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Abstract

The Object Constraint Language (OCL) is a well-accepted ingredient in model-driven engineering and
accompanying modeling languages such as UML (Unified Modeling Language) and EMF (Eclipse Modeling
Framework) which support object-oriented software development. Among various possibilities, OCL offers
the formulation of class invariants and operation contracts in form of pre- and postconditions, and side
effect-free query operations. Much research has been done on OCL and various mature implementations
are available for it. OCL is also used as the foundation for several modeling-specific programming and
transformation languages. However, an intrusive way of embedding OCL into these language hampers
us when we want to benefit from the existing achievements for OCL. In response to this shortcoming, we
propose the language SOIL (Simple OCL-like Imperative Language), which we implemented in the UML and
OCL modeling tool USE to amend its declarative model validation features. The expression sub-language
of SOIL is identical to OCL. SOIL adds imperative constructs for programming in the domain of models.
Thus by employing OCL and SOIL, it is possible to describe any operation in a declarative way and in
an operational way on the modeling level without going into the details of a conventional programming
language. In contrast to other similar approaches, the embedding of OCL into SOIL is done in a careful,
non-intrusive way so that purity of OCL is preserved.
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1. Introduction

Modeling languages like UML (Unified Modeling Language) [37] or EMF (Eclipse Modeling Framework) [44]
play a key role in model-centric development approaches. One main idea when using models is to find and
to formulate central structural and behavioral properties of the system under development in an abstract,
implementation independent way. Visual modeling notations are typically enriched by the textual Object
Constraint Language (OCL) [38, 46] which provides a first-order logic-like query language for objects. OCL
allows the developer to formulate properties of a model that cannot be expressed in the visual notation.
Typical applications of OCL are the formulation of class invariants (to express structural properties) and
pre- and postconditions for operations as well as derived attributes and guards for state charts (to express
behavioral properties).

Several other modeling-specific languages have been defined on top of OCL, in particular in the field of model
transformation and executable models. Well-known OCL-based languages include ImperativeOCL [36] (the
official imperative modeling language of the OMG), the ATL transformation language [19, 20], the Epsilon
Object Language (EOL) [22], OCL for Execution (OCL4X) [18], and the upcoming Action Language for
Foundational UML (fALF) [35]. Essentially, those languages embed OCL as an expression or query language.
There are several reasons to do this, as OCL is widely accepted in both the development and the research
communities. However, the way OCL is embedded in these approaches bears certain conflicts with respect
to the side-effect free semantics of OCL. Furthermore, it prohibits an ‘off-the-shelf’ reuse of existing OCL
tools and formal reasoning approaches for these languages.

In this work, which is an extended version of [5], we present the language SOIL (Simple OCL-based Im-
perative Language). SOIL is an imperative language specific to the animation of model instances. It is
motivated by two objectives: (1) by the need to have a simple, imperative model animation language for the
UML-based Specification Environment (USE) [13, 45], an interpreter and validator for OCL and (a subset
of) UML, and (2) to study a safe embedding of OCL into such a language, on the level of the syntax and the
denotational semantics of OCL, and on the implementation level. While SOIL is a complete programming
language and sufficient for our requirements in the model animation and model transformation contexts, it
is not a a general purpose language. It has no I/O, no modules, no concurrency, no higher-order features,
and no exception handling.

We describe the syntax and semantics of the language and show how OCL can be safely embedded in it, not
changing or extending the syntax or semantics of expressions from the OCL specification. Consequently, we
can illustrate how our compositional definitions of the syntax and semantics of SOIL naturally correspond
to analogous module dependencies at the implementation level (i.e., in USE), meaning that we could reuse
an existing parser, type-checker, and interpreter for OCL without changes when we added SOIL into USE.
Compared to the expressiveness of, e.g., ImperativeOCL, our approach comes with (in our view) acceptable
trade-offs, in the sense that some constructions require intermediate results in SOIL which could be calculated
in one statement in ImperativeOCL.

We want to stress that we particularly require that the OCL language specification remains unchanged.
OCL could be advanced in many ways, e.g., by adding higher-order functions, that would provide safe (and
more elegant) ways of embedding imperative languages on top of OCL (in particularly, using Monads). Our
contribution makes no contribution in this direction, and our approach does not claim to provide new results
in the field of programming language semantics. Since OCL is however a part of several industrial standards,
and implemented in various tools, we see the need for a contribution that highlights the embedding problems
and provides a simple example how they can be avoided (with OCL in its current shape).

Organization. In Sect. 2 we motivate a safe embedding of OCL and identify the major problems in the
current approaches embedding OCL. In Sect. 3 we give an informal introduction to our language SOIL and
the tool USE. Section 4 provides the necessary background on OCL that we need to describe SOIL precisely
in Sect. 5. In Sect. 6 we discuss the results and illustrate how SOIL has been implemented in USE. In Sect. 7
we put our contribution in the context of related work, and we conclude in Sect. 8.
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2. Reusing OCL

In the context of model-driven engineering, we find several programming and transformation languages
that operate on models, and that require a corresponding model query language. The Object Constraint
Language (OCL) is one de-facto standard for such a query language.

Often, model-based languages also require a certain amount of imperative features in order to express all
programming aspects. In addition to model transformation languages, this also regards, for example, the
Executable UML approach [30, 29]. Textual imperative languages are employed to fill this gap, and there are
several good reasons to build these languages on top of OCL. In OMG QVT [36] the language ImperativeOCL
extends OCL by so-called imperative expressions to suit this need. The ATL transformation language [19, 20]
provides a set of statements that can be used to specify aspects of transformation rules in an imperative
way. The upcoming Action Language for Foundational UML (fALF) [35], OCL for Execution (OCL4X) [18],
and the Epsilon Object Language (EOL) [22] amend OCL with kinds of statements or action expressions in
similar vein.

We have already stated a first reason to reuse OCL in these languages: It is well accepted by both the
development and research communities. We can assume OCL to be already known in the context where
these languages are used. This supports both the effort to develop the resp. OCL-based language and the
effort to learn it. This is true in particular as these languages are typically rather lightweight and do not
aim to compete against general purpose languages such as Java or C#. Thus, expressions typically make
up a significant part of such lightweight languages.

A second reason for reusing OCL in these languages is the possibility to reuse existing implementations
of OCL, resp., libraries. The implementation of a programming language based on OCL can be greatly
simplified if one can avoid to deal with expressions again. The infrastructure for UML and EMF models and
OCL expressions is already available in several tools. The long list of publicly available OCL tools includes
the Dresden OCL toolkit [16], the OCL Environment (OCLE) [8], the Eclipse Model Development Tools
(MDT) [28], KMF [2], the Octopus tool [21], RoclET [17], Eye OCL [10], HOL-OCL [4], and the UML-based
Specification Environment (USE) [13].

Furthermore, the scientific community has developed a number of formal approaches that deal with OCL
expressions and OCL-annotated models. These approaches include expression transformation (e. g., in [27,
7]), expression analysis (e. g., in [12]), and satisfiability checking (e.g., in [6, 11, 23, 3]), theorem proving
(e. g., in [4, 25]), and an interoperability benchmark [14].

Thus, there are strong arguments for reusing OCL in model-based programming languages. However, as we
will point out, we have to be careful in the definition of an OCL-based programming language: OCL has to
be embedded in a non-intrusive manner when we want to take advantage of the aforementioned profits.

2.1. Common Problems

A common problem of the aforementioned OCL-based programming languages is an unresolved conflict
between the objective to reuse the side-effect free language OCL on the one hand, and the objective to express
state changes on the other. To clarify the first point, we cite the introduction of the OCL specification [38,
p. 5]:

OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without
side-effects. When an OCL expression is evaluated, it simply returns a value. It cannot change
anything in the model.

In the following we now regard the conflict in more details. We will refer mainly to ImperativeOCL, but we
will also give remarks regarding the other languages mentioned above.
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2.1.1. Statements

In imperative programming languages we often refer to their smallest standalone elements as statements.
The effect of such a statement is determined by its effect on the environment. For languages that operate on
object models, the environment contains at least the available objects, their properties and the links among
them, as well as typically some variable assignments.

We can formally describe the semantics of an imperative language in a denotational way in terms of an
interpretation function I[[ s ]] for each statement s. If we let env denote the environment in which we execute s
(with everything in it that we need to describe a model instance), the interpretation of a statement I[[ s ]](env)
will be a new environment env ′. In contrast, we would typically define the interpretation I[[ e ]](env) of an
expression e (without side-effects) as a value of the domain of the expression type (e.g., a number, a string
value, an object).

In many popular languages the distinction is not that clear in general. For example, the assignment x = y

in Java and C has both an interpretation as a state change and as a value. In this case, we would need to
capture the interpretation I[[ s ]](env) as a tuple (env ′, y) of a new environment and a value. However, for
a non-intrusive reuse of OCL, it is important to keep statements and OCL expressions clearly separated.
We will use the language ImperativeOCL to illustrate the problems that result from an amalgamation of
statements and OCL expressions.

ImperativeOCL defines several new kinds of OCL expressions. These new expressions are called impera-
tive expressions and have a combined functional resp. imperative semantics as explained above. In the
ImperativeOCL metamodel, the imperative expressions are introduced as subclasses of OclExpression and
therefore, imperative expressions extend the set of OCL expressions.

In particular, the imperative compute expression can be used to capture the result of a sequence of imperative
statements as a functional value. In ImperativeOCL, the following expression has the value 6 (1 + 2 + 3):

1 1 + compute(b : Integer) { a := 1; b := a + 1 } + 3

The compute expression declares a local variable and contains a sequence of imperative expressions. The
value 2 of the above compute expression is determined by the final value of b after executing the statements
of the body. If we assume the second variable a to be declared somewhere before, the compute expression
also has an effect that is visible outside the compute expression, as a (possibly) new value (1) will be assigned
to a after the evaluation of the compute expression.

Now we use a more complex example. Assume true has been assigned to the variables a and b before, and
notice that the imperative assignment expression x := y of ImperativeOCL has the same combined semantics
as discussed above:

1 compute(c:Boolean) { if ((a:=false) and (b:=false)) { ... }; c := a }

The value of this compute expression is false (it returns the value of c at the end of the block). The
interpretation, however, becomes less obvious if we change the last assignment:

1 compute(c:Boolean) { if ((a:=false) and (b:=false)) { ... }; c := b }

The interpretation of this compute expression depends on how we define the imperative semantics of
the logical connectives. Given Boolean expressions e1 and e2, we have at least two choices to define
I[[ e1 and e2 ]](env):

1. Lazy evaluation semantics like in Java or C (returns true for the above example):

I[[ e1 and e2 ]](env) =

{
I[[ e2 ]](env ′) if y = true

(env ′, y) otherwise

where (env ′, y) = I[[ e1 ]](env). Under this semantics (also called short-circuit evaluation) the right-
hand side of the and operator is not evaluated unless the left-hand side evaluates to true. Therefore,
b stays true.
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2. Strict evaluation semantics (returns false for the above example):

I[[ e1 and e2 ]](env) =

{
(env ′′, true) if y1 = true ∧ y2 = true

(env ′′, false) otherwise

where (env ′, y1) = I[[ e1 ]](env) and (env ′′, y2) = I[[ e2 ]](env ′). Under this semantics, both sides of the
and operator are always evaluated. Therefore, false is assigned to b.

There is no rule on short-circuit evaluation in OCL. OCL as a side-effect free language does not need such
a rule. An optimizing OCL compiler might even decide to short-circuit evaluate the second operand first if
this seems reasonable.

However, in order to have a clear semantics, ImperativeOCL implicitly requires a decision on this question.
Similar issues regard, for example, the commutativity of operators. Of course all these little decisions can be
made for ImperativeOCL, but they may be inappropriate for other applications of OCL. And, existing OCL
tools may have differing implementations and may be therefore unusable to implement ImperativeOCL.

A more general argument against the amalgamation of statements and expressions is that OCL expressions
are no longer side effect-free by introducing ImperativeExpression as a subclass of OclExpression. Similar
amalgamations exist in fALF [35], OCL4X [18], and EOL [22]1. Recall the citation from the OCL specifica-
tion in the beginning of this section. In our understanding, the change in the interpretation of expressions
breaks a fundamental property of the OclExpression class. Thus the ImperativeOCL metamodel breaks the
subtype substitution principle. The direct result is that formal approaches such as expression transforma-
tions, expression analysis, reasoning, and model checking can no longer be applied to OCL expressions in
the context of the ImperativeOCL extension.

Therefore, we require a strict distinction of statements and OCL expressions for a safe reuse of OCL. Figure 1
depicts this requirement on the level of the language metamodels. Notice that, in general, an imperative
programming language might also add further kinds of pure expressions that are not OCL. However, these
expressions must not occur as OCL expressions.

package

imperative language

metamodel package

OclExpression

(OCL)

(ImperativeLanguage)

Non−OCL Expression

OclExpression

(OCL)

(ImperativeLanguage)

Statement

<<imports>>

OCL metamodel

Figure 1: A safe embedding of OCL

2.1.2. Operations with Side-Effects

The invocation of operations with side-effects within OCL expressions constitutes a similar problem as the
amalgamation of statements and OCL expressions. While the interpretation of a query operation is a value,
the interpretation of an operation with side-effects yields a new state (and possibly a value, too). For similar
reasons as before, we should not allow the second one to occur in OCL expressions.

In order not to stretch short-circuit evaluation or commutativity of binary operations for the explanation
again, we take a look on the let expression in OCL. This expression introduces an intermediate results as a
variable. As expected for a logic-like language, the following important equivalence rule holds for OCL:

1While EOL explicitly states a loose kind of reuse of OCL in terms of ‘being inspired by OCL’, the other languages claim a
direct reuse of OCL.
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I[[ let v : T = e1 in e2 ]](env) = I[[ e2 ]]
(
env [v 7→ I[[ e1 ]](env)]

)
However, this rule is broken if we allow operations with side-effects within OCL expressions. Assume a class
Person with attributes firstName and lastName. Consider an operation ‘newPerson’.

1 def: newWorker(firstName : String , lastName : String):Person =
2 w := new Worker;
3 w.firstName := firstName;
4 w.lastName := lastName;
5 return w

Obviously, the interpretation of

1 let w : Worker = newWorker ( ' Bob ' , ' Builder ') in
2 w.lastName.concat ( ' , ') .concat(w.firstName)

is different from the interpretation of

1 newWorker ( ' Bob ' , ' Builder ') .lastName.concat ( ' , ') .concat(
2 newWorker ( ' Bob ' , ' Builder ') .firstName)

which will create two Worker objects.

As mentioned above, such problematic situations can be constructed in several ways if we allow operations
with side-effects in OCL expressions. For example, for ATL this regards in particular the invocation of lazy
rules and called rules from within OCL expressions. Similar examples exists for the other aforementioned
languages.

However, for a non-intrusive reuse of OCL, we require a distinction between query operations and operations
with side-effects. Within OCL expressions, only query operations must be used. Otherwise, we run into the
same problems mentioned in Sect. 2.1.1. Consequently, an imperative language must include an explicit and
distinct mechanism to invoke operations with side-effects.

3. SOIL and the UML-based Specification Environment

We now introduce the Simple OCL-based Imperative Language SOIL and the USE tool [13] that implements
it. The development of SOIL has been driven by two objectives: The first one is to provide an (OCL-based)
model programming language for the USE tool to perform model animation. The second objective has
been to study how the (existing) language OCL can be embedded in a way that avoids the aforementioned
problems, i.e., without changing the language and without changing existing implementations.

USE basically is an interpreter for OCL and a subset of UML. It supports validating and analyzing the model
structure (class diagrams and OCL invariants) and the model behavior (operations and pre- and postcon-
ditions) by generating instances (‘snapshots’) of the model and by executing typical operation sequences
(‘scenarios’). USE has been employed in various case studies and teaching projects, among other places at
the MIT, Cambridge, MA, at the University of Edinburgh, Scotland, at the university of Colorado, CO,
and the university of Lisbon, Portugal. It comprises both a command line interface and a graphical user
interface, and can also be used as a library for UML and OCL. The graphical user interface is depicted in
Fig. 2. Since version 2010, SOIL contributes to this context as the model programming language of USE.

While SOIL is a complete programming language and sufficient for our requirements in the model animation
and model transformation contexts, it is not a a general purpose language. It has no I/O, no modules,
no concurrency, no higher-order features, and no exception handling. In particular, the domain of SOIL
programs are model instances, i.e., objects and relations, vs. objects and references in, e.g., Java. Unlike
imperative OO programming languages such as Java and C#, object destruction is explicit in SOIL, like a
cascading delete in a database, as most of our model manipulations require this characteristic.
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Figure 2: Screenshot of the UML-based Specification Environment (USE)
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employees busy() : Boolean {query}

qualifications

requiredQualifications

Qualifications

Requires

Worker

missingQualifications() : Set(Qualification) {query}

status : ProjectStatus

Project

0..*

0..*

1..*

1..*

schedule()

Figure 3: Project World

Apart from its implementation in USE, we see SOIL, however, as a potential alternative to other impera-
tive model transformation languages such as the imperative sub-language of ATL [19], the Epsilon Object
Language (EOL) [22], and ImperativeOCL (as part of the QVT specification [36]).

We will employ the following short example to illustrate both USE and SOIL. A bigger, extensive case
study conducted using SOIL can be found, for example, in [42]. Consider the class diagram in Fig. 3. In this
‘project world’, companies employ workers and carry out projects. Workers bring certain qualifications (e.g.,
programming) and projects require certain qualifications. In order for a project to become active, it must
have members for all required qualifications. In this class diagram, we have only one non-query operation,
schedule(), to assign workers to projects. A good implementation of schedule() will ensure a good use of the
company’s human resources (ideally, carry out as many projects as possible).

Some properties of this operation are further specified in a declarative way by OCL postconditions as shown
in Listing 1: After scheduling projects, it has to be ensured that no active project lacks any qualifications
and no employee is working in two active projects at the same time. The listing also shows the definition of
the two query operations missingQualifications() and busy(). These side effect-free operations are defined
straightforward by OCL expressions in the USE specification file.

Obviously, several implementations of schedule() will fulfill the stated pre- and postconditions. USE allows
us to define one using SOIL statements. All SOIL defined operations can be invoked interactively from the
command line on the current model instance.

During the animation of the model, all structural and dynamic constraints are checked. In our example, the

7



1 context Project def: missingQualifications () : Set(Qualification) =
2 self.requiredQualifications - self.members.qualifications ->asSet
3

4 context Worker def: busy() : Boolean =
5 self.projects ->exists(p | p.status = #active)
6

7 context Company :: schedule ()
8 post activeProjectsHaveRequiredQualifications:
9 self.projects ->forAll(p | p.status = #active implies

10 p.missingQualifications ()->isEmpty)
11 post employeesNotOverloaded:
12 self.employees ->forAll( w | w.projects ->select(p |
13 p.status = #active)->size <= 1)

Listing 1: Declarative specification of Company::schedule

execution of the schedule() operation is validated against the above postconditions. We can compare this
functionality to programming languages that support design-by-contract (such as Eiffel [31]). However, in
our case we are still in the context of the UML object model. USE provides various ways to analyze the
instance in case of violated pre- or postconditions.

Listing 2 shows a very simple imperative version of schedule(). We can see that SOIL provides typical control
flow constructs (for -loop, if -statement). Within these statements, OCL expressions are used to query the
model (e.g., to describe the range for the iteration and the condition for the if -statement). Statements which
manipulate the system state are available (in the above example: link insertion and attribute assignment).
The semantics of these statements is straightforward. Please notice that we assume that all properties in
Fig. 3 are ordered.

1 context Company def: schedule () :=
2 begin
3 for w in self.employees do
4 for p in self.projects do
5 if p.missingQualifications ()
6 ->intersection(w.qualifications)->notEmpty then
7 insert (p, w) into Members;
8 if p.missingQualifications ()->isEmpty and not w.busy() then
9 p.status := #active

10 end
11 end
12 end
13 end
14 end

Listing 2: Operational specification of Company::schedule

Operations with side-effects can be invoked using a specific invocation statement. For example, the following
statement uses the scheduling operation defined above. Imperative operations can be invoked recursively.

1 declare c : Company
2 begin
3 c := new Company;
4 c.schedule ()
5 end

USE processes all aspects of the project world model as introduced in this paper: The static structures can
be instantiated (i.e., objects and links can be created). This can happen either manually, using the USE
Generator (see below), or using SOIL statements. Then, the instantiated system state can be validated
against all structural constraints of the model. Regarding the dynamic aspects of a model, any manually
provided flow of actions (i.e., a particular sequence of state changes) as well as any execution of a SOIL-
defined operation can be validated against the dynamic constraints of the model (i.e., against the pre- and
postconditions).
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The tool can be employed to validate that our (very simple) implementation of schedule() conforms to
the postconditions as follows. For a given initial system state, USE can check if a particular execution
of schedule() conforms to its two postconditions. A sufficient coverage of test cases can be provided by
means of a surrounding SOIL program, or by employing the Generator language [13] of USE (the Generator
implements a backtracking search to yield valid instances of the model). This kind of validation can be seen
as systematic testing, in contrast to a formal verification of correctness.

4. Syntax and Semantics of OCL

Before we define SOIL formally in the next section, we first introduce OCL to the required extent. The
normative reference for the language is the OMG specification [38], for an introduction to the language we
also refer to [46]. Apart from a metamodel-based, informal description of the language, the specification
also provides formal syntax and semantics, based on [43]. We follow that formal description in this section,
although we describe the typing rules of OCL explicitly, as in [9, 24]. Without loss of generality for the
purpose of this article, we omit some elements of OCL to keep the presentation compact. In particular,
we omit tuple types and special operations such as oclIsKindOf from the syntax of OCL, and we present
only a subset of the interpretation functions for expressions. Adding them does not affect our definition (or
implementation) of SOIL.

4.1. Syntax of OCL

The grammar of OCL expressions is as follows:

e ::= (expression)
true | false | 1 | 2 | 3 | 'abc' | null | invalid | C.allInstances() | . . . (constants)
v | (variable)
let v = e1 in e2 | (let expr.)
if e then e1 else e2 end | (conditional)
e1 → iterate(v1; v2 = e2 | e3) | (iterate)
op(e1, . . . , en) | e1.op(e2, . . . , en) | e1->op(e2, . . . , en) | e1 op e2 | op{e1, . . . , en} (operation call)

For the basic types (Boolean, Integer, String, . . . ), corresponding constants can be written as usual. A
special constant C.allInstances is available that yields the set of objects of this class in the current system
state. In addition to the basic types, all classes of the underlying structural model (say, a class diagram)
are available as object types. Objects can be, like all primitive values, referenced by variables. A variable
self is often used to provide the context object for an OCL expression (e.g., when defining an invariant
constraint). A let expression is provided to introduce a value as a variable in an expression. Condition
evaluation is provided by an if expression. The iterate expression is included here as the most general
form of collection operations to iteratively unfold an expression of an expression. Finally, various operations
(without side-effects) are provided for all types, including the usual operations of the basic types (explained
below), operations on collection types, and several pre-defined operations on all object types, but also user-
defined query operations that are defined for the object types. In particular, a query operation op for an
object type can be defined by an OCL expression e as follows (when p1 is omitted, self is used):

context [p1 :] t1 :: op(p2 : t2, . . . pn : tn) : t body: e

To describe the syntax and semantics of OCL expressions more precisely, we must first describe the underlying
object model M. It is defined in [38, 43] as follows.

M = (Class,Att,Op,Assoc, associates, roles,multiplicities,≺)
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(T-Basic)
t ∈ BTypes

Γ ` t (T-Class)
c ∈ Class

Γ ` c (T-Special)
t ∈ STypes

Γ ` t

(T-Coll)
Γ ` t col ∈ CTypes

Γ ` col(t)
(T-Sub-Class)

c1, c2 ∈ Class c1 ≺ c2
Γ ` c1<: c2

(T-Sub-Col-1)
Γ ` col(t) col ∈ CTypes

Γ ` col(t)<: Collection(t)
(T-Sub-Col-2)

col ∈ CTypes Γ ` t<: t′

Γ ` col(t)<: col(t′)

(T-Sub-Trans)
Γ ` t1<: t2 Γ ` t2<: t3

Γ ` t1<: t3
(T-Sub-Refl)

Γ ` t
Γ ` t<: t

(T-Sub-Any)
Γ ` t

Γ ` t<: OclAny

(T-Sub-Void)
Γ ` t t 6= OclInvalid

Γ ` OclVoid<: t
(T-Sub-Invalid)

Γ ` t
Γ ` OclInvalid<: t

Figure 4: Inference rules for types. BTypes denotes {UnlimitedNatural,String,Boolean, String,Real}, STypes denotes
{OclAny,OclVoid,OclInvalid}, and CTypes denotes {Collection,Set,Bag, Sequence,OrderedSet}.

This structure captures the major concepts UML provides for static structure modeling (say class diagrams).
It contains all classes along with their attributes, operation signatures, associations, and generalization
relationships. We will only explain in more detail the elements that are required for the purpose of our
work, and refer to [38, Appendix A] and [43] for further reading.

Given M, the set types(M) denotes the set of types over M that can be inferred by the rules as shown in
Fig. 4. Summarized, the set of types over a model comprises the pre-defined basic types, the special types
OclVoid, and OclInvalid, all class types ofM, and all collection types that can be constructed over element
types. Because the collection types are template types, types(M) is infinite. The abstract type Collection
is a supertype of all other collection types.

To define the typing rules for OCL expressions, we further need to assume a set Opqry(M) of all query
operations over M. This set comprises in particular all constant symbols, all pre-defined operations on
basic types, all navigation operations (dependent on the associations in M), all attribute accessors, and all
user-defined class operations (dependent on Op). These are explained in more detail in the next subsection.
Notice that we, following the formalization of [38, 43], require that all operations can be statically and
unambiguously determined by their name and their parameter types, i.e., we do not support overriding.

Based on M and Opqry(M), the typing rules for OCL are given in Fig. 5, where the typing environment
comprises a set of variable declarations of the shape v : t, where v is a variable name and t ∈ types(M).
The inference rules for OCL expressions were presented in a similar fashion in [9]. We want to emphasize
that (E-Call) allows only (side-effect free) query operations to be used in OCL expressions.

4.2. Semantics of OCL

To describe the semantics of OCL, we need an interpretation of the types overM, an instance σ ofM, and
the interpretations of query operations over M. We present these definitions, which are not novel, only to
the extent that is required for the scope of this article. We refer again to [38, 43] for further details about
the semantics of OCL.

1. We require an interpretation I(t) for each type t in types(M). In particular, t1<: t2 implies I(t1) ⊂
I(t2). All interpretations of types include the value ε (null) and the value ⊥ (invalid). The first one is
used to denote an unknown fact, the second one denotes an error (e.g., division by zero). For example,
the interpretation I(Integer) of the type Integer is Z ∪ {ε,⊥}.

2. An instance σ of M describes a structure of objects, their attribute values, and the links between the
objects (say, an object diagram). We let σ(c) denote the set of instances of c in σ for each c in Class.
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(E-Sub)
Γ ` e : t1 Γ ` t1<: t2

Γ ` e : t2
(E-Var)

v : t ∈ dom(Γ)

Γ ` v : t
(E-Let)

Γ ` e1 : t1 Γ, v : t1 ` e2 : t2
Γ ` let v = e1 in e2 : t2

(E-Call)
opqry : t1 × · · · × tn → t ∈ Opqry Γ ` e1 : t1 . . .Γ ` en : tn

Γ ` opqry(e1, . . . , en) : t

(E-Cond)
Γ ` e1 : Boolean Γ ` e2 : t Γ ` e3 : t

if e then e1 else e2 end : t

(E-ColLit)
Γ ` e1 : t . . .Γ ` en : t col ∈ {Set,Bag,Sequence,OrderedSet}

Γ ` col{e1, . . . , en} : col(t)

(E-Iterate)
Γ ` e1 : Collection(t) Γ ` e2 : t2 Γ ` e3 : t2

Γ ` e1 → iterate(v1; v2 = e2|e3) : t2

Figure 5: Inference rules for OCL expressions

We let σ(att) denote the set of attribute assignments o 7→ x with o being in σ(c) and x ∈ I(t) for each
att : c→ t ∈ Att. We let σ(a) denote the set of links of the shape 〈o1, . . . , on〉 for each association a
in Assoc (with n according to the multiplicity of a). Finally, we let Instances denote the set of all
instances of M.

3. We require an interpretation I(opqry) for each query operation opqry : t1 × · · · × tn → t in Opqry(M)
that assigns a function Instances×I(t1) × · · · × I(tn) → I(t) to it2 (and for parameter-less query
operations a function Instances→ I(t) respectively).

Having the interprations I(t) of types, the set Instances of all instances of M, and the interpretations
I(opqry) of query operations, we can express the interpretation I[[ e ]] of an expression e by a function
I[[ e ]] which assigns a value to each pair env = (σ, β) of an instance σ of M and a variable assignment
β : Vart → I(t).

Let Envqry be the set of environments env = (σ, β). The semantics of an expression e : t is a function
I[[ e ]] : Envqry → I(t). The interpretation function is made total by including the invalid value ⊥ in the
interpretation of all types.

The full denotational semantics of OCL is described in [38, A.5], so we only show the interpretations of
some selected expressions (quoting the OCL spec. up to renaming of symbols). For atomic expressions, the
interpretation of constants (considered as query operations without parameters) is given by

I[[ op ]] = I(op) resp. I[[ op() ]] = I(op).

The OCL spec. defines several operations that an object model M generates. In particular, I(1) = 1,
I(2) = 2, etc., and I(invalid) := ⊥ 3 and I(null) := ε. Also, for each class c in Class, there is an operation
I(c.allInstances) := σ(c) yielding all instances of an object type.

Query operations with parameters can be invoked in several syntactic ways (infix, prefix, or postfix, with a
dot or with an arrow), but their interpretation is eventually given in the same way:

I[[ opqry(e1, . . . , en) ]](env) = I(opqry)(σ)(I[[ e1 ]](env), . . . , I[[ en ]](env)).

2Here we deviate from [38, 43, A.4.8] and include Instances to the signature of the interpretation function, as several
functions require the state in their definition (e.g, navigation operations). It might be assumed implicitly in [38, 43].

3Here we deviate slightly from the OCL spec [38], which uses the literal undefined here. We assume that this is a mistake
in the spec.

11



An object model M generates several query operations, in particular the operations for the primitive data
types (e.g., +, -, *, . . . ), accessor operations for all attributes and all association ends, and collection
operations (e.g., size and the constructors collection literals). Except for the logical connectives, all query
operations are defined strict, in the sense that they evaluate to ⊥ if any of their parameters is ⊥. For
the logical connectives, e.g., (true or ⊥) = true holds. In addition the query operations generated by M,
I(Opqry) also contains interpretations for all user defined query operations (which can be specified by an
OCL expression, see [38, A.5.1.2]).

Variables (which have to bound in some outer context) generate expressions, too.

I[[ v ]](env) := β(v)

For example, the let expression can introduce variables.

I[[ let v = e1 in e2 ]](env) := I[[ e2 ]]
(
(σ, β[v 7→ I[[ e1 ]](env)])

)
The conditional is defined strict on its condition. When e1 evaluates to ⊥ or ε, the whole expression evaluates
to ⊥. It is non-strict on its branches, i.e., it does not propagate an invalid value ⊥ for the branch that is
not selected:

I[[ if e1 then e2 else e3 end ]](env) :=


I[[ e2 ]](env) I[[ e1 ]](env) = true,

I[[ e3 ]](env) I[[ e2 ]](env) = false,

⊥ otherwise.

As initially said, there are more kinds of expressions that we do not cover here, such as the iterate expression
(which provides a folding function that can be used to implement various operations on collections like forAll,
exists, collect). Also, some operations are available that take types are arguments (and are not provided
in I(Opqry)), like oclIsTypeOf(t), which performs a type test, or oclAsType(t), which performs a type
down-cast.

4.3. Postconditions Constraints

In the context of postcondition constraints for an operation, OCL provides an extended set of expression,
that furthermore introduces an @pre version of all operations, referring to the pre-state of the constrained
operation, and an additional operation oclIsNew, that can test whether an object has been freshly created
by the constrained operation.

In this context, the semantics of an expression e of type t is given by an interpretation function I[[ e ]] :
Envqry × Envqry → I(t) that evaluates an expression given a pre-state σpre and a post-state σpost. In our
language SOIL (introduced right below), we do not require this form of evaluation. OCL postconditions
can, however, be used to constrain operations that are imperatively defined by SOIL statements (USE, for
example, supports this).

5. Syntax and Semantics of SOIL

We now provide precise semantics for SOIL. We follow the same structure as we did in the previous section
for OCL. First, in Sect. 5.1, we explain the grammar and the typing rules. Then, in Sect 5.2, we define the
semantics of statements by an interpretation function.
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5.1. Syntax of SOIL

The grammar of SOIL, which is a grammar of statements, is defined as follows, where e denotes an OCL
expression and v denotes a variable name, as in the previous section.

s ::= (statement)
v := new c | (1. – object creation)
destroy e | (2. – object destruction)
insert (e1, . . . , en) into a | (3. – link insertion)
delete (e1, . . . , en) from a | (4. – link deletion)
e1.a := e2 | (5. – attribute assignment)
v := e | (6. – variable assignment)
e1.op(e2, . . . , en) | (7. – operation call)
v := e1.op(e2, . . . , en) | (8. – operation call with result)
[declare v1 : t1, . . . , vn : tn] [begin] s1; . . . ; sn [end] | (9. – block of statements)
if e then s1 [else s2] end | (10. – conditional execution)
for v in e do s end (11. – iteration)

Statement (1)–(5) are the basic state manipulation statements. They provide a means to modify a model
instance, i.e., to create objects (storing the newly created object in a variable), to destroy an object, to
insert and delete links from associations, and to modify an attribute value of an object. The resp. objects
and values in these statements and the remaining statements are specified by OCL expressions, as defined in
the previous section (the grammar of SOIL statements is dependent on the grammar of OCL expressions).
Statement (6) is the variable assignment. It captures the result of an expression and stores it in a variable,
making it available in subsequent statements of the same scope. (7) and (8) regard the invocation of an
expression with (possible) side-effects, where (8) regards operations that have a return value. (9) groups
a sequence of statements into a block, optionally introducing local variables for that block. (10) and (11)
provide conditional execution and an iterate loop. When a block of statements without local variables is
used in these statements, the begin and end keywords of the block can be omitted for brevity.

For the formalization of SOIL statements over a model M, we require again the set Opqry(M) of all query
operations, plus a new set Opimp(M) of all operations with side-effects over M. Notice that we assume
(as for OCL) that operations can be statically and unambiguously inferred from the operation name and
the parameter types, i.e., we do not support overriding. The consequence is that we can treat operations
as functions. Although overriding is generally desirable for object-oriented programming languages, we do
not regard it as critical for the limited application scope of SOIL, and it would add significantly to the
complexity of the language syntax and semantics. We refer, for example, to [1] for an in-depth treatment
for the formalization of object-oriented imperative languages with overriding.

The typing rules for SOIL are depicted in Fig. 6. As for the type inference rules for OCL, we again assume
Γ to be the set of declared variables v : t. Notice furthermore that some rules that infer statements (Fig. 6)
require a judgment Γ ` e for an expression e in their premises.

5.1.1. Defining Operations by SOIL statements

Operations with side-effects are specified by a SOIL statement:

context [p1 :] t1 :: op(p2 : t2, . . . pn : tn) [ : t ] body: s

Like for contextual definitions in OCL, the parameter p1 can be omitted; in that case it is assumed to be
self. We formalize the above notation as follows: The mapping impopdef assigns to each operation op : p1 :
t1, . . . , pn : tn (resp., opi : p1 : t1, . . . , pn : tn → t) in Opimp a statement s such that {p1 : t1, . . . , pn : tn} ` s
(resp., {p1 : t1, . . . , pn : tn, result : t} ` s).

13



(S-Var)
v : t ∈ Γ Γ ` e : t

Γ ` v := e

(S-Att)
c ∈ Class a : c→ t ∈ Att Γ ` e1 : c Γ ` e2 : t

e1.a := e2

(S-LinkIns)
a ∈ Assoc associates(a) = 〈c1, . . . , cn〉 Γ ` e1 : c1 . . .Γ ` en : cn

Γ ` insert (e1, . . . , en) into a

(S-LinkDel)
a ∈ Assoc associates(a) = 〈c1, . . . , cn〉 Γ ` e1 : c1 . . .Γ ` en : cn

Γ ` delete (e1, . . . , en) from a

(S-Call1)
op : t1 × · · · × tn ∈ Opimp Γ ` e1 : t1 . . .Γ ` en : tn

Γ ` op(e1, . . . , en)

(S-Call2)
op : t1 × · · · × tn → t ∈ Opimp Γ ` e1 : t1 . . .Γ ` en : tn v : t′ ∈ Γ Γ ` t<: t′

Γ ` v := op(e1, . . . , en)

(S-Block)
{v1, . . . , vm} ∩ dom(Γ) = ∅ Γ, v1 : t1, . . . , vm : tm ` s1 . . . Γ, v1 : t1, . . . , vm : tm ` sn

Γ ` declare v1 : t1, . . . , vm : tm begin s1; . . . ; sn end

(S-Iter)
v /∈ dom(Γ) Γ ` e : Sequence(t) or Γ ` e : OrderedSet(t) Γ, v : t ` s

Γ ` for v in e do s end

(S-Cond1)
Γ ` e : Boolean Γ ` s

Γ ` if e then s end
(S-Cond2)

Γ ` e : Boolean Γ ` s1 Γ ` s2
Γ ` if e then s1 else s2 end

Figure 6: Type rules for the imperative language SOIL

5.2. Semantics of SOIL

To describe the semantics of SOIL statements over M, we assume Env to contain all pairs env = (σ, β) of
an instance σ ofM and list of variable assignments β = 〈B1, . . . , Bn〉, plus errimp to denote a runtime error.
We lift Env to bEnvc = Env ∪ {⊥imp}, where ⊥imp denotes an undefined environment due to divergence.

Furthermore, we assume FEnv to be the set of all environments ϕ = (ϕ1, . . . , ϕn) of functions bEnvc ×
I(t1) × · · · × I(tnk) → bEnvc ( bEnvc × I(t1) × · · · × I(tnk) → (bEnvc × I(t)) ) corresponding to each
operation opi in Opimp without (with) return value. The interpretation of operation calls characterizes ϕ
recursively, and we use its least fixed point δ (shown below) to define the semantics as

I[[ s ]](env) = I[[ s ]](δ)(env).

We make use of the following auxiliary definitions.

� We use top(env) to denote that most recent ‘frame’ of variables in a (defined, non-errorneous) envi-
ronment env , top(σ, 〈B1, . . . , Bn〉) := Bn. In particular, we can use it to evaluate an OCL expression
in the most recent frame of env as I[[ e ]](top(env)).

� We use push(env) and pop(env) to denote adding and removing a frame to (from) env . For env =
(σ, 〈B1, . . . , Bn〉), we have push(env) = (σ, 〈B1, . . . , Bn, ∅〉) and pop(env) = (σ, 〈B1, . . . , Bn−1〉). We
have push(⊥imp) = ⊥imp and push(errimp) = errimp (pop(⊥imp) and pop(errimp) resp.).

� We use env [v 7→ x] to denote an assignment of a value x to v in env . We define it as (⊥imp)[v 7→ x] :=
⊥imp, (errimp)[v 7→ x] := errimp, and (σ, 〈B1, . . . , Bn〉)[v 7→ x] := (σ, 〈B1, . . . , Bn[v 7→ x]) otherwise.

Having these preliminaries, we can describe the semantics of a statement s by an interpretation function
I[[ s ]] : FEnv → (bEnvc → bEnvc) as follows:
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5.2.1. Propagation

We have I[[ s ]](ϕ)(errimp) := errimp and I[[ s ]](ϕ)(⊥imp) := ⊥imp.

5.2.2. Interpretation of basic statements

1. For env = (σ, β) and a fresh object obj that is not in σ(c) and β = 〈B1, . . . , Bn〉,
I[[ v := new c ]](ϕ)(env) := env ′

where env ′ = (σ′, β′) with σ′ := σ except σ′(c′) := σ(c′) ∪ {obj} for each c′ ∈ Class with c ≺ c′ and
β′ := 〈B1, . . . , Bn[v 7→ obj ]}.

2. For env = (σ, β) and y = I[[ e ]]
(
top(env)

)
,

I[[ destroy e ]](ϕ)(env) :=

{
env ′ if y /∈ {⊥ocl, ε}
errimp otherwise.

where env ′ = (σ′, β′) is equal to env except that all links containing y are removed from σ(a) (for
every a ∈ Assoc) and that all assignments x 7→ z in β and σ(att) (for every att ∈ Att) are replaced
by x 7→ ε when z is equal to y or contains y as a component (for tuples and collections).

3. For env = (σ, β) and x1, . . . , xn = I[[ e1 ]]
(
top(env)

)
, . . . , I[[ en ]]

(
top(env)

)
,

I[[ insert(e1, . . . , en) into a ]](ϕ)(env) :=

{
(σ′, β) if xi /∈ {⊥ocl, ε} for each i with 1 ≤ i ≤ n,
errimp otherwise

where σ′ := σ except σ′(a) := σ(a) ∪
{

(x1, . . . , xn)
}

; and

I[[ delete(e1, . . . , en) into a ]](ϕ)(env) :=

{
(σ′, β) if xi /∈ {⊥ocl, ε} for each i with 1 ≤ i ≤ n,
errimp otherwise

where σ′ := σ except σ′(a) := σ(a)−
{

(x1, . . . , xn)
}

.

4. For env = (σ, β), x = I[[ e1 ]]
(
top(env)

)
, and y = I[[ e2 ]]

(
top(env)

)
,

I[[ e1.att := e2 ]](ϕ)(env) :=

{
(σ′, β) if x /∈ {⊥ocl, ε} and y 6= ⊥ocl

errimp otherwise

where σ′ := σ except σ′(att) := σ(att)
[
x 7→ y]

5. For env = (σ, β) and x = I[[ e ]]
(
top(env)

)
,

I[[ v := e ]](ϕ)(env) :=

{
(env [v 7→ x]〉) x 6= ⊥ocl

errimp otherwise

The semantics of the atomic statements is straightforward in general, but we want to comment on some
aspects. First, as a general remark, we want to emphasize how the definition of I[[ s ]] is dependent on the
definition of I[[ e ]]. In particular, given a state env = (σ, β), OCL expressions are always evaluated in the
form I[[ e ]](top(env)), which is a shortcut for I[[ e ]](σ,Bn), given that β = 〈B1, . . . , Bn〉. The typing rules
for the language guarantee that Bn contains all free variables of e.

Second note that the invalid value ⊥ocl of OCL is propagated to errimp for all expressions within a statement.

The third remark regard the destruction of objects. As mentioned before, SOIL intentionally has no garbage
collection, as garbage collection is not suited for the manipulation of instances, where we take a ‘global’ per-
spective on objects and cannot assume defined roots that could be used to determine reachability. Therefore,
SOIL has an explicit destroy statement. It is not sufficient to simply remove an object obj from σ(c). We
furthermore have to remove all dangling references to obj . That is, we have to remove all links from σ that
contain obj in one of its component, and we have to replace all occurrences of obj in attribute assignments
and in the variable stack β by the OCL undefined value ε. Notice that this is a deep modification of the
variable stack, we do not only replace the occurrences in the current frame, but also in previous frames.
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5.2.3. Compound statements

Having defined the interpretation of atomic statements, we now define the interpretation of compound
statements for env = (σ, β).

1. For env = (σ, β),
I[[ declare v1 : t1, . . . , vm : tm begin s1; . . . ; sk end ]](ϕ)(env) :=

I[[ sk ]](ϕ)
(
. . . I[[ s2 ]](ϕ)

(
I[[ s1 ]](ϕ)(env ′)

))
where env ′ = env [v1 7→ ε, . . . , vm 7→ ε].

2. For env = (σ, β) and b = I[[ e ]]
(
top(env)

)
,

I[[ if e then s1 else s2 end ]](ϕ)(env) :=


I[[ s1 ]](ϕ)(env) if b = true

I[[ s2 ]](ϕ)(env) if b = false or b = ε

errimp otherwise
and

I[[ if e then s1 end ]](ϕ)(env) :=


I[[ s1 ]](ϕ)(env) if b = true

env b = false or b = ε

errimp otherwise

3. For env = (σ, β),

I[[ for v in r do s end ]](ϕ)(env) :=


errimp if I[[ r ]]

(
top(env)

)
∈ {⊥ocl, ε}

env if I[[ r ]]
(
top(env)

)
= 〈〉

I[[ s′ ]](ϕ)
(
I[[ s ]](ϕ)(env [v 7→ x1])

)
otherwise

where I[[ r ]]
(
top(env)

)
= 〈x1, . . . , xn〉 and s′ = for v in Sequence{x2, . . . , xn} do s end.

The interpretation of compound statements is straightforward again. The block statement assigns the OCL
undefined value ε for all variable in the declare clause and then applies the interpretations of si from left to
right. The block statement does not introduce a new frame on the variable stack. This is not necessary, as
the type system does not allow hiding of variables for simplicity. The same remark holds for the iteration,
which introduces the loop variable.

5.2.4. Operation invocations

Next, we define the interpretation of operation calls. Unlike the interpretation of query operations, the
interpretation of imperative operations does yield a new state. For the reasons of object destruction, as
explained above, the interpretation of operation calls also yields a new variable stack in which references
might have been changed to ε by the interpretation of the called operation. As for basic statements, operation
invocation propagates errorneous or undefined environments.

1. For env = (σ, β), opi : (p1 : t1, . . . , pn : tn) ∈ Opimp, and

x1, . . . , xn = I[[ e1 ]]
(
top(env)

)
, . . . , I[[ en ]]

(
top(env)

)
,

I[[ e1. opi(e2, . . . , en) ]](ϕ)(env) :=


ϕi(env , x1, . . . , xn) if x1 6= ε and xi 6= ⊥ocl

for each i with 1 ≤ i ≤ n
errimp otherwise.

2. For env = (σ, β), opi : (p1 : t1, . . . , pn : tn → t) ∈ Opimp, and

x1, . . . , xn = I[[ e1 ]]
(
top(env)

)
, . . . , I[[ en ]]

(
top(env)

)
,

I[[ v := e1. opi(e2, . . . , en) ]](env) :=


env′[v 7→ y] if x1 6= ε and xi 6= ⊥ocl

for each i with 1 ≤ i ≤ n
errimp otherwise.

where (env ′, y) = ϕi(env , x1, . . . , xn).
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The function environment ϕ is specified recursively by the statements that are assigned to the operation
symbols. Thus, it is determined by the least fixed point δ of the function F : FEnv → FEnv constructed by
tupling with

F (ϕ) =
(
λenv , x1, . . . , x1k . call(impopdef(op1), ϕ, env , x1, . . . , x1k),

. . . ,

λenv , x1, . . . , xnk . call(impopdef(opn), ϕ, env , x1, . . . , xnk),

using
call(s, ϕ, env , x1, . . . , xk) = pop

(
I[[ s ]](push(env)[p1 7→ x1, . . . , pn 7→ xn])

)
for operations without return value and

call(s, ϕ, env , x1, . . . , xk) = (pop(env ′), y)

with env ′ = I[[ s ]](push(env [p1 7→ x1, . . . , pn 7→ xn])) and y = I[[ result ]](top(env ′)) for operations with
return value.

Notice that such a least fixed point exists since bEnvc forms a complete partial order (with a flat ordering
on Env and ⊥imp as least element) and the denotations for statements (given a function environment) are
continuous functions [47, pp. 124].

5.3. Remarks

The syntax and semantics of SOIL are consistent to each other in the following sense. We say that an
environment env = (σ, β) is valid whenever neither σ nor β contain references to objects that do not exist
in σ, and β is non-empty.

Proposition 1. Let s be a statement with v1 : t1, . . . , vn : tn ` s and a valid environment env with
top(env)(vi) ∈ I(ti) for each i, 1 ≤ i ≤ n. Then I[[ s ]](env) is either a valid environment or ⊥imp.

Proof sketch. The above proposition can be proved by structural recursion on the interpretations (we assume
the interpretations of I[[ e ]] to be type-sound). In particular, we can establish that in each induction step
all occurrences of I[[ e ]] will always have the required values (with the required types) in the passed variable
bindings.

6. Discussion

In the previous section we have formally defined the imperative language SOIL, which reuses OCL. Let us
recall the different layers of reuse:

� The grammar of SOIL statements (s ::= . . . ) contains OCL expressions e. However, we did not change
the grammar of expressions itself.

� The typing rules for statements refer to the typing rules of expressions, that is, a judgment Γ ` e : t
may occur in the premise of the typing rules for statements, but not in the conclusion. This means,
that the typing for OCL expressions is not affected by the typing rules we introduced for SOIL.

� In similar vein, the interpretation I[[ s ]](env) depends on the interpretation of expressions. More
specifically, the definition of I[[ s ]](env) uses I[[ e ]](top(env)) to determine the meaning of an OCL
expression in the context of the topmost stack frame.
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Figure 7: Dependencies between the OCL and SOIL components in USE. The figure shows how the dependency direction
SOIL → OCL (but not vice versa) is mirrored by the program components of USE.

� Finally, we want to emphasize that OCL expressions may call only query operations (given by the
set Opqry(M)), whose interpretation is a value of the return type of that operation, whereas a call
statement in SOIL refers to an imperative operation that may have side-effects. The interpretation of
these operations is a new environment (and optionally, a value of the result type).

In this sense, our definition of SOIL reflects the message of Fig. 1. In particular, SOIL can be in principle
implemented on top of existing OCL implementations, coding only the SOIL part and reusing an existing
OCL package or library for the OCL evaluations and the model handling4. This can be illustrated using
the UML-based specification environment (USE), which we have extended to support SOIL (with USE
supporting OCL since many years already). We will discuss the extended version from a user perspective
in the next section, but we want to already have a look on the dependencies between its different program
components at this point. The components responsible for parsing, type-checking, and evaluating OCL and
SOIL are presented in Fig. 7. We can see that they closely correspond to the definitions of the syntax and
semantics of the languages. For both languages, a grammar file for the ANTLR parser generator [40] is used
to generate a parser that accepts the grammars ( e ::= . . . , s ::= . . . ) described before. While parsing, an
abstract syntax tree (AST) is created that, after the parsing, performs the type-checking, as described in
Figs. 5 and 6. Finally, a type-checked instance of the OCL (resp. SOIL) meta-model is instantiated from the
AST. An evaluator class is provided for both the evaluation of expressions and the execution of statements.
One can see clearly how the dependency SOIL → OCL (but not OCL → SOIL) of the formal definition is
mirrored one-to-one in the implementation of USE. We did not have to change the components for OCL in
order to implement SOIL.

We expect that SOIL can be implemented similary on top of other OCL tools and libraries such as EMF
OCL or the Dresden OCL toolkit.

To our knowledge, OCL has not been embedded in this fashion in other programming (or transformation)
languages before. In particular, the embeddings of OCL in ImperativeOCL [36], ATL [19, 20], EOL [22],
OCL4X [18], and fALF [35] all suffer from the problems illustrated in the beginning.

6.1. Drawbacks of a our Embedding

Having explained the advantages of a safe, non-intrusive embedding of OCL, we will now also regard some
drawbacks that arise from it.

In general, apart from the syntactical differences, languages that reuse OCL in the way SOIL does can
express imperative programs in a similar way as languages like ImperativeOCL, that embed OCL in an

4Of course, up to the usual technical obstacles not related to OCL or SOIL. . .
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intrusive way. There are, however, kinds of statements that cannot be translated one-to-one. Specifically,
these statements are statements that contain expressions that contain statements. Constructions such as
the following ImperativeOCL compute expression

1 mySeq := Sequence {1,2,3}-> collect( x |
2 compute(y:Integer) {
3 y := 0; Sequence {1..x}->forEach(z){ y := y + z }
4 })

cannot be expressed as one atomic statement in SOIL. Such an amalgamation of expressions that contain
statements has to be resolved in several steps:

1 mySeq := Sequence(Integer){};
2 for x in Sequence {1,2,3} do
3 y := 0; for z in Sequence {1..x} do y := y + z end;
4 mySeq := mySeq ->append(y)
5 end

Notice that these cases of amalgamations also include invocations of non-query (i.e., side effected) operations
from OCL expressions (e.g., the invocation of lazy rules and called rules in the OCL expressions of ATL).
This can be illustrated assuming f and g to be operations with side-effects that furthermore yield integer
values; the following ImperativeOCL expression

1 result := f() + g() + 1

has to be rewritten in SOIL to

1 fVal := f();
2 gVal := g();
3 result := fVal + gVal + 1

Of course an imperative language might allow the upper syntax as a shortcut for the lower syntax, but it is
important to see that this effectively introduces a new set of non-OCL expressions as part of that imperative
language (as depicted in the middle part of Fig. 1 on the metamodel level). While the syntax might look
the same as OCL, existing OCL compilers (or interpreters) cannot be used to implement it, nor can we
reuse other formal approaches for OCL expressions, for the reasons given in Sect. 2. One might regard
this redundant approach to be viable for simple arithmetic expressions as above. However, we cannot see
where to draw the line here: If we want to allow operations with side-effects anywhere in a right-hand side
expression of an assignment statement (for example), we would end up doubling the OCL definition and
effectively not reusing OCL anymore. If we only allow certain (say, simple) expressions such as arithmetic
expressions, it might appear inconsistent and confusing to the modeler, as operations with side-effects are
allowed in some expressions only.

For these reasons, we decided to completely avoid such a redundant approach. In the limited scope of
programming in the domain of models, we expect that the benefits by far outweigh this price. This holds
in particular if we consider that we already have the full power of OCL expressions at hand as a part of the
imperative language and therefore a lot of programming can be done in a functional manner.

7. Related Work

As said in the introduction, our work does not make a contribution to the general field of programming
languages. In general, the modular composition of programming languages and the embedding of imperative
languages into higher-order functional languages has been researched for many years and the results are
implemented in several languages.

The standard technique to implement an imperative language into a higher-order functional language are
monads [33], a concept from category theory that has been widely applied, e.g., in Haskell, Scala, and Scheme.
Monads are structures that represent computations, which can be chained. In functional programming
languages, a monads consist of a type constructor, a unit function to encapsulate values into the monad,
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and a bind function to chain two monads to a larger computation. Haskell’s do notation [39], for example, is
just a syntactically convenient form for using monads. Monad transformers, another higher-order functional
construct, allow to combine monads (to lift one monad into another). Concerning SOIL the language could
be elegantly implemented in Haskell using the State and Maybe monads (the latter to represent errors). More
generally, the modular composition of languages based on monads has been researched, e.g., in [26, 15]. As
OCL does not support higher-order functions, this approach is not applicable (given that we do not want to
change the language), although it could be studied, e.g., in HOL-OCL [4].

In similar vein, structural operational semantics (modular SOS) [34] address the composition of languages
whose sematics is defined operationally [41, 47] (i.e., describing the individual computation steps). Whereas
in SOS all rules may need to be reformulated whenever new constructs are added to the programming
language (like adding side-effected expressions to OCL), in MSOS, only those rules need to be updated that
are actually concerned by the new constructs. As for the monadic denotational approach, this approach is
not applicable to OCL since there is no agreed deterministic operational semantics for OCL that clarifies,
for example, the evaluation orders of expressions (which is left open for OCL). Furthermore the ‘carrying
around’ of states through the evaluation process in actual OCL implementations would remain unsolved,
too.

The specific problem of the embedding OCL into imperative modeling language has also been discussed in
general lines by Siikarla et al. [32], who also argue for a separation of side-effected statements and side-effect
free (pure) expression when embedding OCL into other languages.

8. Conclusion

In this paper we have addressed the reuse of OCL as a pure query language in an imperative programming
language. We have discussed that extending OCL by expressions side-effects leads to problems on the
semantic level (underspecification) and on the practical, implementation level (as existing implementations
cannot be reused).

Our work focussed on working with the existing OCL standard and its implementations. Since OCL does not
provide higher-order functions (like Haskell or Scala), imperative languages cannot be integrated in elegant
ways (e.g., using Monads). We thus presented the language SOIL, which we have developed both driven
by practical needs (for our tool USE) and as a means to study and demonstrate how one can integrate
OCL safely into a programming language in the modeling context. We have shown the restrictions that
are imposed by such a language design (e.g., when compared to ImperativeOCL), which, in our view, are
acceptable in the context of model animation and model transformation.

In this sense, we hope that our work might contribute to the development of other OCL-based languages in
the future, too.
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