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Abstract. Testing the correctness of the specification of a model trans-
formation can be as hard as testing the model transformation itself.
Besides, this test has to wait until at least one implementation is avail-
able. In this paper we explore the use of tracts and classifying terms
to test the correctness of a model transformation specification (a trans-
formation model) on its own, independently from any implementation.
We have validated the approach using two experiments and report on
the problems and achievements found concerning conceptual and tooling
aspects.

1 Introduction

In general, the specification of a model transformation (as of any program) can
become as complex as the program itself and thus can contain errors. Normally
specifications and implementations work hand-by-hand, since they both can be
considered as two complementary descriptions of the intended behavior of the
system, at different levels of abstraction. Checking that the implementation con-
forms to the specification is one possible test for correctness of both artefacts,
since they are normally developed by different people, at different times, and us-
ing different languages and approaches (e.g., declarative vs imperative). However,
this process needs to wait until both the specification and the implementation
are available.

Unlike other approaches, such as [2], where specifications and implementa-
tions of model transformations (MT) are tested for correctness against each
other, in this paper we explore the possibility of testing the correctness of the
specification of a MT on its own, independently from any possible implementa-
tion. For this we use a particular contract-based approach for MT specification
[9], whereby a transformation specification is modularly given by a set of tracts,
each one focusing on a particular use case of the transformation. Every tract is
defined in terms of particular input and output models (those relevant to the
use case) and how they should be related by the transformation. Developers are
then expected to identify the transformation scenarios of interest (each one de-
fined by one tract) and check whether the transformation behaves as expected
in these scenarios.

To check the correctness of a MT specification (w.r.t. the intent of the speci-
fier) the idea is to automatically simulate the behavior of any MT that conforms



Fig. 1. BiBTeX2DocBook source and target metamodels.

to that specification, and make sure that behavior is possible (satisfiability), uni-
vocally defined (functionality) and behaves as expected (given kinds of source
models are transformed into the expected kinds of target models). For this we
combine the use of tracts (which provide modular pieces of specification of a
model transformation) and classifying terms (CT) [14] (which permit generating
relevant sample models for a tract) with the completion capabilities of the USE
model validator [8]. In a nutshell, the idea is to test that a tract specification of
a MT is correct by generating a set of source models, use the model validator
to automatically generate target models that fulfill the source-target and target
constraints of the tract, and study the properties of these automatically gen-
erated models. For example, the fact that no target models can be generated
means that the Tract specification is not satisfiable. If more than one target
model can be obtained for the same source model, it means that the trans-
formation is not uniquely defined. Furthermore, we can use CTs in the target
domain to check that the source models are transformed according to the speci-
fiers expectations—or that certain kinds of target models can never be generated
by the transformation.

The structure of this paper is as follows. Section 2 presents the background
work on which our proposal is based: tracts, CTs and the USE model validator
completion capabilities. Section 3 introduces our proposal, showing how trans-
formation models can be tested. Then, Sections 4 and 5 describe two validation
exercises we have conducted to estimate its benefits and limitations. Section 6
compares our work to similar related proposals. Finally, Section 7 concludes the
paper and outlines some future work.

2 Preliminaries

2.1 A Running Example

In order to illustrate our proposal, let us consider a simple model transfor-
mation, BiBTex2DocBook, that converts the information about proceedings of
conferences (in BibTeX format) into the corresponding information encoded in
DocBook format. This example was originally presented and discussed in [14].
The source and target metamodels that we use for the transformation are shown
in Fig. 1. Associated to any metamodel there are always some constraints that



define the well-formed rules for their models. The constraints for the source and
target metamodels of the example are shown below.

-- SOURCE MM ( BIBTEX ) CONSTRAINTS
context Person inv uniqueName : Person . allInstances−>isUnique ( name )
context Proc inv uniqueTitle : Proc . allInstances−>isUnique ( title )
context Proc inv withinProcUniqueTitle :

InProc . allInstances−>select ( pap | pap . booktitle=title )−>
forAll ( p1 , p2 | p1<>p2 implies p1 . title<>p2 . title )

context InProc inv titleDifferentFromPrcTitle :
Proc . allInstances−>forAll ( p | p . title<>title )

-- TARGET MM ( DOCBOOK ) CONSTRAINTS
context PersonD inv hasToBeAuthorOrEditor :

self . article−>size ( ) + self . bookE−>size ( ) > 0
context PersonD inv uniqueName :

PersonD . allInstances ( )−>isUnique ( name )
context Book inv uniqueTitle :

Book . allInstances−>isUnique ( title )
context Book inv withinBookUniqueTitle :

self . article−>forAll ( c1 , c2 | c1 <> c2 implies c1 . title <> c2 . title )
context Book inv hasAuthorXorIsProc :

self . author−>isEmpty ( ) xor self . editor−>isEmpty ( )
context Book inv normalBookSectionsWrittenByAuthors :

self . author−>notEmpty ( ) implies
self . article−>forAll ( c | c . author = self . author )

2.2 Tracts

Tracts were introduced in [9] as a specification and black-box testing mechanism
for model transformations. Tracts provide modular pieces of specification, each
one focusing on a particular transformation scenario. Thus each model transfor-
mation can be specified by means of a set of tracts, each one covering a specific
use case—which is defined in terms of particular input and output models and
how they should be related by the transformation. In this way, tracts permit par-
titioning the full input space of the transformation into smaller, more focused
behavioral units, and to define specific tests for them. Commonly, what develop-
ers are expected to do with tracts is to identify the scenarios of interest (each one
defined by one tract) and check whether the transformation behaves as expected
in these scenarios.

Tracts are specified in OCL and define the constraints on the source and
target metamodels that determine the scenario of the tract, and the source-
target constraints that provide the specification of the model transformation,
which in our case constitutes the Transformation Model (TM).

Tracts constraints for the example. For the source, we will focus on
BibTeX files in which all Proceedings have at least one paper, and in which all
persons are either editors or authors of an entry.

context Person inv isAuthorOrEditor :
inProc−>size ( ) + proc−>size ( ) > 0

context Proc inv hasAtLeastOnePaper :
InProc . allInstances−>exists ( pap | pap . booktitle=title )

Similarly, for the target constraints we concentrate on books with at least
one article, and also require that all persons participate in an entry.

context Book inv AtLeastOneArticle :
self . article−>size ( ) > 0



context PersonD inv hasToBeAuthorOrEditor :
self . bookE−>size ( ) + self . bookA−>size ( ) + self . article−>size ( ) > 0

Finally, the Tract source-target constraints constitute the core of the TM, and
specify the relationship between the two metamodels (note that these constraints
are normally direction-neutral). They make use of a class Tract that is added
to the metamodel to store all attributes and relations of the tract itself.

context Tract inv Proc2Book :
self . file . entry−>selectByType ( Proc )−>size ( ) =

self . docBook . book−>size ( ) and
self . file . entry−>selectByType ( Proc )−>forAll ( proc |

self . docBook . book−>one ( book |
proc . title = book . title and

proc . editor−>size ( ) = book . editor−>size ( ) and
proc . editor−>forAll ( editorP | book . editor−>

one ( editorB | editorP . name = editorB . name ) ) ) )
context Tract inv InProc2Article :

self . file . entry−>selectByType ( InProc )−>size ( ) =
self . docBook . book . article−>size ( ) and

self . file . entry−>selectByType ( InProc )−>forAll ( inproc |
self . docBook . book−>one ( b | b . title = inproc . booktitle and

b . article−>one ( art | art . title = inproc . title and
inproc . author−>size ( ) = art . author−>size ( ) and
inproc . author−>forAll ( authP | art . author−>

one ( authA | authP . name = authA . name ) ) ) ) )
context t : Tract inv sameSizes :

t . file−>size ( ) = t . docBook−>size ( ) and
t . file−>forAll ( f | t . docBook−>exists ( db |

f . entry−>selectByType ( Proc )−>size ( ) = db . book−>size ( ) ) )

2.3 Classifying terms

Usual approaches to generate object models from a metamodel explore the state
space looking for different solutions. The problem is that many of these solu-
tions are in fact very similar, only incorporating small changes in the values of
attributes and hence “equivalent” from a conceptual or structural point of view.

Classifying terms (CT) [14] constitute a technique for developing test cases
for UML and OCL models. CTs are arbitrary OCL expressions on a class model
that calculate a characteristic value for each object model. The expressions can
either be boolean, allowing to define up to two equivalence classes, or numerical,
where each resulting number defines one equivalence class. Each equivalence class
is then defined by the set of object models with identical characteristic values
and with one canonical representative object model. Hence, the resulting set of
object models is composed from one object model per class, and therefore they
represent significantly different test cases, and partition of the full input space.

For example, the following three CTs can be defined for the source metamodel
of the BiBTeX2DocBook transformation:

[ yearE_EQ_yearP ]
Proc . allInstances−>forAll ( yearE=yearP )

[ noManusManumLavat ]
not PersonB . allInstances−>exists ( p1 , p2 | p1<>p2 and

p1 . proc−>exists ( prc1 | p2 . proc−>exists ( prc2 | prc1<>prc2 and
InProc . allInstances−>select ( booktitle=prc1 . title )−>exists ( pap2 |

pap2 . author−>includes ( p2 ) and
InProc . allInstances−>select ( booktitle=prc2 . title )−>

exists ( pap1 | pap1 . author−>includes ( p1 ) ) ) ) ) )



[ noSelfEditedPaper ]
not Proc . allInstances−>exists ( prc | InProc . allInstances−>
exists ( pap | pap . booktitle=prc . title and

prc . editor−>intersection ( pap . author )−>notEmpty ) )

Each of the three CTs may be true or false. Together, there are thus eight
(=23) equivalence classes. Each class contains those models that satisfy or not
one of these properties: TTT, TTF, TFT, TFF, FTT, etc. (T if that CT evaluates
to true and F if it evaluates to false). The model validator will simply return
one representative of each class.

Note that we have defined some CTs for the source metamodel because we
are initially interested in generating source models for the transformation. But
we could have equally defined some CTs for the target metamodel in case we
also want to partition the target model space. This is very useful for two main
purposes. First, if we want to check that the transformation maps a certain
source equivalence class of models into a given target class. And second, if we
are interested in exploring some properties of the transformation or even consider
the transformation in a bidirectional manner. For more details about CTs and
their usages, see [14].

Also note that CTs do not always pretend to generate models that are rep-
resentative of the complete metamodel, they might be used to generate models
that contain interesting features w.r.t. concrete scenarios of the transformation
model.

2.4 The USE model validator

Object models are automatically generated from a set of CTs by the USE model
validator, which scrolls through all valid object models and selects one repre-
sentative for each equivalence class. For this, as described in [14], each CT is
assigned an integer value, and the values of the CTs are stored for each solution.
Using the CTs and these values, constraints are created and given to a Kod-
kod solver along with the class model during the validation process. The solver
prunes all object models that belong to equivalence classes for which there is
already a representative element.

The validator has to be given a so-called configuration that determines how
the classes, associations, datatypes and attributes are populated. In particular,
for every class a mandatory upper bound for the number of objects must be
stated. Both the USE tool and the model validator plugin are available for
download from http://sourceforge.net/projects/useocl/.

3 A Frame for Testing Transformation Models

One central idea in this contribution is to combine CTs with a technique that
completes a partially specified and generated object diagram. The completion
technique can be applied to the source of a transformation model in order to
obtain a target. Similarly, the completion technique can be applied to the target
to obtain a source. Fig. 2 show an activity diagram with the process that needs
to be followed to test the specifications in any of the directions.

http://sourceforge.net/projects/useocl/


Fig. 2. Process to test the specifications.

We start building a transformation model which is constituted by a source
and a target metamodel as well as the actual transformation model in the form
of source-target constraints.

First, let us consider the direction from the source to the target. We build a
collection of source test object models determined by some source CTs. Then we
compute target completions for each source object model som, which is mapped
to a collection {tom1, ..., tomn} of target object models. If n = 0 holds, this
means that the source model som cannot be completed. It reveals that either
the transformation model or the source CTs and with that the test object models
are inappropriately chosen.

Optionally one can now also consider the direction from the target to the
source. If target CTs are available, then we can build target test object models.
As before, we can compute source object models completions for a target object
model tom, which is then mapped to a collection {som1, ..., somm} of source
object models. If we have m = 0, then this would mean that there is no source
model for the target model tom.

The expected result is then given as follows and can be used for test purposes
in various ways.

– We obtain a collection of (source,target) object model pairs that show to the
developer the behavior of the transformation model in terms of concrete test
cases and thus makes the transformation alive: {(som1, tom1), ..., (soml, toml)}.

– Depending on the transformation model and the chosen CTs one will get
witnesses for (a) non-functional behavior or (b) non-injective behavior of
the model transformation.

(a) Non-functional behavior of the transformation model: This occurs if
there is one source object model som connected to two different target
object models tom1 and tom2 such that (som, tom1) and (som, tom2)
are in the (source,target) object model set with tom1 6= tom2.

(b) Non-injective behavior of the transformation model: This occurs if there
is one target object model tom connected to two different source object
models som1 and som2 such that (som1, tom) and (som2, tom) are in
the (source,target) object model set with som1 6= som2.

– Furthermore, a potentially existing connection between source and target
CTs may be analysed. The developer may claim the source and the tar-



get CTs as being ‘in correspondence’: the collection of source object models
generated from the source CTs must then be transformed into the collec-
tion of target object models generated from the target CTs. The developer
can be supported in checking the ‘in correspondence’ claim. For each com-
pletion of a source object model, there must exist a target object model
that shows the same behavior w.r.t. to the target CTs: A source object
model som generated from the source CTs will be completed to a target
object model completed(som); and there must exist a target object model
tom in the collection of target object models generated from the target
CTs (CTStarget) such that the following is true (where the operation eval
computes the value of the expression): eval(CTStarget, completed(som)) =
eval(CTStarget, tom).
If there is no such target model, the ‘in correspondence’ supposition is wrong
and with this the CTs are inappropriately chosen, if an ‘in correspondence’
relationship was desired.

– In general, one can also try to consider the direction from target to source
with such a correspondence checking technique.

Developing a TM for the BiBTeX2DocBook example. In order to build
the MT specification (i.e., tract source-target constraints) we gave the metamod-
els to one experienced developer with knowledge in OCL and the description in
natural language of the transformation model. Basically, each BibTeXFile should
have a direct correspondence with a DocBook; each Proc with a Book; each
InProc with an Article, and each PersonB with a PersonD. Moreover, all the
relationships between the source objects are kept in the target model but there
exists a new relationship between a book and an article when the corresponding
InProc has as booktitle the corresponding Proc.

With this, the developer provided the following four constraints (one for every
pair of objects) as the transformation specification.

1 context Tract inv BibTeX2DocBook :
2 BibTeXFile . allInstances−>forAll ( file | DocBook . allInstances−>exists ( dB |
3 file . entry−>selectByType ( Proc )−>forAll ( proc | dB . book−>
4 one ( b | proc . title = b . title ) ) ) )
5 context Tract inv Proc2Book :
6 Proc . allInstances−>forAll ( proc | Book . allInstances−>exists ( book |
7 proc . title = book . title and
8 proc . editor−>forAll ( editorP | book . editor−>exists ( editorB |
9 editorP . name = editorB . name and

10 book . article−>forAll ( art | InProc . allInstances−>
11 one ( inP | inP . booktitle = art . title ) ) ) ) ) )
12 context Tract inv InProc2Article :
13 InProc . allInstances−>forAll ( inP | Article . allInstances−>exists ( art |
14 inP . title = art . title and
15 art . bookA . title = inP . booktitle and
16 inP . author−>forAll ( authP |
17 art . author−>exists ( authA | authP . name = authA . name ) ) ) )
18 context Tract inv PersonB2PersonD :
19 PersonB . allInstances−>size ( ) = PersonD . allInstances−>size ( ) and
20 PersonB . allInstances−>forAll ( p | PersonD . allInstances−>exists ( pd |
21 p . name=pd . name ) )

Given the transformation model and the object diagrams obtained using the
CTs previously defined, the model validator could not complete any of the object



Fig. 3. Completion for the BibTeX model.

diagrams. There is no possible model that fulfils all the conditions. The reason
is a fault in the constraint Proc2Book (line 4). At the end of it, Article titles are
compared to InProc booktitles, instead of InProc titles. The fix to be applied is
inP.title = art.title.

After fixing this error, the model validator was able to complete the source
object diagrams respecting the transformation model. Figure 3 shows, inside the
square, one of the source object diagrams and, outside the square, the completion
generated by the model validator.

Several problems can be easily detected on this object model. First of all,
there is no one-to-one correspondence between the source and target objects:
the target contains more objects than it should. This problem can be solved
by adding object equality to each one of the constraints to limit the number of
objects generated when completing the object diagrams. For instance, for the
BibTeX2DocBook invariant the code to add is BibTeXFile.allInstances->size()
= DocBook.allInstances->size().

Another observable problem is that the names were supposed to be unique
(i.e., a DocBook should not have two Books with the same name and a Book
should not have two Articles with the same name). In the constraints, the one

operation, which is intended for the uniqueness, is placed inside the body of
an exists operation. As there is one DocBook that respects the uniqueness
(docBook2), i.e. fulfills the constraint, the overall system state is valid. In order
to generate correct completions the exists expressions need to be replaced by
one expressions (lines 2, 6, 13 and 20).

In summary, we have been able to follow an iterative process for the develop-
ment of transformation models, that can be checked for correctness before any
implementation is available, and independently from any of them. A transfor-
mation model was considered correct if the sample models generated from the
constraints and CTs could be completed and the resulting models made sense.

4 Validation Exercise 1: Families2Persons

In order to validate our proposal with further examples and to make some es-
timations on the effort required by our specification development approach, we
selected two representative case studies.



Fig. 4. Metamodels for the Families2Persons transformation (once corrected).

For each one we first defined a set of CTs, and created a set of test object
models using them. Then, each author of this paper worked independently on
developing the transformation models for both examples, testing them with the
sample models jointly decided. This section and the next one describe the ex-
amples, the problems and issues found in each one, and some indications on the
effort required to develop and test the corresponding transformation models.

The Families2Persons model transformation. The first case study is the
well-known example of the Families2Persons model transformation. The source
and target metamodels are depicted in Fig. 4. The validation exercise consisted
in developing a TM that specifies the required model transformation. For gen-
erating the sample object models we defined one tract and two CTs. The tract
focused on families with less than 4 children:

Family . allInstances−>forAll ( f | f . daughters−>size + f . sons−>size <= 3)

The constraint of the first CT identifies families with one son and one daugh-
ter. The second CT identifies families with at least three generations.

[ oneDaughterOneSon ]
Family . allInstances−>forAll ( f | f . daughters−>size=1 and f . sons−>size=1)

[ AtLeastThreeGenerations ]
Family . allInstances ( )−>exists ( fstGen |

let sndGen = ( fstGen . sons . familyFather−>
union ( fstGen . daughters . familyMother ) ) in

sndGen−>exists ( f | f . sons−>notEmpty ( ) or f . daughters−>notEmpty ( ) ) )

The combination of these two CTs determines four equivalence classes in
the input model space. Using the tract and these classifying terms, we used the
model validator to build the four object models (one per equivalence class) that
were used to test the transformation model.

Issues found. The first problems that we all hit when developing the tract
source-target constaints were due to the fact that the original metamodels were
incomplete, they even contained errors (note that Fig. 4 shows the metamodel
once the problems found were fixed). These issues arose when we tried to generate
object models with the model validator. In particular, in the original Families
metamodel all relationships were compositions. This bans members from belong-
ing to two families, and therefore the existence of families with three generations.
We had to change the father and mother relationships to aggregations in order
to proceed.



Furthermore, as soon as we started to generate source object models we also
discovered that these metamodels permitted some pathological scenarios. For
example, the original source metamodel allowed a member to play the role of
father and son in the same family—similarly for mother and daughters. Analo-
gously, members’ gender should be maintained: if a person is a son in a family,
he cannot be the mother in another. Names cannot be empty, either.

Finally, we also had to cope with some current limitations of the model
validator: for example, it cannot deal with the concat() operator on strings. To
overcome this limitation we used integers to represent names, instead of strings.
First and last names are 1-digit integers (in decimal base) and full names are 2-
digit integers that can be obtained as name*10 + lastName. The original string
attributes became derived features, for easy human interpretation of the results.

Fig. 4 shows the final metamodel. The following invariants need to be added
to the metamodels, to incorporate the corresponding well-formed constraints
that permitted creating valid models.

-- FAMILIES METAMODEL
context Family

inv nameDomain : 0 <= lastName and lastName <= 9
inv fatherParadoxon : self . sons−>excludes ( father )
inv motherParadoxon : self . daughters−>excludes ( mother )
inv cycleFreeness : self . sons . familyFather−>

union ( self . daughters . familyMother )−>
closure ( f | f . sons . familyFather−>

union ( f . daughters . familyMother ) )−>excludes ( self )
context Member

inv nameDomain : 1 <= firstName and firstName <= 9
inv noOrphanMember : self . familyMother−>size ( ) +

self . familyFather−>size ( ) + self . familyDaughter−>size ( )
+ self . familySon−>size ( ) > 0

inv sonsBecomeFathers : self . familySon <> null implies
self . familyMother = null

inv daughtersBecomeMothers : self . familyDaughter <> null implies
self . familyFather = null

inv fatherMotherDistinct : self . familyFather = null or
self . familyMother = null

-- PERSON METAMODEL
context Person

inv nameDomain : 10 <= fullName and fullName <= 99
inv nameNotEmpty : fullName <> null

When generating the sample test object models we also discovered that these
metamodels permit other weird situations. For example, all members of a family
can have the same first name. Similarly, the last name of family members in mul-
tiple families needs to be preserved and this is not controlled by the metamodel.
In particular, the last name of a father or a son should be the same in all of his
families.

Apart from these issues concerning the source and target metamodels, when
trying to develop and test a transformation model using our approach, we also
unveiled some issues related with the relationship that the transformation is
trying to establish between the metamodels. For example, consider the following
constraint that checks that members are transformed to persons with the proper
gender (an equivalent one should be required for male members):

( self . familyDaughter <> null or self . familyMother <> null ) implies
Female . allInstances−>exists ( female |



Table 1. Statistics for the two case studies.

Families2Persons Java2Graph
AV FH LB MG AV FH LB MG

# iterations 5 2 4 2 4 2 4 2

# iterations where new problems were detected 4 1 3 1 3 1 3 1

# iterations in which a fix led to a new problem 0 0 0 0 0 0 0 0

% of time developing the OCL code
(vs. % of time finding what the problem was) 40 76 20 10 40 82 20 10

% of occasions the model validator returned
UNSAT (instead of generating the models) 40 0 10 0 50 0 20 0

final # of constraints developed 5 1 4 3 4 4 5 2

i f self . familyMother <> null then
female . fullName=(self . firstName ∗10)+self . familyMother . lastName

else
female . fullName=(self . firstName ∗10)+self . familyDaughter . lastName

endif )

This approach does not work: should there be two members (left-hand side)
with the same name and surname, the constraint (either with exists or with
one) is fulfilled as long as there is one person (right-hand side) with the name
and surname. And if we try to add another constraint that states that the num-
ber of members and persons should be the same, the model validator may create
a person with a random fullName in order to enforce it. Therefore, apart from
the constraint that checks the size, there is the need to check the exact corre-
spondence of the names of members and persons. There are several approaches
to solve this issue, and each author used one—e.g., navigating the set of all pos-
sible names and checking that the number of times they appear in the source
and target models is the same; or selecting the members by gender and making
sure their names appear the same number of times in both sides.

Performance analysis for the Families2Persons case study. Columns 2-5
of Table 1 show the general statistics resulting from the experiments conducted
by the four paper authors (AV, FH, LB, MG) for this case study. Each author
needed a number of iterations until his/her transformation model was developed
and tested correct. As mentioned above, a transformation model was considered
correct if the sample source models generated from the selected tract and CTs
could be completed and the resulting target models were unique and made sense.

It is important to note that the tests were not really independent, particularly
at the beginning of the experiment when the source and target metamodels were
found inconsistent and incomplete. In order to focus on the transformation model
itself, as soon as someone detected a problem in the metamodel, it was corrected
and the rest of the participants were notified to avoid it.

The level of expertise of FH and MG with OCL and with the model validator
was higher, and this fact had some impact when developing the TMs, as Table 1
reflects. They needed less iterations to solve the problems and they never wrote
constraints that led to UNSAT states.



Although not specified in the table, note as well that in the first iterations,
most of the time was spent developing the OCL code of the TM, while in the
latter ones the problems were trickier and thus more time was spent identifying
the problems and solving them. The total time spent running this experiment
ranged between six and eight hours.

5 Validation Exercise 2: Java2Graph

The second validation experiment considered a model transformation that, start-
ing from a model of a large Java program, transformed it into a graph (composed
of nodes and edges) that has the information needed to be visualized. Graph
nodes have name, shape, colour and size. Edges have a name and a label and
connect nodes. Every edge is connected to one source and one target node, but
you may have many different edges between two nodes.

In the transformation, every Java class is represented by a node, and every
attribute whose type is another class as an edge. The label of the edge is the
name of the attribute. The size of a node is the number of its outgoing edges.
The shape depends on the kind of Java class: triangular if the class is abstract,
square if it is final, and round (a circle) if it is a regular class. The colour depends
on the number of attributes and methods: red if the class has more attributes
and methods than 70% of the rest of the classes, green if it is between percentiles
30 and 70, and yellow if it has less than 30% of the rest of the classes.

The source and target metamodels for the transformation are shown in Fig. 5.
Additionally, some constraints define their well-formed rules:

-- JAVA METAMODEL CONSTRAINTS
context NamedElement inv uniqueNames :

not self . name . oclIsUndefined ( ) and ( self . name <> ’’ )
and NamedElement . allInstances−>select ( ne |

self<>ne and ne . name = self . name )−>size ( )=0
context Class inv kindNotNull :

not self . kind . oclIsUndefined ( )
context Attribute inv typeNotNull :

not self . type . oclIsUndefined ( )
context DataType inv noDanglingDatatypes :

Attribute . allInstances ( )−>exists ( a | a . type = self )
-- GRAPH METAMODEL CONSTRAINTS
context Node inv validNode :

( self . name <> null ) and ( self . name <> ’’ ) and ( self . size>=0)
context Edge inv noNullLabel :

( self . label <> null ) and ( self . label <> ’’ )

To generate the sample object models used to test the transformation model
we defined three CTs. They define eight equivalence classes and thus eight sample
object models with different characteristics.

[ ThreeKindsOfClasses ]
Class . allInstances−>exists ( c1 , c2 , c3 | c1 . kind=#abstractClass

and c2 . kind=#finalClass and c3 . kind=#regularClass )
[ GodObjectExists ]

Class . allInstances ( )−>exists ( c | c . atts . type−>asSet ( )
−>selectByKind ( Class )
−>includesAll ( Class . allInstances ( )−>excluding ( c ) ) )

[ AttributeCycleLength3 ]
Class . allInstances ( )−>exists ( c1 , c2 , c3 | Set{c1 , c2 , c3}−>size=3 and

c1 . atts−>exists ( a1 | c2 . atts−>exists ( a2 | c3 . atts−>exists ( a3 |
a1 . type=c2 and a2 . type=c3 and a3 . type=c1 ) ) ) )



Fig. 5. Metamodels for the Java2Graph transformation.

The first CT defines models with three kinds of classes. The second one asks
models to have a class that is dependent on all others. The last one requires the
existence of references between classes that form cycles of length 3.

Issues found. The nature of the issues found in this example was similar to the
previous one, although the number of issues was very different.

This time we did not find any major problem with the original metamodels.
The only issue found with the metamodels was not due to the metamodels
themselves, but to the need to relate them by a model transformation: we found
the typical example of a semantic mismatch between two metamodels when
we want to relate them. In the target metamodel, we had stated in Node’s
validNode invariant that the attribute size should be greater than 0 with the
expression “...and (self.size>0)”, and hence we had to change it to allow
the attribute to be 0 by replacing it with “...and (self.size>=0). Otherwise
we were not able to transform Java classes with no attributes or methods, since
the size of their corresponding nodes is 0.

We also hit here the problem of imprecise specifications expressed in natural
language. Namely, the problem specification (imprecisely) stated that the colour
of the transformed node depended on the number of attributes and methods of
“the rest of the classes.” One of the authors understood that in “the rest of the
classes” the class self was also included while another author excluded it. This
led to slightly different results in the transformed models.

Finally, we also had to overcome some limitations of the current version of
the model validator, although they were easy to address. For example, it does
not support real numbers and we had to use integers instead (multiplying by
100 to get 2 decimals). Furthermore, there is no support for some OCL features
such as iterate, sortedby and Sequence. We had to express the constraints
using the subset of OCL currently available.

Performance analysis for the Java2Graph case study. Columns 6-9 of
Table 1 show the statistics resulting from the experiments conducted by the four
authors (AV, FH, LB, MG). They are very similar to the ones obtained for the
previous experiment, and the same remarks apply to them too. The time every
author spent working on this experiment was between 4 and 6 hours, slightly
less than before—but also because we learned from the previous experience.



Conclusions from the validation experiments. After conducting these two
experiments, there are some common issues that we would like to point out. First,
we were able to unveil significant problems in the specification of the source and
target metamodels (even in the a priori very simple Families2Persons exam-
ple). It was clear that no rigorous tests had been conducted on them, probably
due to the traditional lack of tools in MDE to instantiate metamodels.

Second, we were also able to reveal semantic problems, which happen when
trying to relate two (perfectly correct) independent metamodels by means of a
model transformation: some of the individual metamodel integrity constraints
hinder the creation of particular relations between their elements.

Third, we also suffered from the lack of precision in textual specifications,
which permit multiple interpretations and hence distinct implementations.

Tool support can also represent some impediments. We hit some problems
due to restricted support of model features by model validator: Java heap space
when generating models with the constraint solver; lack of support for some
OCL types (Sequence, Real) and operators (iterator, sortedBy).

When it comes to debugging, once the model validator finds one solution it
is not easy to determine whether it is correct or not. The only thing we know
is that it satisfies the imposed constraints. But then we need to interpret the
results and check whether they make sense. A similar situation happens when
the model validator finds more than one solution. The case is even worse when
it finds no solution, because we only know that the completion is unsatisfiable.

We also learned interesting aspects of the use of the model validator. For ex-
ample, using specific configurations for each test case is better than a common
configuration for all cases. In this sense, a better support for model transforma-
tions and completions would be nice on the model validator side.

Finally, when we put together all the solutions independently developed by
the four authors, we discovered a common schema for defining the transformation
model constraints, which is the one that we show below (note that exists could
be replaced by one in some cases):

Source−>forAll ( s | Target−>exists ( t | predicate ( s , t ) ) ) -- AND --
Source−>size ( )=Target−>size ( )

Basically, in many cases the TM is composed of constraints that specify, for
each source model element, how it is transformed; plus a set of constraints that
determine the relations between the sizes of source and target model elements.

Note that in this paper we have focused on the validation of directional model
transformations, from source to target. In general, transformation models and
their associated constraints are direction neutral and thus they can be inter-
preted (and evaluated) from left to right and vice-versa. The validation from
target to source is left for future work.

6 Related Work

In this work, we see model transformations as transformation models and focus
on checking their correctness. The ideas presented in this work were first out-
lined in a short paper [13]. This paper contains the first complete proposal and



provides some initial validation exercises that permit evaluating the advantages
and shortcomings of the approach.

There are some dynamic approaches for testing MT implementations by ex-
ecuting them given an input model or a set of them. References [12] and [18]
present contributions for debugging model transformations, and the work in [7]
compares the generated and expected output models. The work in [1] analy-
ses the trace model in order to find errors. In addition to Tracts, other static
approaches allow the specification of contracts in a visual manner [11].

Reference [6] proposes a dynamic testing technique defining equivalence classes
for the source models in a similar manner as it is done with CTs. Their proposal
lacks full automation and is less expressive as they do not consider the use of
OCL. Reference [10] presents a mechanism for generating test cases by analysing
the OCL expressions in the source metamodel in order to partition the input
model space. This is a systematic approach similar to ours, but focusing on the
original source model constraints. Our proposal allows the developer partition-
ing the source (and target) model space independently from these constraints,
in a more flexible manner. Sen et al. [16] considered the completion of partial
models to satisfy a set of constraints.

The work in [15] proves the correctness of specifications by making use of
algebras. Our approach can be seen as a first step and as an easier and cheaper
way that does not require the developer to have any extra knowledge or create
any other software artifact. Similarly, in [5], Alloy is used to validate models
while the UML/OCL model under test is translated to and from Alloy before
and after the validation, respectively. This works for Alloy experts, but might
be difficult for other modelers. Our approach works on the UML/OCL and hides
the transformation details between the languages.

Finally, the work in [3] is similar to ours but uses refinement between specifi-
cations and/or implementations to check whether one can safely replace another.
OCL is used as a base language where specifications and MT implementations
are mapped to, and then SAT solvers look for counterexamples. As part of future
work we would like to evaluate if our proposal is simpler (and more effective)
than writing a reference implementation in parallel and checking if the imple-
mentation is a refinement of the specification. Refinement of MT specifications
has also been studied in [17] in the context of tracts.

7 Conclusions and Future Work

Even the simplest model transformations, not to mention their specifications,
may contain faults [4]. In this paper we have proposed a method that uses tracts
and classifying terms to test the correctness of a model transformation specifica-
tion (i.e., a transformation model), independently from any possible implemen-
tation. We have validated the approach using two experiments and report on the
problems and achievements found concerning conceptual and tooling aspects.

There are several lines of work that we plan to address next. First, we want to
take into account the fact that TM constraints are direction-neutral, being able
to analyze further properties of the MT under development. Second, we would



like to validate our proposal with more transformations, in order to gain a better
understanding of its advantages and limitations. Third, we plan to improve the
tool support to further automate all tests, so human intervention is kept to the
minimum. Finally, we need to define a systematic approach of defining classifying
term and transformation model testing using the ideas outlined in this paper.
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