
Teaching Model Views with UML and OCL
Loli Burgueño

Universidad de Málaga, Spain
loli@lcc.uma.es

Marbella International University Centre, Spain
lola@miuc.org

Antonio Vallecillo
Universidad de Málaga, Spain

av@lcc.uma.es

Martin Gogolla
University of Bremen, Germany

gogolla@informatik.uni-bremen.de

Abstract—The specification of any non-trivial system is nor-
mally composed of a set of models. Each model describes a
different view of the system, focuses on a particular set of
concerns, and uses its own notation. For example, UML defines
a set of diagrams for modelling the structure and behavior of
any software system. One of the problems we perceived with our
students is that they are able to understand each one of these
diagrams, but they have problems understanding how they are
related, and how the overall system specifications work when
composed of a set of views. This paper presents a simple case
study that we have developed and successfully used in class, which
permits students developing the principal views of a system,
simulate them, and check their relations.

I. INTRODUCTION

Non-trivial systems specifications need to be decomposed
in various models (views), each one focusing on a particular
set of concerns and described in a particular notation. For
example, UML defines a set of diagrams for modelling a
system that permit describing its structure (class diagrams),
the behavior of its individual objects (state machines), the
collective behavior of collections of objects (communication
and sequence diagrams), etc. There are two main problems that
we have perceived with our students when teaching the use of
models. First, they normally tend to see models as drawings,
mostly used for communication among humans, and not as
software artefacts that need to be processed by computers.
Hence they tend to be less precise and formal than when
developing programs. And second, when dealing with multi-
viewpoint models, students may be able to understand each
one of these diagrams, but they have problems understanding
how they are related, and how the overall system specifications
actually work when composed of a set of views.

This paper presents a simple case study that we have devel-
oped and successfully used in class, which permits students
to develop the principal views of a system, simulate them,
and understand their relationships. We use a combination
of UML and OCL and the possibilities that the OCL/USE
tool [1] provides to simulate and analyse the models, as proper
software artefacts.

The example we present here—originally defined in [2]—
is based on a production line and it is modeled using a
combination of UML and OCL. We show how these notations
permit modeling the system in a formal manner using different
views, and allow performing several interesting analyses on the
system.

The rest of the paper is structured as follows. The next
Sect. II describes the example and shows interesting properties
using the USE modeling environment [1], [3]. Section III
presents the lessons we learned. Finally, Section IV presents
our conclusions and future work.

II. A UML AND OCL MODEL FOR A PRODUCTION LINE
SYSTEM

Let us illustrate our approach by modeling a plant that
produces hammers. This plant is composed of four machines:
one that generates hammer heads, another that generates
handles, one that assembles heads and handles, and finally
one that polishes the hammers. There are also trays that are
used to collect the goods in production.

The plant operates as follows: each generating machine has
an associated tray, in which it places the heads or handles
as soon as they are produced. From these trays, the pieces
are taken by an assembler machine, which puts together one
head and one handle to produce a hammer, which is placed
in a different tray. From this tray, the polisher takes hammers,
works on them and leaves them in a different tray.

A. Structural Elements

Figure 1 shows in a UML class diagram the structural
elements of the system. We can see how each Tray has
a capacity (cap) and each Machine keeps record of the
time that its job takes (processingTime). Futhermore,
the head and handle generators (HeadGenerator and
HandleGenerator) keep a counter of the number of el-
ements that have produced (counter). In order to perform
the actions of placing or removing pieces from the trays, class
Tray provides get() and put() operations.

B. Behavioral Elements

Pre- and post-conditions. The behavior of the system can be
expressed in UML and OCL by different means. One of the
most common ways is by adding the specification of pre- and
post-conditions to the operations, defining their behavior. This
is shown below for get() and put() operations of class
Tray.
put (p :Part)

pre notFull : self .parts−>size ()<cap
pos t ElementAdded : self .parts=self .parts@pre−>append (p)

get () :Part
pre notEmpty : self .parts−>size ()>0
pos t FirstElementRemoved :

Class diagram

Head

Assembler

start()

assemble(hd : Head, hl : Handle) : Hammer

HandleGenerator

counter : Integer

start()

generate() : Handle

HeadGenerator

counter : Integer

start()

generate() : Head

Part

Tray

cap : Integer

put(p : Part)

get() : Part

size() : Integer

PlantElement

Polisher

start()

polish(hm : Hammer)

PartGenerator

Machine

processingTime : Integer

start()

Hammer

isPolished : Boolean

Handle

parts {ordered}*Contains
tray1

output*
MachineConsumption

input*

output1

MachineProduction
input1..*

Fig. 1. Class diagram for the production line example.

result=self .parts@pre−>at (1) and
self .parts@pre=self .parts−>prepend (result)

Fig. 2. State Machine for Tray objects.

State machines. UML permits specifying the behavior of indi-
vidual objects by means of State machines that determine how
their internal state changes as a result of the invocation of their
provided operations. USE/OCL permits formally specifying
state machines for individual objects, and then automatically
deriving the corresponding UML diagram. For example, the
following listing shows the specification of the state machine
of a Tray. The corresponding UML diagram is shown in
Figure 2.
psm PutGet
states
init : initial
Empty [self .parts−>size () =0]
Normal [0<self .parts−>size () and

self .parts−>size ()<self .cap]
Full [self .parts−>size () =self .cap]

transitions
init −> Empty { create }
Empty −> Normal { [self .cap>1] put () }
Normal −> Normal { [self .parts−>size ()<cap−1] put () }
Normal −> Full { [self .cap>1 and

self .parts−>size () =cap−1] put () }
Empty −> Full { [self .cap=1] put () }
Full −> Empty { [self .cap=1] get () }
Full −> Normal { [self .cap>1] get () }
Normal −> Normal { [self .cap>1 and

self .parts−>size () >1] get () }
Normal −> Empty { [self .parts−>size () =1] get () }

end

Behavior of operations. USE also permits to
specify the behavior of operations using a simple
executable language called SOIL [4]. For instance,
the behavior of Assembler::start() and
Assembler::assemble() operations can be specified as
follows.
start ()
begin
declare hd :Part , hl :Part , hm :Hammer ;
hd :=self .input−>select (t |t .parts−>size>0 and

t .parts−>forAll (oclIsTypeOf (Head)))−>
single () .get () ;

hl :=self .input−>select (t |t .parts−>size>0 and
t .parts−>forAll (oclIsTypeOf (Handle)))−>

single () .get () ;
hm :=self .assemble (hd .oclAsType (Head) ,

hl .oclAsType (Handle)) ;
self .output .put (hm) ;

end

assemble (hd :Head ,hl :Handle) :Hammer
begin
destroy hd ,hl ;
result :=new Hammer ; result .isPolished :=false ;

end

Executing the specifications. Once we have the behavior of
the operations, we can execute the system by providing a
sequence of SOIL commands that create the initial objects
of the system, their links, and invokes the operations. Based
on the specifications above, for example, we can show the
students how to simulate the system, by creating an initial
model of the system and invoking the start() operation to
the four machines.
-- Machines
!new HandleGenerator (’hag’)
!new HeadGenerator (’heg’)
!new Assembler (’asm’)
!new Polisher (’pol’)
-- Trays
!new Tray (’Handle2Assem’)
!Handle2Assem .cap : = 4 ;
!new Tray (’Head2Assem’)
!Head2Assem .cap : = 4 ;
!new Tray (’Assem2Polish’)
!Assem2Polish .cap : = 4 ;
!new Tray (’Polish2Out’)
!Polish2Out .cap : = 4 ;
-- Production Line Connections

Fig. 3. Object diagram sequence displaying the behavior of the system.

!insert (hag ,Handle2Assem) into MachineProduction
!insert (heg ,Head2Assem) into MachineProduction
!insert (Handle2Assem ,asm) into MachineConsumption
!insert (Head2Assem ,asm) into MachineConsumption
!insert (asm ,Assem2Polish) into MachineProduction
!insert (Assem2Polish ,pol) into MachineConsumption
!insert (pol ,Polish2Out) into MachineProduction
-- Process
!heg .start ()
!hag .start ()
!asm .start ()
!pol .start ()

Figure 3 pictorially shows a filmstrip of the behavior of
the system as a sequence of snapshots after every opera-
tion execution. Aggregation associations are used to visualize
‘ownership’ between objects (e.g. a part is placed on a tray).
We have also developed a video with the complete filmstrip1.
Object interactions. So far we have focused on the structural
view of the system and the behaviour of individual objects.
UML also permits representing the interactions between ob-
jects by means of Sequence and Communication diagrams.
With USE/OCL, we are able to automatically derive them from

1http://atenea.lcc.uma.es/Descargas/EduSymp17/3Hammers.mp4?dl=0

the simulation of the system’s behavior described above, in
terms of sequences of operations invocations. First, the inter-
actions are recreated using the UML sequence diagram shown
in Fig. 4, that is automatically constructed by USE/OCL.

The behavior can also be displayed as a communication
diagram as in Fig. 5. Interestingly, for every step we can
represent the current states of all the state machines of the Tray
objects—not shown here for space reasons, although they are
similar to the one depicted in Fig. 2 but with the current state
highlighted; the interested reader can see the presentation2 we
have developed to show the state changes. Also, all the code
developed for this case study is available3.

C. Further analysis

Once we have the specifications, there are different kinds of
analyses that we can perform on the system that show some
of the potential advantages of developing model-driven system
descriptions with UML and OCL. In particular: visualization

2http://atenea.lcc.uma.es/Descargas/EduSymp17/snapshots-buffer.pdf?dl=0
3http://atenea.lcc.uma.es/Descargas/EduSymp17/sources.zip?dl=0

http://atenea.lcc.uma.es/Descargas/EduSymp17/3Hammers.mp4?dl=0
http://atenea.lcc.uma.es/Descargas/EduSymp17/snapshots-buffer.pdf?dl=0
http://atenea.lcc.uma.es/Descargas/EduSymp17/sources.zip?dl=0

Fig. 4. Sequence diagram.

of complex structures and processes; execution and simulation
of scenarios (operation call sequences); checking structural
properties of the system within states by OCL queries (e.g.
calculating the number of finally produced parts); checking
behavioral properties (e.g., testing the executability of an oper-
ation by testing its pre-conditions); checking for weakening or
strengthening model properties (invariants, contracts, guards)
by executing a scenario with modified constraints; proving
general properties within the finite search space with the USE
model validator, such as structural consistency (i.e. all classes
are instantiable); behavioral consistency (i.e. all operations
can be executed); deadlocks (e.g. construction of deadlock
scenarios due to inadequate buffer capacities), etc.

The relationships between the views can also be explored
with this approach. One of the most interesting examples
happens when one of the views is changed, and the effects
of this change on the rest of the views. For example, when an
invariant is added or a class is changed or removed; when an
element changes its name; or when a guard for a state change is
altered. Every kind of change in a model has a different impact

on the validity of another model, and therefore it requires the
other model view to be updated. Students can learn from the
effects of each change, and understand how views are related.

Finally, we want to highlight the importance of running
structural tests on the metamodels. One of them concerns
their instantiability and their ability to faithfully represent
the application domain. For example, we decided to ask the
USE model validator [3] to generate a plant configuration
using the system metamodel. The resulting object diagram is
shown in Fig. 6. Interestingly, the produced system is wrong.
The polisher is not connected to any tray that provides it
with hammers. This motivates the need to develop additional,
currently missing invariants (on the structural system level)
and demonstrates the potential usefulness of this approach
for validating these kinds of properties which are normally
overlooked for being considered obvious.

III. LESSONS LEARNED

Our experience of teaching UML views with USE/OCL has
been very positive. At the beginning the students feel uneasy

Fig. 5. Communication diagram.

Fig. 6. Generated test case for Producer-Consumer-Tray configuration.

with OCL because they are used to build UML models that
are always right (As Bertran Meyer used to say: “Bubbles
never crash”). But they progressively discover the advantages
of being able to check that the models they are building are
correct. Furthermore, they discover the relations between the
different views of a system, and how changes in the model
manifest in the views.

Another interesting benefit of our approach is that we
can follow an incremental development process for build-
ing the models. Starting from a simple class diagram we
can incrementally add classes, associations, attributes, oper-
ations, invariants, contracts, soil operation implementations
and protocol state machines. Another feature that students

like very much is creating object models. They then discover
that models are more than pictures, but assertions on the
objects that conform a system (and their relationships). This
incremental development process supports direct feedback and
model improvements. They discover that modelling is similar
to programming, in the sense that you write a program and
execute it to check whether its behavior is as you expected.
Students can check their models using various functionalities
available in USE: the diagrams, the evaluation browser, the
class extent, the single object window, the class invariants
window, etc. And they also learn that views are not completely
independent. On the contrary, they are all projections of an
underlying model.

IV. CONCLUSIONS

In this paper we have presented a case study modeled with
UML and OCL/USE that has been successfully used to teach
modeling in class. It does not only focus on the different views
of the system but also on the relationships the different models
have among them. Furthermore, we disclose several of the
advantages of modeling with UML/OCL and USE.

ACKNOWLEDGMENT

This work is partially funded by the Spanish Research
Project TIN2014-52034-R. We would like to thank the anony-
mous reviewers for their valuable comments and suggestions.

REFERENCES

[1] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based speci-
fication environment for validating UML and OCL,” Sci. Comp. Prog.,
vol. 69, pp. 27–34, 2007.

[2] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing rule-
based behavioral semantics of visual modeling languages with maude,”
in Proc. of SLE’08, ser. LNCS, vol. 5452. Springer, 2008, pp. 54–73.

[3] M. Gogolla and F. Hilken, “Model Validation and Verification Options
in a Contemporary UML and OCL Analysis Tool,” in Proc. Model-
lierung (MODELLIERUNG’2016), A. Oberweis and R. Reussner, Eds.
GI, LNI 254, 2016, pp. 203–218.

[4] F. Büttner and M. Gogolla, “On OCL-Based Imperative Languages,”
Science of Computer Programming, vol. 92, pp. 162–178, 2014.

	Introduction
	A UML and OCL Model for a Production Line System
	Structural Elements
	Behavioral Elements
	Further analysis

	Lessons Learned
	Conclusions
	References

