
SPECIAL ISSUE

Teaching UML and OCL Models and their Validation to Software

Engineering Students: An Experience Report

Loli Burgueñoa and Antonio Vallecilloa and Martin Gogollab

aUniversidad de Málaga, Spain; bUniversity of Bremen, Germany.

ARTICLE HISTORY

Compiled April 2, 2018

ABSTRACT
Models are expanding their use for many different purposes in the field of software
engineering and, due to their importance, universities have started incorporating
modeling courses into their programs. Being a relatively new discipline, teaching
modeling concepts brings in new challenges. Our contribution in this paper is three-
fold. First, we list and describe the main issues we have come across when teaching
modeling in a dedicated Software Engineering course. We then present a simple case
study that we have developed and successfully used in class, which permits students
specify a system and its views, simulate them, check their relations and perform
several kinds of analyses on the overall system specifications. For this, we use a
combination of UML and OCL. Finally, we report on the results of a survey we
conducted among the students of the last two years to evaluate our proposal, and
the lessons we have learned.

KEYWORDS
Computer science education; teaching modeling; UML; OCL; model views.

1. Introduction

Model-Driven Engineering (MDE) is a prominent area in the software engineering
field. Over the years, a new trend of approaches has emerged advocating languages,
standards, tools and well defined practices. These include UML (Booch, Rumbaugh,
& Jacobson, 2005) and OCL (OMG, 2000). MDE raises the level of abstraction in
software utilizing models that focus only on the features of interest alleviating the
complexity. These models are applied as a means of communication as well as for
code generation and checking the correctness of a solution. The application of MDE
increases the automation of software development and permits the detection of prob-
lems in early stages of the development cycle. MDE also permits the application of an
agile methodology as they both can be combined in what is called Agile Modeling.

Despite their growing relevance and increasing acceptance in industry to build soft-
ware at the right level of abstraction, with less effort and errors, models are not yet
properly appreciated by many software engineering students. In particular, based on
our experience, which is founded on in-class conversations, tutorship sessions, students’
questions and exam mistakes, we identified three main problems with our students
when teaching the use of models.

CONTACT Loli Burgueño. Email: loli@lcc.uma.es

First, students normally tend to see models as drawings, mostly used for commu-
nication among humans, and not as software artifacts that need to be processed by
computers. Hence they tend to be less precise and formal than when developing pro-
grams.

The second problem has to do with the use of model views. Any non-trivial system
specification needs to be decomposed in various models (views), each one focusing on
a particular set of concerns and described in a particular notation. For example, UML
defines a set of diagrams for modeling a system that permit describing its structure
(e.g., with class diagrams), the behavior of its individual objects (e.g., with state ma-
chines), the collective behavior of collections of objects (e.g., with communication and
sequence diagrams). However, when dealing with multi-viewpoint models, students
may be able to understand each one of these diagrams, but they have problems un-
derstanding how they are related, and how the overall system specifications actually
work when composed of a set of views.

Finally, tools are essential elements in any engineering discipline. Students from
these disciplines work better with hands-on experiences, because they need to be able
to build and to manipulate the corresponding software artifacts if they actually want
to comprehend the related concepts (Offutt, 2013; Vincenti, 1990). In this respect,
modeling tools directly influence the way they learn, develop and use models. However,
most modeling tools do not provide support for developing precise and correct models,
or tend to be used as mere diagrammatic instruments, at most with program (skeleton)
generation capabilities. The variety of existing tools and their different characteristics
does not help in this respect, either.

To address these issues, the authors of this paper designed a change in the way
modeling was taught in one of the subjects of the Software Engineering degree at the
University of Málaga. First, we emphasized the nature of models as software artifacts,
and treated them as such. The role of models as communication means among human
users was minimized, stressing their abilities to synthesize, analyze, prototype and
simulate systems. The fact that tools, and not humans, had to perform these tasks
over the models, implied a change in the students’ mindsets: like any other program
they develop, software models have to be correct and precise enough to be processed
by tools in order to conduct an analysis or run simulations.

Secondly, we developed an explanatory example of a system which permits students
to create several views of a system, simulate them, and understand their relationships.
We use a combination of UML and OCL and the possibilities that the OCL/USE
tool (Gogolla, Büttner, & Richters, 2007; Gogolla & Hilken, 2016) provides to simulate
and analyze the models, as proper software artifacts.

To tackle the tooling issue we ask the students to use three different modeling tools
during the course: MagicDraw,1 Papyrus2 and USE. In this way they are able to learn
the different capabilities of each tool and the possibilities each one offers for developing
correct models and work with them.

This paper describes the example that we have used, and reports on our experience
after implementing the changes in our modeling course. The survey we conducted on
the students after two consecutive years shows the progress made so far and suggests
some ideas for further improvements.

This work is an extended version of the paper we originally presented at the MOD-
ELS 2017 Educators Symposium (Burgueño, Vallecillo, & Gogolla, 2017), where we

1https://www.nomagic.com/products/magicdraw
2https://www.eclipse.org/papyrus/

2

described only the example. Here we also present the overall educational context, the
problems to address, the survey that tries to assess our proposal, and the results of
such evaluation and its conclusions.

The rest of the paper is structured as follows. After this introduction, Section 2
describes the students teaching environment and the modeling course. Then, Section 3
describes the example and shows some relevant and interesting properties provided
by USE. Section 4 presents the survey we conducted to evaluate the impact of our
changes, its results, as well as the lessons we have learned. Finally, Section 5 presents
our conclusions and outlines some lines of future work.

2. Teaching Environment

The University of Málaga offers a 4-year degree on Software Engineering. Its contents
are mostly based on the SWEBOK Guide (Bourque & Fairley, 2014), covering all
principal areas of Software Engineering. The first two years are dedicated to the com-
mon topics that any computer scientist or software engineer should learn, including a
general and introductory course on Software Engineering in the fourth semester that
provides a global view on the discipline, and teaches its basic concepts. UML models
are taught by the first time in that course. The last two years cover essential knowledge
areas such as Requirements, Software Testing, Maintenance, or Project Management.
The degree also includes a capstone project that students should individually develop
during the last year, in order to make them put in practice all knowledge acquired
during the degree.

One third-year course is “Software Modeling and Design”. It is a six ETCS credits
course, taught during the first semester (October-January). The main goal of this
course is to teach students the key software modeling concepts and mechanisms, the
construction and use of high-level models in software development, and the basis for
software design from the system’s high-level models (including, e.g., design patterns).

In the modeling part, traditionally this course covered the basic UML diagrams,
and used MagicDraw as the primary modeling tool. From the beginning, one distin-
guishing feature of this course is that it presented the modeling concepts and mecha-
nisms first, independently from any notation, and then it showed how to realize them
with UML—following the approach described in the book by Olivé (2007). Evaluation
was conducted by developing some basic models of a given system, in order to check
whether the students have properly understood the basic UML concepts. OCL was
briefly mentioned but not used for defining integrity constraints or model well-formed
rules, and the produced models were not checked for precision, correctness, or com-
pleteness. The focus was more on the communication aspects of the models, with some
basic notions at the end about code generation from models using any of available tools
for that (such as IBM Rational Rhapsody3). Issues such as model instantiability (i.e.,
satisfiability), prototyping, simulation or validation were not part of the course.

As mentioned in the introduction, one of the problems with this approach is that
it implicitly conveyed the message that software models did not need to be as pre-
cise as computer programs, and that ambiguity, imprecision and lack of formality
was perfectly permitted. In particular, the transformation from high-level models to
design models, ready to be implemented, still required a human-centered and non-
automatable process, and the high-level models were not really made for computer
processing. Besides, (UML) model views remained at the decorative level, i.e., they

3http://www-03.ibm.com/software/products/en/ratirhap

3

represented different views of a system, but their relationships were not made explicit
nor manipulable by tools. More precisely, views seemed independent and not closely
related, and issues such as change propagation and viewpoint synchronization were
not even addressed.

Two years ago we decided to implement some changes in this course, with the goal
of addressing the issues mentioned in the introduction of this paper.

The first year (2016/17) we introduced the use of three tools (MagicDraw, Pa-
pyrus and USE) and asked students to develop all models with the three of them.
The goal was to teach the students master multiple tools, each one with different
characteristics, and let them, at first hand, compare their features, functionality and
capabilities. MagicDraw and Papyrus are widely used tools in industry, and also for
teaching modeling (Agner & Lethbridge, 2017). The former is a commercial tool and
Papyrus is open-source and developed as an Eclipse project. USE is a free academic
modeling tool with full support of OCL, and also with some simulation and object
model generation facilities.

The second change was the use of a running example to illustrate some of the main
concepts and mechanisms taught in the course for teaching model views. This is the
example described in detail in Section 3.

Finally, we decided to put more emphasis on the correct and precise specification
of all models, so that they could be manipulated by tools. The use of OCL was en-
couraged, as an essential language to complement the UML diagrams if they have to
constitute correct and complete system specifications. The basic elements and features
of OCL were explained, and the OCL/USE facilities for validating models and for ex-
ecuting the specifications were introduced, to help students develop correct models
and test them. MagicDraw and Papyrus OCL validation facilities were also explained,
although students did not use them much (students considered them quite cumber-
some and not naturally integrated into these two modeling tools, contrarily to what
happened with USE).

Given that students responded very well to the use of OCL, and they fully under-
stood its need and advantages, the second year (2017/18) we explained the full OCL
language and made it compulsory for expressing the models integrity constraints and
the behavior of operations.

This first part of the course covers the main concepts and mechanisms of conceptual
modeling. The second part of the course is dedicated to design models, and we only
used one of the tools (MagicDraw). The focus of this second part is on how to transform
the high-level models of the system, which were expressed in the problem domain, into
design models that are expressed in the solution domain. We realized how the students
appreciated very much the fact that the conceptual models were correct and complete
in the first place, because it significantly simplifies the design task: it then mainly
becomes an application of a set of skeletons and design decisions, rules and patterns,
something that can be easily automated.

3. A UML and OCL Model for a Production Line System

The example we present here—originally defined in (Rivera, Guerra, de Lara, & Val-
lecillo, 2008)—is based on a production line of a plant that produces hammers. It is
modeled using a combination of UML and OCL. We show how these notations permit
modeling the system in a formal manner using different views, and allow performing
several interesting analyses on the system.

4

Class diagram

Head

Assembler

start()
assemble(hd : Head, hl : Handle) : Hammer

HandleGenerator
counter : Integer
start()
generate() : Handle

HeadGenerator
counter : Integer
start()
generate() : Head

Part

Tray
cap : Integer
put(p : Part)
get() : Part
size() : Integer

PlantElement

Polisher

start()
polish(hm : Hammer)

PartGenerator

Machine
processingTime : Integer
start()

Hammer
isPolished : Boolean

Handle

parts {ordered}*Contains tray1

output* MachineConsumption
input*

output1

MachineProduction
input1..*

Figure 1. Class diagram for the production line example.

The production line is composed of four types of machines: one that generates
hammer heads, another that generates handles, one that assembles heads and handles,
and finally one that polishes the hammers. There are also trays that are used to collect
the goods in production.

The plant operates as follows: each generating machine has an associated tray, in
which it places the heads or handles as soon as they are produced. From these trays,
the pieces are taken by an assembler machine, which puts together one head and one
handle to produce a hammer, which is placed in a different tray. From this tray, the
polisher takes hammers, works on them and leaves them in a different tray.

3.1. Structural Elements

Figure 1 shows a UML class diagram with the structural elements of the system. We
can see how each Tray has a capacity (cap) and each Machine keeps record of the time
that its job takes (processingTime). Futhermore, the head and handle generators
(HeadGenerator and HandleGenerator) keep a counter of the number of elements
that have produced (counter). In order to perform the actions of placing or removing
pieces from the trays, class Tray provides get() and put() operations.

3.2. Behavioral Elements

3.2.1. Pre- and post-conditions

The behavior of the system can be expressed in UML and OCL by different means. One
of the most common ways is by adding the specification of pre- and post-conditions
to the operations, defining their behavior. This is shown below for get() and put()

operations of class Tray.

put (p : Part)
pre notFull : self . parts−>size () < cap

post ElementAdded : self . parts = self . parts@pre−>append (p)

get () : Part
pre notEmpty : self . parts−>size ()>0
post FirstElemRemoved : result = self . parts@pre−>at (1) and

self . parts@pre = self . parts−>prepend (result)

5

Figure 2. State Machine for Tray objects.

3.2.2. State machines

UML permits specifying the behavior of individual objects by means of State Machines
that determine how their internal state changes as a result of the invocation of their
provided operations.

One of the advantages of USE/OCL is that it permits formally specifying state
machines for individual objects, and then automatically deriving the corresponding
UML diagram from them. For example, the following listing shows the specification of
the state machine of a Tray. The corresponding UML diagram is shown in Figure 2.

psm PutGet

states

init : initial

Empty [self . parts−>size () =0]
Normal [0<self . parts−>size () and self . parts−>size ()<self . cap]
Full [self . parts−>size ()=self . cap]

transitions

init −> Empty { create }
Empty −> Normal { [self . cap>1] put () }
Normal −> Normal { [self . parts−>size ()<cap−1] put () }
Normal −> Full { [self . cap>1 and self . parts−>size ()=cap−1] put () }
Empty −> Full { [self . cap=1] put () }
Full −> Empty { [self . cap=1] get () }
Full −> Normal { [self . cap>1] get () }
Normal −> Normal { [self . cap>1 and self . parts−>size () >1] get () }
Normal −> Empty { [self . parts−>size () =1] get () }

end

3.2.3. Behavior of operations

USE/OCL provides some interesting features on top of the standard UML and OCL
capabilities. We decided to make use of some of them, particularly those that permit
prototyping the models and executing them. We discovered that students appreciate
very much the possibility of running their models, simulating their behavior. On the
one hand, this helps them understand their specifications much better. On the other
hand, this forces them to be more rigorous and precise, because they have to provide
enough information for the models to the complete, and also correct if their behavior
should be as expected. One important issue is that this information is provided at the
same level of abstraction than the models.

6

Thus, in addition to the pre- and post-conditions, USE also permits to
specify the behavior of operations using a simple executable language called
SOIL (Büttner & Gogolla, 2014). For instance, the behavior of Assembler::start()
and Assembler::assemble() operations can be specified as follows.

start ()
begin

declare hd : Part , hl : Part , hm : Hammer ;
hd :=self . input−>select (t | t . parts−>size>0 and

t . parts−>forAll (oclIsTypeOf (Head))) −> single () . get () ;
hl :=self . input−>select (t | t . parts−>size>0 and

t . parts−>forAll (oclIsTypeOf (Handle))) −> single () . get () ;
hm :=self . assemble (hd . oclAsType (Head) , hl . oclAsType (Handle)) ;
self . output . put (hm) ;

end

assemble (hd : Head , hl : Handle) : Hammer
begin

destroy hd , hl ;
result :=new Hammer ;
result . isPolished :=false ;

end

3.2.4. Executing the specifications

Once we have the behavior of the operations, in USE/OCL we can also execute the
system by providing a sequence of SOIL commands that create the initial objects of
the system, their links, and invokes the operations. For example, we can show the
students how to simulate the system by creating an initial model of the system and
invoking the start() operation on the four machines.

-- Machines

! new HandleGenerator (’hag’)
! new HeadGenerator (’heg’)
! new Assembler (’asm’)
! new Polisher (’pol’)
-- Trays

! new Tray (’Handle2Assem ’)
! Handle2Assem . cap :=4;
! new Tray (’Head2Assem ’)
! Head2Assem . cap :=4;
! new Tray (’Assem2Polish ’)
! Assem2Polish . cap :=4;
! new Tray (’Polish2Out ’)
! Polish2Out . cap :=4;
-- Production Line Connections

! insert (hag , Handle2Assem) into MachineProduction

! insert (heg , Head2Assem) into MachineProduction

! insert (Handle2Assem , asm) into MachineConsumption

! insert (Head2Assem , asm) into MachineConsumption

! insert (asm , Assem2Polish) into MachineProduction

! insert (Assem2Polish , pol) into MachineConsumption

! insert (pol , Polish2Out) into MachineProduction

-- Process

! heg . start ()
! hag . start ()
! asm . start ()
! pol . start ()

Figure 3 pictorially shows a filmstrip of the behavior of the system as a sequence
of snapshots after every operation execution. Aggregation associations are used to
visualize ‘ownership’ between objects (e.g. a part is placed on a tray). We have also

7

Figure 3. Object diagram sequence displaying the behavior of the system.

developed a video with the complete filmstrip.4

Note that both MagicDraw and Papyrus tools have some extensions and modules
to check user-defined integrity constraints and to simulate the models. In our course
we decided to employ only USE/OCL because the plugins and modules of the other
two tools were either not free (MagicDraw) or required more complex installation
and operation procedures (Papyrus). The easy and free access to these features in
USE/OCL made us decide to teach them just with this tool.

3.2.5. Object interactions

So far we have focused on the structural view of the system and the behavior of
individual objects. UML also permits representing the interactions between objects by
means of Sequence and Communication diagrams. Figures 4 and 5 show the sequence
and communication diagrams for the production plant system.

With MagicDraw and Papyrus, these diagrams are independently produced, and
their relationship with the conceptual model described in the class diagram is based
on the types of the elements used, and the operations invoked by the objects—which
should be explicitly specified in the class diagram. Given the fact that enforcing these

4http://atenea.lcc.uma.es/Descargas/EduSymp17/3Hammers.mp4?dl=0

8

Figure 4. Sequence diagram.

Figure 5. Communication diagram.

9

relationships is not compulsory,5 many students (and also modelers, in general) tend
to use elements in the sequence and communication diagrams which do not match
the ones in the class diagrams. However, this is not desirable in a teaching context
like ours, where we want all elements in all diagrams to be typed, and related to the
structural model that defines all valid entity and relationships types.

With USE/OCL, we are able to automatically derive the interaction diagrams of
a system from the simulation of the system’s behavior described above, in terms of
sequences of operations invocations. For example, the UML sequence diagram shown
in Fig. 4 is automatically constructed by USE/OCL.

The behavior can also be displayed as a communication diagram as in Fig. 5. Inter-
estingly, for every step we can represent the current states of all the state machines
of the Tray objects—not shown here for space reasons, although they are similar to
the one depicted in Fig. 2 but with the current state highlighted; the interested reader
can see the presentation6 we have developed to show the state changes. Also, all the
code developed for this case study is available.7

The relationships between the views can also be explored with this approach. One
of the most interesting examples happens when one of the views is changed, and the
effects of this change on the rest of the views. For example, when an invariant is added
or a class is changed or removed; when an element changes its name; or when a guard
for a state change is altered. Every kind of change in a model has a different impact
on the validity of another model, and therefore it requires the other model view to
be updated. Students can learn from the effects of each change, and understand how
views are related.

In this way, students perceive these views as projections of an underlying model,
and not as independent and possibly unrelated views. Using USE/OCL, if they want
to create a sequence or interaction diagram, they have to describe the precise behavior
of the system and then they can represent their executions using these diagrammatic
views. Although this provides a first and basic view on views, it is important they
understand them as projections first, before they can later learn other viewpoint-
based modeling systems in which views are not projections but independent models
related by correspondences (Romero, Jaen, & Vallecillo, 2009), for instance.

3.3. Further analysis

Once we have the specifications, there are different kinds of analyses that we can
perform on the system that show some of the potential advantages of developing
model-driven system descriptions with UML and OCL. In particular: visualization of
complex structures and processes; execution and simulation of scenarios (operation call
sequences); checking structural properties of the system within states by OCL queries
(e.g. calculating the number of finally produced parts); checking behavioral properties
(e.g., testing the executability of an operation by testing its preconditions); check-
ing for weakening or strengthening model properties (invariants, contracts, guards)
by executing a scenario with modified constraints; proving general properties within
the finite search space with the USE model validator, such as structural consistency
(i.e., all classes are instantiable); behavioral consistency (i.e., all operations can be
executed); deadlocks (e.g., construction of deadlock scenarios due to inadequate buffer
capacities), etc.

5There are reasons in UML for this, but we will not discuss them here.
6http://atenea.lcc.uma.es/Descargas/EduSymp17/snapshots-buffer.pdf?dl=0
7http://atenea.lcc.uma.es/Descargas/EduSymp17/sources.zip?dl=0

10

Figure 6. Generated test case for Producer-Consumer-Tray configuration.

Finally, we want to highlight the importance of running structural tests on the
metamodels. One of them concerns their instantiability and their ability to faithfully
represent the application domain. For example, we decided to ask the USE model
validator (Gogolla & Hilken, 2016) to generate a plant configuration using the sys-
tem metamodel. The resulting object diagram is shown in Fig. 6. Interestingly, the
produced system is wrong. The polisher is not connected to any tray that provides
it with hammers. This motivates the need to develop additional, currently missing
invariants (on the structural system level) and demonstrates the potential usefulness
of this approach for validating these kinds of properties which are normally overlooked
for being considered obvious.

Many students appreciate very much the possibility of generating objects from the
models—i.e., instantiating the models. This allows them to check whether their models
are satisfiable or not, and whether the generated object models are correct. Due to
time limitations (the conceptual modeling part of the course runs for 8 weeks only,
before we start with the design part) we just mention briefly the features of the USE
model validator and give some examples. Expanding this part in future editions of the
course is something we are currently considering.

4. Evaluation and Lessons Learned

4.1. Evaluation

After the first two years, we decided to evaluate our approach and the impact on the
learning process. For that we developed a survey, and we asked the students who were
enrolled in this subject in the academic years 2016/17 and 2017/18 to voluntarily
participate in the study.

In the survey,8 which is available in English and Spanish, the students were asked
to rank the importance of different modeling aspects according to their own opinion.
We divided the survey in two main groups: “Concepts and techniques” and “Tools”.
Concepts and techniques were divided into five different subcategories: Structure, Be-

8https://encuestas.uma.es/93737/lang-en

11

Q: In your view, how important for modeling is/are...

STRUCTURE
Q1 Object properties (e.g., by means of attributes, references) 4.14
Q2 Object relationships (ordinary, whole-part) 4.72
Q3 Factoring out properties (i.e., building abstractions/generalizations) 4.21
Q4 Specifying complex structural restrictions (i.e., integrity constraints) 4.26

BEHAVIOR
Q5 Actions and processes 4.26
Q6 Factoring out actions (i.e., building abstractions/generalizations) 3.99
Q7 Life cycles (e.g., state machines) 3.92
Q8 Specifying complex behavioral restrictions 3.96

Q9
Process and Action Realizations (i.e., procedural specification of their

3.82
behavior, in addition to their declarative specification)

DEVELOPMENT
Q10 Building test cases/scenarios 4.17
Q11 Obtaining feedback on test cases 4.13

Q12
Verifying/validating emergent/derived model properties by test cases

4.23
and/or proof techniques

Q13 Textual notation (in addition to graphical) 3.35

MODEL PROPERTIES: A good model should be...
Q14 Abstract 3.60
Q15 Structured/Correctly organized 4.71
Q16 Understandable 4.75
Q17 Traceable (to/from requirements) 4.34
Q18 Reusable 4.25
Q19 Executable 4.06
Q20 Verifiable (w.r.t., e.g., correctness, instantiability, consistency) 4.50

MODEL VIEWS
Q21 Structuring a Model into Views 3.90
Q22 Explicit relationships between the views 3.85
Q23 Defining derived views (e.g., from scenarios) 3.54

Table 1. Questions about ‘Modeling Concepts and Techniques’.

havior, Development, Model properties, and Model views. These subcategories and the
questions for each of them are presented in the second column of Table 1 (Q1-Q23). To
answer them, the student could choose among the following options: Not important at
all (with a weight of 1), Low importance (weighed 2), Moderate importance (weighed
3), Slightly important (weighed 4), Very important (weighed 5), or No opinion.

In the second part of the survey, for each of the tools (MagicDraw, Papyrus and
USE), we asked the questions shown in the second column of Table 2 (Q24-Q31). For
each of them, participants had to rate the support that the tools offer in their opinion
by selecting one of the following possible answers: Bad/No support (with a weight
of 1), Improvable support (weighed 2), Average support (weighed 3), Good support
(weighed 4), Excellent support (weighed 5), and No opinion.

A total number of 65 students took part in the survey, 21 of them were enrolled
in the modeling course in the academic year 2016/17, and 44 in the academic year
2017/18. Their average ages were 22.41 and 21.57 years, respectively.

12

Q: How well do the tools Papyrus, MagicDraw and USE support...

TOOLS MDraw Papyrus USE

Q24
Precision (being able to represent the system

4.33 2.47 3.93and their elements with the required level of
details)

Q25 Support for test case development 3.39 1.82 3.47
Q26 Execution/Simulation 2.74 1.91 4.03

Q27
Validation/Verification (being able to check

2.69 1.84 4.21and infer properties/characteristics about
the system being modeled)

Q28 Viewpoint consistency 3.71 2.09 3.67

Q29
Realization (at the model-level—i.e., execution

3.45 1.93 3.56
without generating code)

Q30
Code generation (for programming

3.19 1.73 2.68
platforms/languages)

Q31 Usability (i.e. ease of use) 4.31 1.96 2.88
Average 3.48 1.97 3.56

Table 2. Questions about ‘Tools’.

The third column of Table 1 presents the average of the answers given by students
for questions Q1-Q23, while Figure 7 shows graphically the average of the answers
taking both groups of students separately. We can highlight that there is no value
below 3.0 (moderate importance), and that the feature they consider more important
is that models are understandable (Q16), while the least important for them is the fact
that they count with textual notation in addition to the graphical notation (Q13). In
addition to the averages shown in Table 1 and Figure 7, for each question we calculated
the standard deviation and the percentage of ‘No opinion’ answers. For year 2017/18,
the average of the standard deviations is 0.84 and the percentage of ‘No opinion’ is
0.02; for year 2016/17 these are 0.92 and 0.04, respectively.

We can see that the trends for the two years in Figure 7 are basically the same. The
only noticeable difference is the importance given to state machines (Q7). Year 2016/17

Figure 7. Modeling concepts

13

(a) MagicDraw (b) USE

(c) Papyrus (d) All together

Figure 8. Modeling tools

students give more importance to them. This is probably because these students have
gone through more subjects, and some of them (e.g., Testing) make heavy use of state
machines. Year 2017/18 students are not fully aware of the importance of these kinds
of models yet.

The third, fourth and fifth columns of Table 2 present the average rate given by
the students for each tool for questions Q24-Q31. The last row is the average of all
the other values. We observe that their best rated tool is USE closely followed by
MagicDraw. Figure 8 presents, for each tool and each question, the average of the
answers distinguishing between the two groups of students.

Table 3 presents more details for the tools questions. For each course and each tool,
the average rate, the standard deviation and the percentage of ‘No opinion’ answers
are shown. The standard deviation is around 1 point in all cases, while the percentage
of ‘No opinion’ is significantly higher when compared with questions Q1-Q23.

Regarding the average rates, we can conclude that, while Papyrus is always the least
liked tool, USE is the favorite for students enrolled in year 2017/2018, and MagicDraw
for students enrolled in 2016/2017. We believe this issue is due to the fact that in the
second year the specification of the models’ constraints had to be done in OCL, while
being optional the first year. Note that this decision had a beneficial effect not only
in USE (which scored above 4, almost 1 more point than the previous year) but also
for MagicDraw, which increased its score too. In general, all students learned the

14

Course 2016/2017 Course 2017/2018
MagicDraw Papyrus USE MagicDraw Papyrus USE

Average 3.39 2.23 3.07 3.56 1.71 4.04
Standard Deviation 0.93 0.97 1.08 1.02 0.95 0.95
% of ‘No opinion’ 0.14 0.61 0.41 0.27 0.31 0.13

Table 3. Summary of tooling support.

importance of being formal when specifying models, and its benefits.
In informal conversations with the students, they admitted that they liked very

much being sure that their models were correct, as well as the possibility of being able
to check the invariants, simulate the models, and even generate object models. This
was very rewarding for them, similar to the feeling they have when they developed
computer programs, executed them, and tested them until proven correct. Once they
knew how to check their models, they wanted to have the same confidence they had
about their programs. After they learned USE/OCL, most students drew their models
first with USE and, once they felt confident about their correctness, drew them with
MagicDraw and with Papyrus (in this order).

4.2. Lessons learned

Our experience of teaching modeling concepts with UML and OCL has been very
positive. At the beginning the students feel uneasy with OCL because they are used
to build UML models that are always right—as Bertran Meyer (1997) once said,
“Bubbles and arrows never crash.” But they progressively discover the advantages
of being able to check that the models they are building are correct. This is similar to
what happens when you are used to untyped programming languages and you use for
the first time a strongly typed language; then you benefit from the compiler and an
execution platform.

Furthermore, by using a tool such as USE that permits building the views auto-
matically, they discover the meaning of model views, the relationships between them,
and how changes in the model manifest in the views.

Another interesting benefit of our approach is that we can follow an incremental
development process for building the models. Starting from a simple class diagram
we can incrementally add classes, associations, attributes, operations, invariants, con-
tracts, SOIL operation implementations and protocol state machines. Another feature
that students like very much is creating object models. They then discover that models
are more than pictures, but assertions on the objects that conform a system (and their
relationships). They enjoy developing growing sets of scenarios, defined by means of
SOIL command sequences that build sequences of system states (object diagrams),
and then the corresponding sequence and communication diagrams that graphically
describe the interactions.

This incremental development process supports direct feedback and model improve-
ments. They discover that modeling is similar to programming, in the sense that you
write a program (formalize an artifact and develop assumptions about its properties)
and execute it to check whether its behavior is as you expected (make experiments to
check the assumptions).

Students can check resulting system state sequences of the scenarios they develop by
‘looking at’ the object, sequence or communication diagrams. This gives them direct

15

feedback, and they can compare the results with their expectations.
Regarding validation, students can check their models using various functionalities

available in USE: the diagrams, the evaluation browser, the class extent, the single
object window, the class invariants window, etc. And they also learn that views are
not completely independent. On the contrary, they are all projections of an underlying
model.

The results of the survey show that in general the students appreciate the impor-
tance of the different modeling concepts and techniques.

Another important decision is the use of multiple tools, each one with different
characteristics. Students realize about this diversity, and get prepared to work with
any of them. Special mention deserves the use of a formal tool that permits them
checking the correctness of their models. Even when later given a less formal tool, they
have learned the importance of being precise, and try to be as formal as possible.

5. Conclusions

In this paper we have discussed some of the issues we have faced when teaching mod-
eling to Software Engineers, and presented a case study modeled with UML and
OCL/USE that has been successfully used to teach modeling in class. It does not
only focus on the different views of the system but also on the relationships the dif-
ferent models have among them. Furthermore, we disclose several of the advantages
of modeling with multiple UML/OCL tools, and specially with USE.

We look forward to other interested modeling educators to use our example. We
decided to publish this illustrative example and make it available to the modeling
community in case our experience can be used to improve the modeling experience
in other institutions. The replication of our survey in other centers could also help
comparing teaching approaches.

We are currently working on preparing more teaching material on how to generate
objects models from the models, and make it part of the basic contents of the course.
This part is optional now, but we have seen how the students become really inter-
ested in it. This would require some more in-depth explanations and further exercises,
and an introduction to the complex problem of generating objects from models us-
ing constraint solving techniques. However, the use of the USE model validator, and
the application of classifying terms (Gogolla, Vallecillo, Burgueño, & Hilken, 2015)
can provide interesting benefits and greatly simplify both the use and the learning
processes of these techniques.

Acknowledgments. This work was partially supported by the Spanish Government
under Grant TIN2014-52034-R. We would like to thank the reviewers of this paper for
their valuable comments and suggestions.

References

Agner, L. T. W., & Lethbridge, T. C. (2017). A Survey of Tool Use in Modeling Education.
In Proc. of MODELS’17 (pp. 303–311). IEEE Computer Society.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified modeling language user guide (2nd
edition). Addison-Wesley Professional.

16

Bourque, P., & Fairley, R. E. (Eds.). (2014). Guide to the Software Engineering Body of
Knowledge (SWEBOK Guide), version 3.0 [Computer software manual].

Burgueño, L., Vallecillo, A., & Gogolla, M. (2017). Teaching model views with UML and
OCL. In Proc. of models 2017 satellite events (pp. 529–534). CEUR Proceedings.

Büttner, F., & Gogolla, M. (2014). On OCL-based imperative languages. Sci. Comput.
Program., 92 , 162–178.

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A UML-based specification environment
for validating UML and OCL. Sci. Comp. Prog., 69 , 27–34.

Gogolla, M., & Hilken, F. (2016). Model Validation and Verification Options in a Con-
temporary UML and OCL Analysis Tool. In A. Oberweis & R. Reussner (Eds.), Proc.
Modellierung (MODELLIERUNG’2016) (p. 203-218). GI, LNI 254.

Gogolla, M., Vallecillo, A., Burgueño, L., & Hilken, F. (2015). Employing classifying terms for
testing model transformations. In Proc. of MODELS’15 (pp. 312–321). IEEE Computer
Society.

Meyer, B. (1997). UML: The positive spin. American Programmer , 10 (3), 37–41.
Retrieved from https://archive.eiffel.com/doc/manuals/technology/bmarticles/

uml/page.html

Offutt, J. (2013). Putting the Engineering into Software Engineering Education. IEEE
Software, 30 (1), 94–96.

Olivé, A. (2007). Conceptual modeling of information systems. Springer.
OMG. (2000). Object constraint language specification, chapter 7 (No. OMG ptc/08-06-08).
Rivera, J. E., Guerra, E., de Lara, J., & Vallecillo, A. (2008). Analyzing Rule-Based Behavioral

Semantics of Visual Modeling Languages with Maude. In Proc. of SLE’08 (Vol. 5452, pp.
54–73). Springer.

Romero, J. R., Jaen, J. I., & Vallecillo, A. (2009). Realizing correspondences in multi-viewpoint
specifications. In Proc. of EDOC’09 (pp. 163–172). IEEE Computer Society.

Vincenti, W. (1990). What engineers know and how they know it. The Johns Hopkins Uni-
versity Press.

17

