systems (SEAMS) com-
munity has identified three key subsystems needed for the design of effective context-
driven self-adaptation: the control objectives manager, the adaptation controller, and
the context monitoring system [VTM+12]. These subsystems represent three levels of
dynamics in self-adaptation, each of which can be controlled through a corresponding
feedback loop. Villegas et al. [VTM+12] provide a comprehensive characterization of
these three levels of dynamics in SASs.

In general, assurance criteria drive the control objectives, adaptation, and monitoring
feedback loops, as well as their interactions. As such, assurance governs the behavior
of both the target system and the adaptation process. For example, system administra-
tors can provide the control objectives manager with the required specifications. More
specifically, the control objectives manager then sends the adaptation goals to the adap-
tation controller and monitoring requirements to the monitoring system. Thus, these
specifications govern the behavior of the adaptation process and the behavior of the
SAS throughout the adaptation process.

We argue that M@RT provide abstractions that are essential to support the feedback
loops that control the three levels of dynamics identified in SASs. From this perspec-
tive, M@RT (cf. Figure 1) could be developed specifically for each level of dynamics to
support the control objectives manager, adaptation controller, and the monitoring sys-
tem. The figure also shows the interactions between these models and the respective
subsystems in an SAS.
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MART to represent assurance 
criteria  (e.g., non-functional 

requirements)

MART to represent the target 
system, adaptation plans and their 

relationships with assurance criteria

MART to represent context, 
monitoring strategies and their 

relationships with assurance 
criteria and adaptation models

Control Objectives
(Assurance Criteria)

Adaptation

Monitoring

Legend:
MART Coordination

Fig. 1. The three levels of M@RT for the assurance of SASs

– At the Control Objectives level, M@RT represent requirements specifications sub-
ject to assurance in the form of functional and non-functional requirements.

– At the Adaptation level, M@RT represent states of the managed system, adaptation
plans and their relationships with the assurance specifications.

– At the Monitoring level, M@RT represent context entities, monitoring require-
ments, as well as monitoring strategies and their relationships with assurance crite-
ria and adaptation models.

Most importantly, M@RT at these levels must have efficient and effective meth-
ods of inter-level interaction since changes in requirement specifications may trigger
changes at both the adaptation and the monitoring levels, as well as in the associated
runtime models. Similarly, changes in adaptation models may imply changes in mon-
itoring strategies or context entity models. In any case, M@RT at the adaptation and
monitoring levels must maintain an explicit mapping to the models defined at the con-
trol objectives level that specify the requirements.

In summary, the architecture of SASs contains three interacting but functionally self-
contained levels, each dedicated respectively to control objectives, adaptation, and mon-
itoring of the SAS. Designing an SAS for assurance, as opposed to leaving assurance
until after system design, requires the tight integration of assurance objectives into each
level in the SAS architecture. We argue that this integration can most effectively be
achieved by introducing dedicated M@RT that embody specific assurance criteria, fo-
cused either for the target system or the adaptation process.

3.2 Models at Runtime during the Adaptation Process

As a starting point for a research methodology we analyzed the MAPE-K loop in further
detail. Kephart and Chess proposed this autonomic manager as a foundational compo-
nent of IBM’s autonomic computing initiative [KC03]. It constitutes a reference model
for designing and implementing adaptation mechanisms in SASs. The MAPE-K loop
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is an abstraction of a feedback loop where the dynamic behavior of a managed sys-
tem is controlled using an autonomic manager. The MAPE-K comprises four phases—
Monitor (M), Analyzer (A), Planner (P) and Executor (E)—that operate over a knowl-
edge base (K). Each of these phases is briefly described next.

1. Monitors gather and pre-process relevant context information from entities in the
execution environment that can affect the desired properties and from the target
system;

2. Analyzers support decision making on the necessity of self-adaptation;
3. Planners generate suitable actions to affect the target system according to the sup-

ported adaptation mechanisms and the results of the Analyzer;
4. Executors implement actions with the goal of adapting the target system; and
5. A Knowledge Base enables data sharing, data persistence, decision making, and

communication among the components of the feedback loop, as well as arrange-
ments of multiple feedback loops (e.g., the Autonomic Computing Reference Ar-
chitecture (ACRA) [IBM06]).

In order to illustrate the role of M@RT as enablers of assurance mechanisms for self-
adaptation, Figure 2 presents an extension of the MAPE-K loop, where assurance tasks
complement each stage of the loop [TVM+12], and the knowledge base is replaced by
M@RT. We aptly name the feedback loop depicted in this figure MAPE-MART loop.

MART Target
System

Monitor

Environment

Planner Executor

Analyzer

Adaptation
Monitor

Assurance
Monitor

Adaptation
Analyzer

Assurance
Analyzer

Adaptation
Planner

Assurance
Planner

Adaptation
Executor

Assurance
Executor

MAPE elements-MART interactions
Information and control flow 

Fig. 2. MAPE-MART loop: The MAPE-K loop from autonomic computing extended with
M@RT, and assurance instrumentation as foundational elements for the assessment of SASs

MAPE elements interact with M@RT along the adaptation process to either obtain or
update information about system states, the environment, and assurance criteria. Mon-
itors keep track of relevant context information according to monitoring conditions in
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the system itself (assurance monitors) and its adaptations (adaptation monitors). For
example, monitors interact with M@RT in order to make monitored data available
throughout the adaptation process, or to monitor the states of models or changes in
assurance criteria. Analyzers will then use monitored context to identify whether de-
sired conditions are being or could potentially be violated. Analyzers can also update
models with identified symptoms. Again, we can distinguish between assurance an-
alyzers that analyze the system and adaptation analyzers that analyze the adaptation
process. Adaptation planners use the symptoms provided by analyzers to define a new
adaptation plan. Adaptation plans can be defined in the form of models that are process-
able by executors to adapt the target system. Then assurance planners check whether
the plan is correct with respect to the assurance criteria. Finally, adaptation executors
perform the plan, after which point, assurance executors check whether both the system
remains in a safe state and the desired properties are achieved. These verification tasks
can be optimized using M@RT.

4 Research Challenges for Assurance at Runtime

This section overviews selected research avenues and research challenges for the assur-
ance of SASs using M@RT.

4.1 Research Avenues

Software assurance is a large field with many subfields (e.g., software quality, V&V,
safety, trust, and several ’ilities’) that spans the realms of software engineering, systems
engineering, control engineering, and many other engineering disciplines. From a soft-
ware engineering perspective, assurance at runtime for SASs appears to be an emerg-
ing area of research [GCZ08, FDB+08, IPT09, TVM+12, FGT11, SBT11, FRC13a,
FDC14b]. In contrast, runtime assurance in control engineering traces its roots to the
industrial revolution, applied to devices such as the centrifugal governor. This device
used a flyball mechanism to sense the rotational speed of a steam turbine and to adjust
the flow of steam into the machine. By regulating the turbine’s speed, it provided the
safe, reliable, and consistent operation that enabled the proliferation of steam-powered
factories [MAB+02].

In an instrumented, interconnected, and intelligent world, control and runtime assur-
ance are core components in SASs, providing high performance, high confidence, and
reconfigurable operation in the presence of uncertainties. The continuous integration
of sensors, networks, cloud computing, and control presents significant opportunities
for engineering in general and software engineering in particular. A key goal is to pro-
vide certifiable trust in resulting systems, which is a truly formidable challenge for
researchers in the field of runtime software assurance.

Over the past 20 years, several research venues (i.e., journals, conferences, and work-
shops) have emerged in the broad software engineering research community to discuss
the design and evolution as well as assurance of SASs.

Mining the rich histories, theories and experiences of fields such as biology,
control engineering, and software engineering are worthwhile starting points for as-
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surance at runtime research. In particular, we need survey papers that investigate mod-
els used for design time and runtime assurance techniques in these fields including
research on the synergy between them. Moreover, it is useful to relate canonical prac-
tical applications to these findings. In a most stimulating 2002 control survey paper
Murray et al. [MAB+02] posit that feedback is a central tool for uncertainty manage-
ment in modern control. By measuring the operation of a system, comparing it to a
reference at runtime, and adjusting available control variables, the controller can assure
proper operation even in the presence of external disturbances or if its dynamic be-
havior is not fully known. In software, this reference can be realized with M@RT and
evidence for assurance is gathered by checking conformance to the reference model.
Murray et al. [MAB+02] argue that the challenge is to go from the traditional view
of control systems as a single process with a single controller, to recognizing con-
trol systems as a heterogeneous collection of physical and information systems, with
intricate interconnections and interactions [MAB+02]. One manifestation of this ap-
proach in software engineering is the three levels of runtime control models discussed in
Section 3 [TVM+13].

The self-adaptive and self-managing systems community has produced a spectrum
of runtime models [WMA10] [TVM+13] and patterns [RC10b, GH04] with control-
centric models [KC03, HDPT04, IBM06, BSG+09] at one end and architecture-centric
models [BCD97, OGT+, GCH+04, KM07] at the other end. These models come with
different attributes and properties that can be exploited for runtime assurance. There is
plenty of room for research to compare and evaluate the benefits and synergy of these
different runtime model strategies [MKS09, TVM+13].

4.2 Selected Research Challenges

This section outlines selected open research problems and challenges aligned with the
research avenues presented in the previous section. The focus is on the use of M@RT
as a basis for developing runtime assurance techniques.

Runtime Assurance Criteria and Adaptation Properties. In Section 2.2 we re-
lated selected non-functional assurance criteria (e.g., latency) to adaptation properties
(e.g., settling time) using quality attributes. One challenge is to extend this characteriza-
tion of criteria and properties for the target system, controller, and adaptation process.
While other approaches may be used to characterize and relate assurance criteria and
adaptation properties, the properties are only meaningful if they can actually be mea-
sured. Monitoring infrastructure to measure properties is critical for runtime assurance
methods. Over the past decade, the SAS community has published numerous papers
on various aspects of monitoring. Many of these papers concentrate on the monitor-
ing of raw measures in the managed system but only a limited number of approaches
make the information amenable for runtime assurance assessment purposes, including
functional requirements monitoring [FF95, FFvLP98, BWS+10, DDKM08, MPS08],
assumptions monitoring [WSB11, RCBS12], and adaptive monitoring capabilities for
changing environmental conditions [RC10a].
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M@RT as a Foundation for Run-Time Assurance. While M@RT for SAS are
increasingly being developed for complex SASs, including reference models
[WMA10, VTM+12], few of these models are explicitly designed for runtime assur-
ance. Thus, MART construction for runtime assurance is a key research challenge. The
models introduced in Section 3 present good starting points for integrating assurance
components into common SAS models. The central challenge for MART construction
is to model uncertainty (e.g., environmental disturbances or evolving requirements).
Understanding, managing, and leveraging uncertainty is important for delivering SASs
with assurance guarantees such as reliability. Ramirez and Cheng [RJC12] have de-
veloped a taxonomy of uncertainty commonly faced by SAS, which could be used to
facilitate uncertainty modeling and analysis efforts [EKM11, RCBS12]. Fields such
as performance engineering and queuing theory have developed advanced models for
many different applications. In particular, these fields have developed theories on how
to transduce raw measures from a target system into meaningful measures for selected
assurance criteria. However, performance constitutes just one dimension of the model-
ing and assurance problem. Many other quality criteria are applicable to SASs, such as
trust, where quantification is rather difficult yet certifiable trust is one of the most impor-
tant goals for an SAS [Dah10]. Moreover, models are needed to design trade-off anal-
yses schemes for combinations of quality criteria. Models and quality criteria related
to governance, compliance, and service-level agreements are of particular importance
for service-oriented SASs [BHTV06, TVM+13]. Since M@RT form the foundation of
many assurance tasks, the quality of these tasks directly depends on the quality of the
models. Defining properties (e.g., accuracy, performance, or safety) for the evaluation
of models at runtime is a significant research challenge [TVM+13].

To motivate researchers and practitioners to work on this subject we need compelling
reasons for using M@RT for assurance [TVM+13]. A key goal for the SAS assurance
research community is to develop exemplars that can be used to evaluate SAS runtime
assurance techniques [TVM+13]. Most SAS conferences and workshops regularly call
for exemplars but not usually explicitly targeted for SAS runtime assurance. An exam-
ple of compelling motivation for work in this area is a 20-year science and technology
research agenda and outlook for the US Air Force (USAF) [Dah10]. Approximately
one third of this agenda is devoted to self-adaptive and autonomous systems with ex-
plicit calls for certifiable V&V techniques. V&V is also one of the most promising
subfields of assurance where researchers can mine well-established design time models
and transition them to runtime. The IBM autonomic computing initiative generated the
highly acclaimed MAPE-K [KC03] and ACRA [IBM06] runtime models. The MAPE-
K model separates four phases of the feedback loop and thus effectively decomposes
the feedback loop assurance problem. The three-layer ACRA hierarchy facilitates inte-
grated assurance reasoning from individually-managed resources at the lowest layer, to
managing a collection of resources at the middle layer, to orchestrating an entire system
by trading off resource managers at the top layer.

Run-Time Assurance Methods and Techniques. For SASs, the boundary between
development time and runtime is rapidly disappearing [BG10]. As a result, we need to
re-examine the distribution and effectiveness of assurance tasks over the entire life cycle
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of an SAS. At the same time, we need to determine which models are most appropriate
as a foundation for assurance tasks for the different stages of the software life cycle. In
particular, we need to investigate whether models that are used for design-time assur-
ance can be effectively used at runtime. In particular, what properties can be guaranteed
at development, configuration, or load time as opposed to runtime. While not all assur-
ance tasks can be transitioned to runtime, there is significant opportunity to conduct as-
surance tasks at runtime thereby making the system more resilient, reliable, responsive,
secure, and cost-effective. Regardless of how dynamic a system really is, a substan-
tial part of its assurance will always be done at development time. What (lightweight)
design-time techniques can be readily transitioned to runtime? What development-time
assurance methods, models, and techniques (i.e., descriptive, prescriptive, constructive
and predictive) readily extend to runtime? How do traditional assurance models and
methods from domains such as performance, safety, and reliability extend to runtime?

As illustrated in Figure 2, MART play an important role as the abstraction mecha-
nisms required to support every stage of the SAS adaptation process. A key question
is what MART techniques are useful for supporting the relevance of runtime monitor-
ing with respect to the assurance criteria. Moreover, to deal with the dynamic nature of
functional and non-functional requirements, as well as the execution environment, ev-
ery component of the adaptation process can also be an adaptive component. Thus, how
can M@RT support changes in monitors, analyzers, planners and executors according
to changes in functional and non-functional requirements? In the realm of control sys-
tem engineering, changing the controller is referred to as adaptive control [AW94]. An-
other important avenue of research is how to characterize runtime assurance techniques
according to the different levels of dynamics in SASs (i.e., changes in requirements,
relevant context, adaptation mechanisms, and the target system itself).

Assurance obligations vary from one application domain to another. For example,
the area of safety-critical systems has developed specialized assurance criteria and
models—albeit mostly design-time techniques (e.g., ISO26262 for automotive subsys-
tems,7 and numerous safety standards set by the International Electrotechnical Com-
mission).8 The service-oriented architecture (SOA) community has developed SOA
governance models—a combination of design time and runtime models—for assurance
tasks for service-oriented systems on SOA platforms [SMB+09]. Thus, it is useful for
researchers to classify runtime assurance criteria, models, and techniques according to
their applicability to different domains and applications (e.g., application-independent,
domain-dependent, mission-critical systems, embedded systems, real-time systems,
etc.). Run-time assurance techniques can also be classified according to different types
of runtime changes (e.g., dynamic context, changing requirements, or evolving models).

With the increasing use of computing-based systems for delivering critical societal
services that demand long-running or even continuous operation (e.g., telecommuni-
cation, power grids, financial systems, etc.), even in the face of adversity, adaptation
and runtime evolution [MV14] is a necessity, not a luxury. Even with meaningful reac-
tions to changes, the triggered SAS adaptation should preserve selected core properties,
thus posing a need for incremental and compositional assurance for SASs. An enabling

7 http://www.iso.org/
8 http://www.iec.ch/

http://www.iso.org/
http://www.iec.ch/
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step, in this direction, is to split functional and non-functional requirements into sub-
requirements associated with single services and components of the system. The idea
is to decompose the requirement specification into properties associated with the be-
havior of small parts of the system. Thus, it becomes possible to check these properties
locally and to deduce from local checks whether the system satisfies the overall spec-
ification. By decomposing the assurance task in such a way, it may not be necessary
to build a complete model of the system and thus the combinatorial state explosion
problem is mitigated. The main challenge of this approach is that local properties are
typically not preserved at the global level because of dependencies among the aggre-
gate subparts of the system. Another approach to decomposing the assurance problem
is to separate the verification of the functional properties from the verification of adap-
tation properties. Zhang et al. [ZGC09] developed AMOEBA, a modular verification
approach for SASs where the functional properties are specified in terms of LTL and
the adaptation properties are specified in terms of A-LTL [ZC06b]. With this sepa-
ration of concerns, AMOEBA uses an assume/guarantee approach [JT96] to perform
incremental model checking of both types of properties. AMOEBA-RT is an extension
that monitors the adaptation properties at runtime based on state-based models of the
adaptive logic [GCZ08].

As another example of assurance for the adaptation process, suppose settling time
(i.e., the time required for the adaptation mechanism to take the target system to the
desired state) has been defined as a performance-oriented assurance concern for a par-
ticular adaptive system. As such, the assurance mechanisms must keep track of the
time the adaptation mechanism is taking to complete the adaptation process—generally
goals must be reached within a suitable time interval. An extremely long adaptation pro-
cess could render the system to be useless or even detrimental to the system’s overall
safety. The desired thresholds, monitoring conditions, and entities to be monitored can
be specified using M@RT, such as goal-based models [WSB+09] or contextual RDF
graphs [VMT11a, VMM+11].

5 Characterizing Assurance Methods

Researchers from communities related to the engineering of SASs have contributed a
spectrum of approaches to the assessment of adaptive software. Rather than producing
a comprehensive and systematic literature review of the state of the art, the goal of this
section is to provide an overview of how M@RT have been used as runtime assurance
enablers in selected domains. This characterization of assurance approaches provides
a starting point upon which researchers can build to address the research challenges
posed by model-based runtime assurance of SASs.

5.1 Classifying Assurance Methods According to Techniques

This section presents and classifies selected existing approaches for runtime assurance
of SASs according to the techniques and methods used for their realization.
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Goal-Oriented Approaches. A first step towards assuring software systems is the
articulation of assurance criteria. This task can be complex for functional require-
ments because it requires a deep understanding of the application domain. Nguyen et
al. [NPT+09] argue that goal-oriented techniques are effective for deriving assurance
criteria from functional requirements specifications. At development time (or require-
ments negotiation time), goal models can be used to specify stakeholder expectations
for SASs, and the decision criteria for acceptable system behavior can be derived from
these models. Moreover, goals, and especially high-level goals, have been recognized
as more stable (i.e., less volatile) than specific system requirements [vLDL98]. Thus,
high-level goals provide suitable candidate assurance criteria in highly dynamic sys-
tems. Qureshi et al. [QJP11, QLP11, QP10] rely on this assumption in their work on
continuous requirements engineering. They represent functional behavior in terms of
high-level goals (i.e., functional goals) that are decomposed into sub-goals. Alternative
decompositions are qualified by quality criteria, user preferences, and context that con-
tribute positively or negatively to their ranking. To ensure the expected behavior, the
system must select the most appropriate goal decomposition path.

The effectiveness of the assurance of SASs at runtime is highly dependent on the
changing conditions of the execution environment that can affect not only the target
system, but also the adaptation mechanism and monitoring infrastructure. Ramirez and
Cheng proposed an approach to manage changes in monitoring conditions according
to environmental situations at runtime [RC11]. They specify requirements goal models
using the RELAX language [WSB+09]. Recently, AutoRELAX has been developed to
automatically add RELAX operators to goal models to handle uncertainty in the en-
vironment while minimizing the number of reconfiguration adaptations [FDC14a]. In
a similar approach, Pasquale et al. [BPS10, PS11] developed FLAGS, a KAOS goal
modeling framework that introduces the concept of a fuzzy goal whose satisfaction
can be evaluated through fuzzy logic functions. Both goal-modeling approaches use
fuzzy logic-based functions to add flexibility to the satisfaction criteria of goals in a
goal-oriented model. In contrast to RELAX, however, FLAGS does not focus on iden-
tifying sources of uncertainty, but focuses rather on evaluating the degree to which a
goal is satisfied. Goal-based models can be transitioned from design time to runtime
to track changes in SAS requirements at runtime. Morandini et al. have investigated
the life-cycle of goals at runtime [MPP09]. Souza et al. [SSLRM11] have developed
a system, Zanshin, a requirements monitoring framework based on multiple feedback
loops to monitor awareness requirements and progress towards adaptation objectives at
runtime [ASaP13].

Automatic Test Case Generation- Based Methods. The complexity of system struc-
ture and behavior is growing exponentially, coupled with the comparable volume of
possible scenarios and combinations of environmental conditions to be handled by an
SAS. As such, successful strategies for automatic test case generation used for non-SAS
application areas are being leveraged and explored for SAS testing. For example, given
that multi-agent based software systems expose high levels of runtime dynamism, ap-
plicable testing techniques for these types of systems can be leveraged to assess SASs
using M@RT [NPB+09]. An important challenge in the validation of SASs at runtime
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using direct-testing techniques is the generation of test cases that are relevant to the
system’s current execution context and goals. As a means to evaluate system perfor-
mance, Nguyen et al. [NPT+09] use evolutionary testing techniques to automatically
generate test cases based on quality functions. Quality functions are associated with
stakeholder expectations of the behavior of an autonomous system which are expressed
as goal-oriented requirements. (e.g., the quality function associated with the goal of a
cleaning agent to maintain its battery can be a minimum battery level to be satisfied).
This approach allows the automatic generation of test cases with increasing difficulty
levels, guided by a fitness function associated to the quality of interest (e.g., a func-
tion inversely proportional to the total power consumption of the system throughout
its lifetime). A complementary approach is taken by Fredericks et al. [FRC13b] where
an SAS is exposed to a wide range of adverse environmental conditions that are used
to generate SAS execution traces as the system adapts and reconfigures to handle the
adverse conditions. These traces can then be analyzed for unexpected and/or unwanted
behavior, both in the functional and in the adaptive logic. EvoSuite [FA11] is a frame-
work that implements an evolutionary algorithm to generate test suites that consider a
single coverage criterion, for instance the introduction of artificial defects into a pro-
gram. Finally, a MAPE-T loop [FRC13a] has been proposed to provide a framework
for monitoring the applicability and utility of test cases for an SAS as it undergoes en-
vironmental changes and reconfiguration. A set of research challenges were posed as
part of the proposed framework, including explicit reference to the importance and use
of M@RT. Veritas [FDC14b] is a recent realization of the MAPE-T loop that adapts
test cases to ensure testing relevancy as an SAS reconfigures to handle changing envi-
ronmental conditions.

Model Checking. Model checking [CGP01, PPS09] was proposed in the 1980s inde-
pendently by Clarke and Emerson [CE82], and Quielle and Sifakis [QS82]. It assumes
an available mathematical model of a system and a property to check against the model
expressed in a formal logic, such as Linear Temporal Logic (LTL) [Pnu81] or Compu-
tational Tree Logic (CTL) [BAMP81]. The goal of model checking is to use an algo-
rithmic approach to check the consistency between the given model and the property
specification. Model checking has been used extensively to verify hardware [BLPV95]
and software systems [CGP02] in many application domains to assure desired prop-
erties. Model checking at runtime is a key strategy to verify SASs based on runtime
models. Weyns et al. surveyed formal methods in self-adaptive systems [WIdlIA12].
They showed that there are no standard tools for formal modeling and verification of
self-adaptive systems. According to their survey, however, 40% of the surveyed stud-
ies use tools for formal modeling or verification, and 30% of those studies use model
checking tools.

A number of model checking techniques have been used to analyze various proper-
ties of SASs. Baresi et al. used model checking to check whether an architecture is a re-
finement of another one [BHTV06]. Specifically, they defined refinement relationships
between abstract and concrete styles. The defined refinement criteria guarantee both
semantic correctness and platform consistency. In another approach, Abeywickrama
and Zambonelli proposed to model check goal-oriented requirements for SASs [AZ12].
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Cámara and de Lemos used probabilistic model checking to verify resilience properties
of SASs, with the goal of verifying whether the self-adaptive system is able to main-
tain trustworthy service delivery in spite of changes in its environment [CdL12]. In
architecture-based domains, Pelliccione et al. applied model checking at the software
architecture level to verify properties of the system, its components, and the interac-
tions among components [PIM09, PTBP08]. Filieri et al. have developed a runtime
probabilistic model checking technique to detect harmful reconfigurations. To deal with
unplanned adaptations, Inverardi et al. proposed a theoretical assume-guarantee frame-
work to define under which conditions to perform adaptation by still preserving the
desired invariants [IPT09]. Zhang and Cheng developed AMOEBA [ZGC09], a modu-
lar model checker to separately verify SAS functional properties in terms of LTL and
the adaptive logic in terms of A-LTL (adapt-LTL). AMOEBA-RT [GCZ08] verifies run-
time properties of SAS properties. Model checking has also been applied in the domain
of agent-based systems, for instance to assure adaptability to unforeseen conditions, be-
havioral properties, and performance [Gor01]. Finally, Murata used Petri Nets to enable
the analysis of properties, such as the reachability of a certain state or deadlock-freeness
[Mur89]. Some of these analysis methods have been extended to enhanced versions of
Petri Nets, such as Colored Petri Nets [Jen03] and applied to check properties such as
performance [Wel02] or safety [CHC96].

Rule-Based Analysis and Verification. Several approaches based on formal methods,
especially graph-based formalisms, have been proposed to leverage rule-based analysis
and verification of software properties. In particular, Becker and Giese
proposed a graph-transformation based approach to model SASs at a high-level of
abstraction. Their approach considers different level of abstractions according to the
three-layer SAS reference architecture proposed by Kramer and Magee [KM07]. In
their approach, Becker and Giese check the correctness of the modeled SAS using sim-
ulation and invariant-checking techniques. Invariant checking is mainly used to verify
that a given set of graph transformations will never reach a forbidden state. This verifi-
cation process exposes a linear complexity on the number of rules and properties to be
checked [BBG+06]. In another approach, Giese et al. used triple graph grammars as a
formal semantics for specifying models, their relation, and transformations. These mod-
els can be used as a basis for analyzing the fulfillment of desired properties [GHL10].
In the self-healing domain, Bucchiarone et al. proposed an approach to model and ver-
ify self-repairing system architectures [BPVR09]. In their approach, dynamic software
architectures are formalized as typed hyper-graph grammars. This formalization en-
ables verification of correctness and completeness of self-repairing systems. This ap-
proach was extended later by Ehrig et al. [EER+10] to model self-healing systems
using algebraic graph transformations and graph grammars enriched with graph con-
straints. This extension enables formal modeling of consistency and operational prop-
erties. In the quality-driven component-based software engineering domain, Tamura et
al. [TCCD12, Tam12] formalized models for component-based structures and reconfig-
uration rules using typed and attributed graph transformation systems to preserve QoS
contracts. Based on this formalization, they provide a means for formal analysis and
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verification of self-adaptation properties, both at design time and runtime by integrat-
ing the Attributed Graph Grammar (AGG) system in their framework.

Synthesis. Another interesting avenue of research is to use synthesis techniques for as-
suring SASs. The goal of these techniques is to generate the “correct” assembly code for
the (pre-selected and pre-acquired) components that constitute the specified system, in
such a way that it is possible to guarantee that the system exhibits the specified interac-
tions only. Inverardi et al. [IST11] proposed a synthesis-based approach for networking.
This approach considers application-layer connectors by referring to two conceptually
distinct notions of connector: coordinator and mediator. The former is used when the
networked systems to be connected are already able to communicate but they need to
be specifically coordinated to reach their goal(s). The latter goes a step further by rep-
resenting a solution for both achieving correct coordination and enabling communica-
tion between highly heterogeneous networked systems. This work has been extended to
also handle non-functional properties [DMIS13]. La Manna et al. [PGGB13] proposed
an approach for reasoning about safeness of dynamic updates based on specification
changes.

Semantic Web. A key challenge for establishing runtime assurance of SASs is the
preservation of the relevance of runtime monitoring infrastructures with respect to as-
surance criteria and the system’s execution environment. Specifically, monitoring strate-
gies and infrastructures must adapt themselves dynamically. Models at runtime are also
required to support self-adaptation of context management infrastructures (i.e., the third
level of dynamics in SASs that was presented in Sect. 3.1). To manage context dynam-
ically, the explicit mapping between assurance concerns and relevant context must be
complemented with an explicit mapping between relevant context and infrastructure
elements of the monitoring infrastructure. In this way, whenever changes in assurance
criteria or relevant context occur, the dynamic adaptation of a representation of the
monitoring strategy will trigger the adaptation of context sensors, context providers,
and context monitors accordingly. Ramirez and Cheng [RCM10] used a goal-based ap-
proach to adapt the monitoring infrastructure to support the changing execution context
for an SAS. Resource description framework (RDF) graphs, from semantic web, are
good candidates to be used as effective M@RT in the assessment of SASs. Models at
runtime in the form of RDF graphs can be exploited to represent relevant context, moni-
toring strategies, system requirements including assurance criteria, as well as to support
changes in context management strategies at runtime. Ontologies and semantic-web
based rules, defined according to the application domain, provide the means required
to infer changes in the monitoring infrastructure according to changes in requirements,
assurance criteria or context [VMT11a, Vil13].

5.2 Classifying Assurance Methods According to Non-Functional Criteria

In this subsection, we classify surveyed runtime assurance approaches according to the
non-functional requirements they address as assurance criteria.
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Safety. For systems that are self-adaptive or even self-organizing, the application of
traditional safety assurance approaches is currently infeasible. This obstacle is mostly
due to the fact that these approaches rely heavily on a complete understanding of the
system and its environment, which is difficult to attain for adaptive systems and as of
yet impossible for open systems. Open systems, in contrast to self-adaptive systems
that are generally closed systems, do not use measured outputs to determine control in-
puts required to adjust their behavior [HDPT04]. Therefore, open systems necessarily
require a complete and accurate model of the system and its environment from which
the control input must be derived. These models are generally impractical given that
they must be robust to changes in the system and its environment and use no feedback
mechanism to adjust themselves. A general solution is to shift parts of the safety assur-
ance measures into runtime when all required information about the current state of the
application can be obtained. Rushby [Rus07] developed a strategy where development-
time analysis techniques for certification are used at runtime, but the actual certification
is performed as needed just-in-time. Based on this work, he later coined the notion
of runtime certification [Rus08], using runtime verification techniques to partially per-
form certification at runtime. Following the same core idea of shifting portions of the
assurance measures into runtime, Schneider et al. [ST13] introduced the concept of
conditional safety certificates (ConSerts). ConSerts are predefined modular safety cer-
tificates that have a runtime representation to enable dynamic evaluations in the context
of open adaptive systems. Some initial ideas concerning the extension of ConSerts re-
garding other certifiable non-functional properties such as security have also been pub-
lished [SBT11]. Priesterjahn and Tichy [PT09] proposed a different approach based on
the application of hazard analysis techniques during runtime. This approach is closely
related to their previous work where they introduced a development-time hazard anal-
ysis approach for analyzing all configurations that a self-adaptive system can reach
during runtime [GT06]. A corresponding extension also considers the time between the
detection of a failure and its reconfiguration [PSWTH11].

Performance. Regression models and queuing network models (QNM) are M@RT
commonly used to reason about performance-based assurance properties relating to re-
sponse time, throughput, or utilization. For example, Hellerstein et al. [HDPT04] and
Lu et al. [LAL+03] described dynamic regression models in the context of autonomic
computing and self-optimization. Menascé and Bennani [MB03] used QNM as predic-
tive models for avoiding bottleneck saturation and for online capacity sizing. Ghanbari
et al. [GSLI11] used dynamically tuned layered queuing models, which are software
specific versions of QNMs, for online performance problem determination and mitiga-
tion in cloud computing. More recently, Barna et al. [BLG11] reported performance
load and stress testing methods on online tuned runtime performance models.

Reliability and Availability. Run-time assurance methods for reliability and avail-
ability properties use discrete time Markov chains that are synchronized with the system
and its usage profile. For example, service-based systems built using the QoSMOS (QoS
Management and Optimization of Service-based systems) framework [CGK+11] trans-
late high-level QoS requirements specified by their administrators into probabilistic
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temporal logic formulae that are then formally and automatically analyzed to
identify and enforce optimal system configurations. The QoSMOS self-adaptation mech-
anism can handle reliability and performance-related QoS requirements. QoSMOS
[FGT11, MG10] uses the KAMI approach [EGMT09] to keep the model, including its
parameters, and the system consistent; it uses probabilistic model checking at runtime
to evaluate whether the system satisfies the current reliability requirements.

Security. Security considerations revolve around self-protection goals of an SAS, in-
cluding confidentiality, integrity, authenticity, and authorization [BCdL11, KHW+01].
Run-time assurance of these goals is important in SASs since adaptation may produce
emergent behavior that violates one or more other critical system properties. In particu-
lar, security assurance must be achieved without compromising system goals unrelated
to security [RZN05, HMPB00]. For example, security considerations, such as confi-
dentiality may conflict with availability goals. While the former, confidentiality, aims
to protect the information in the system from unauthorized access, the latter, availabil-
ity, is intended to ensure access to the system and the information a user is authorized
to access. One way of counteracting an intrusion is by limiting access to the parts of the
system that are affected by an attack. This approach clearly can have negative impact
on availability. It is therefore important that, within an SAS, any remedial interventions
invoked to preserve security goals also preserve the system properties not related to
security. Achieving this balance requires decisions to be made at runtime based on ev-
idence regarding the satisfaction of security goals obtained from analyzing the system
and its environment, including user behavior.

Run-time security of an SAS involves not only protecting the target system, but it
also means that the adaptation process and the policies governing the adaptation are
protected from malicious attacks (e.g., preventing attackers from hijacking its adapta-
tion mechanisms and policies) [Ais03, BJY11, OMH+11]. Adaptation methods, data,
policies and certificates must be properly protected to ensure confidentiality, authen-
ticity, and trusted communication of the entire adaptation process and its drivers. The
components of every MAPE-MART loop depicted in Figure 2 must also be protected
accordingly.

While an SAS is expected to make its adaptation decisions autonomously, a key
question is how and how much to empower users with privacy and data security control
(e.g., when user context is involved in adaptation decisions). The Surprise [MTVM12]
approach (i) allows users to configure access permissions to their sensitive personal
information to third parties, selectively and with different levels of granularity; (ii)
supports changes in these configurations at runtime to add or remove third parties or
permissions, and (iii) realizes partial encryption to share non-sensitive data with third
parties who have not been explicitly authorized access, while protecting user identity.
The Surprise approach is an exemplar of the application of M@RT to the preservation
of privacy and security policies in user-driven SASs.

Security assurance, like other assurance goals at runtime, relies on the definition
of high-level policies that must be preserved during adaptation. To achieve this secu-
rity assurance, the Self-Adaptive Authorization Framework (SAAF) uses a feedback
loop that continuously monitors the decisions made by the system’s authorization pro-
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cess [BCdL11] . The knowledge gained is used to adjust the authorization policy at
runtime, making it more restrictive to constrain user behavior or loosening it to endorse
users. Dynamic conflict resolution is particularly important in the context of security
assurance but many existing approaches, e.g. [HMPB00], resolve conflicts using prior-
ity levels assigned at design time. Instead, the ATNAC (Adaptive Trust Negotiation and
Access Control) framework [RZN05] allows access control policies to be dynamically
adjusted depending on a set of trust-associated attributes observed at runtime. Formal
methods have also been used successfully in this context. For example, the Willow
Architecture [KHW+01], a dynamic reconfiguration framework for critical distributed
systems, enables systems to continue working with reduced functionality while under a
security attack. The use of formal methods enables autonomous handling of conflicts at
runtime during reconfiguration.

Usability. In applications with adaptive user interfaces, it is often impossible to test
each adaptation state with real users. Therefore, automated usability evaluation of such
user interfaces often relies on models of the user or user interactions to evaluate states of
user interfaces automatically [IH01]. Quade et al. [QBL+11] introduced an approach
that evaluates the usability of the current state of a user interface using M@RT. The
evaluation is based on a simulation of user interactions based on the model of the user
interface and a model of the user. Having these techniques available at runtime enables
a more detailed modeling of the user as the model can be checked against data from the
actual user interaction.

6 Compelling Applications for Models at Runtime

This section introduces application exemplars for which M@RT play a major role in the
assurance of functional and non-functional assurance criteria. The goal of this section
is to provide a catalogue of “killer applications” useful to motivate case studies on the
assurance of SASs where M@RTare used as a foundation.

Kaleidoscope. Kaleidoscope 9is a multi-channel multimedia video streaming and
video on demand system. Imagine an Olympics game or a football match where mil-
lions of users are simultaneously streaming, watching and querying videos about the
event. The Kaleidoscope application aims to provide/share best quality video for its
users. As such, Kaleidoscope must act as a proxy server that is used to store and for-
ward multimedia content to user devices. A device can be a notebook, a smartphone,
or a personal digital assistant (PDA). Kaleidoscope must detect both the video source
and the user target device. Kaleidoscope must adapt at runtime from one configuration
variant to another in order to provide the best quality video to users concurrently and
reliably. The broadcast is fetched from a video source via TV cable (e.g., TV broadcast)
or either wired or wireless (e.g., Webcast) Internet connection.

Latency and capacity (i.e., bandwidth) are important assurance criteria in Kaleido-
scope since high-quality video streaming is a major functional requirement. To guar-
antee functional requirements under the desired quality conditions, Kaleidoscope must

9 http://www.savinetwork.ca

http://www.savinetwork.ca


Using Models at Runtime to Address Assurance 123

adapt itself by reconfiguring its network and software architecture to minimize latency
and maximize capacity. In this scenario, M@RT are useful for a variety of purposes.
For example, predictive models can be used to anticipate latency and required capacity
in the near future to perform preventive adaptations and thus avoid the violation of the
desired qualities. Another example is the use of runtime formal models such as those ex-
ploited in rule-based analysis and verification to guarantee the reliable re-configuration
of the system.

Autonomous Vehicle Service. Google driverless cars are now licensed in California,
Florida and Nevada.10 Google engineers and scientists achieved this amazing feat in a
short five years after DARPA formulated the Great and Urban Challenges on autonomic
cars.11

It is speculated that driverless cars could come from and go to parking lots, or deliver
packages. In a carpooling scenario, autonomous vehicles booked by users could serve
the user at a specific time and destination. Best routes will be planned intelligently based
on current context information such as traffic conditions and weather. Ordering, book-
ing, and payment will be performed via smartphone applications. Elderly people will
become mobile again, as they will be have greater access to services using an autonomic
vehicle.

Increasingly, cars are being equipped with intelligent driver assistance for anticipat-
ing potential hazards early and avoiding collisions. Intelligent, yet safe autonomous
driving software systems require effective methods to ensure their required qualities.
Even though the functions of these vehicles are perceived as “intelligent”, they typi-
cally rely on standard algorithms from sensor fusion, context management, and control
theory. In particular, these systems require special attention to context management in-
frastructures to guarantee the reliability of sensors and monitors. Autonomous vehicle
software use models at several levels, especially for understanding relevant context sit-
uations: models are required to represent entities that affect the behavior of the car,
to specify quality of sensors, and to model context uncertainty. Given the dynamic na-
ture of context information, these models must be available and manageable at runtime.
Another category of important models are those that specify typical vehicle behavior
used to understand unusual behavioral patterns.

Models for autonomous vehicle software are typically developed implicitly and coded
manually into the running system. In order to rigorously address the assured behavior
of these systems, these models need to be managed explicitly and rigorously throughout
the software life cycle, including at runtime.

Autonomous Agricultural Operations. Precision agriculture12 is an approach to re-
alize a comprehensive farming management concept. One of the main issues addressed

10 http://www.forbes.com/sites/ptc/2013/11/06/
why-google-and-others-see-a-future-with-driverless-cars/
print/

11 http://www.tartanracing.org/challenge.html
12 https://www.ispag.org

http://www.forbes.com/sites/ptc/2013/11/06/why-google-and-others-see-a-future-with-driverless-cars/print/
http://www.forbes.com/sites/ptc/2013/11/06/why-google-and-others-see-a-future-with-driverless-cars/print/
http://www.forbes.com/sites/ptc/2013/11/06/why-google-and-others-see-a-future-with-driverless-cars/print/
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by precision agriculture is the optimization of the productivity and efficiency when op-
erating on the field, by tailoring soil and crop management to match the conditions at
each location. This level of customization can be achieved through the use of differ-
ent information sources such as GPS, satellite imagery, and IT systems. More recently,
efforts have been underway to further improve productivity and efficiency by increas-
ing the amount of automation on the field to the point of autonomous operation. Ex-
amples are harvesting fleets comprising several harvesters but only one is operated by
a human, autonomous tractors that pick up the crop from the harvesters, and tractor
implement automation (TIA) where tractors are controlled by implements to execute
implement-specific tasks. These application scenarios have in common that different
vehicles or machines are combined on the field in order to fulfill (partially) autonomous
tasks. The assurance and certification of important properties, such as safety and secu-
rity are clearly critical in this context. Furthermore, traditional assurance techniques are
not applicable without significant modifications. A first step to this problem is to shift
parts of the assurance measures into runtime. This strategy can be achieved by means of
suitable M@RT and corresponding management facilities integrated into these systems.

Ambient Assisted Living. The number and capabilities of devices available at home
are growing steadily. Ambient Assisted Living (AAL) is intended to use these technolo-
gies to assist users with disabilities in their daily tasks, such as monitoring health con-
ditions and detecting emergency situations.13 Software applications in this domain are
not only critical, but also highly dynamic. On the one hand, human lives can be com-
promised. On the other hand, every home is different and can contain different devices
that could be leveraged by AAL services. New generations of devices are produced on
a regular basis requiring AAL services to evolve continuously to keep up to date with
new technical developments. Moreover, similar devices produced by different vendors
may differ considerably in their capabilities and interfaces. Nevertheless AAL systems
must be able to use these devices as soon as they become available at the user’s home
in an effective and safe manner.

In addition to variations in devices, users of AAL systems are subject to consider-
able variation. An AAL service must deal with an arbitrary number of people living
at the same home, their disabilities and capabilities, and their current environmental
conditions. Therefore, the system is required to adapt itself according to current users
and their environment. Moreover, these systems must be sufficiently flexible to support
future extensions, such as the integration of new sensors or actuators for new applica-
tions. Most importantly, these adaptations must be performed seamlessly and reliably
to guarantee user safety.

To deal with these complex dynamics, AAL software requires M@RT to reason about
users and their context in order to correctly and safely deliver services. Moreover, it is
important to maintain a causal connection between these models and both the target sys-
tems and adaptation mechanisms. Given the potential risks to human lives, assurance is
a major concern that must be guaranteed to prevent hazardous operation before, during,
and after adaptation [ZC06a, VMT+11b]. M@RT can be essential in the management

13 http://www.aal-europe.eu

http://www.aal-europe.eu
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of AAL software for capturing the environment, monitoring the user interaction, and
reasoning about possible adaptive behavior and their impact.

The Guardian Angels Project. In the context of AAL, the “Guardian Angels for
a Smarter Planet” project14 is a good example to illustrate the potential benefits from
using M@RT to address SAS assurance. The following details are based on information
from the Publications Office of the European Union15:

The overarching objective of the Guardian Angels Flagship Initiative is to provide in-
formation and communication technologies to assist people in all stages of life. Guardian
Angels are envisioned as personal assistants. They are intelligent (thinking), autonomous
systems (or even systems-of-systems) featuring sensing, computation, and communi-
cation, and delivering features and characteristics that go well beyond human capabil-
ities. It is intended that these systems will provide assistance from infancy through old
age. A key feature of these Guardian Angels will be their zero power requirements as
they will scavenge for energy. Example services include individual health support tools,
local monitoring of ambient conditions for dangers, and emotional applications. Scien-
tific challenges for supporting their research challenges include energy-efficient com-
puting and communication; low-power sensing, bio-inspired energy scavenging, and
zero-power human-machine interfaces.

These devices, by their very nature, will need to be adaptive in terms of functional
and non-functional properties. In addition, they will be used in critical situations that
require high levels of dependability and hence the highest levels of safety assurance.16

The development of M@RT can support runtime decision making and certification for
this important and innovative application area.

7 Conclusions

This chapter presented a research agenda for assurance at runtime with M@RT as a
foundation. It grew out of stimulating discussions among the participants of the 2011
Schloss Dagstuhl Seminar on Models@run.time. In particular, we report on the findings
of the breakout group Assurance@run.time as well as online discussions among the
authors over the past two years while writing this chapter.

In an instrumented, interconnected and intelligent world, self-adaptive software sys-
tems proliferate. A key goal is to provide assurance at runtime when such systems adapt
at runtime due to changes in their execution environment or their requirements. Tradi-
tionally software engineering, as opposed to control engineering, has concentrated on
design-time assurance. Thus, a key challenge for the software engineering community
is to develop runtime assurance techniques for self-adaptive systems that provide high
performance, high confidence, and reconfigurable operation in the presence of uncer-
tainties. One of the most promising avenues of research in this area is to use M@RT

14 http://www.ga-project.eu
15 Publications Office of the European Union: FET Flagship Pilots, Community Research

and Development Information Service (CORDIS), http://cordis.europa.eu/fp7/ict/programme/
fet/flagship/6pilots en.html, 2012.

16 http://www.ga-project.eu/science/software
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as a foundation for developing runtime assurance techniques. Of all the subfields of as-
surance, V&V has probably made the most progress in transitioning design time mod-
els and techniques to runtime. While not all design-time assurance tasks can be transi-
tioned to runtime, a significant opportunity exists to conduct assurance tasks at runtime,
thereby making the overall SAS more resilient, reliable, responsive, secure, and cost-
effective. One of the most formidable challenges for researchers in the field of runtime
software assurance is to investigate techniques that guarantee certifiable trust for highly-
adaptive systems.

This research agenda on runtime assurance techniques provides excellent starting
points for research communities dealing with SASs, including Models@runtime,
Run-time V&V, Requirements engineering@runtime, SEAMS, SASO (International
Conference on Self-Adaptive and Self-Organizing Systems), and ICAC (International
Conference on Autonomic Computing). Given the increasing use of SAS for
high-assurance application domains, such as intelligent vehicles, power grid manage-
ment, telecommunication infrastructure, financial systems, healthcare management
systems, etc., it is paramount that these communities and related communities work
together to address the assurance of SASs. M@RT is a key enabling technology to
accelerate progress in this area.
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