
Verification of ATL Transformations Using
Transformation Models and Model Finders

Fabian Büttner1?, Marina Egea2, Jordi Cabot1, Martin Gogolla3

1 AtlanMod Research Group, INRIA / Ecole des Mines de Nantes
2 Atos Research & Innovation Dept., Madrid

3 Database Systems Group, University of Bremen
fabian.buettner@inria.fr,marina.egea@atosresearch.eu,

jordi.cabot@inria.fr,gogolla@tzi.de

Abstract. In model-driven engineering, models constitute pivotal elements of
the software to be built. If models are specified well, transformations can be em-
ployed for different purposes, e.g., to produce final code. However, it is impor-
tant that models produced by a transformation from valid input models are valid,
too, where validity refers to the metamodel constraints, often written in OCL.
Transformation models are a way to describe this Hoare-style notion of partial
correctness of model transformations using only metamodels and constraints. In
this paper, we provide an automatic translation of declarative, rule-based ATL
transformations into such transformation models, providing an intuitive and ver-
satile encoding of ATL into OCL that can be used for the analysis of various
properties of transformations. We furthermore show how existing model veri-
fiers (satisfiability checkers) for OCL-annotated metamodels can be applied for
the verification of the translated ATL transformations, providing evidence for the
effectiveness of our approach in practice.

Keywords: Model transformation, Verification, ATL, OCL

1 Introduction

In model-driven engineering (MDE), models constitute pivotal elements of the software
to be built. Ideally, if these models are specified sufficiently well, model transformations
can be employed for different purposes, e.g., they may be used to finally produce code.
The increasingly popularity of MDE has led to a growing complexity in both models
and transformations, and it is essential that transformations are correct if they are to
play their key role. Otherwise, errors introduced by transformations will be propagated
and may produce more errors in the subsequent MDE steps.

Our work focuses on checking partial correctness of declarative, rule-based trans-
formations between constrained metamodels. More specifically, we consider the trans-
formation language ATL [16] and metamodels in MOF [22] style (e.g., EMF [27],
KM3 [17]) that employ OCL [21,29] constraints to precisely describe their domain.

? This research was partially funded by the Nouvelles Eq́uipes program of the Pays de la Loire
region (France).

1

These ingredients are popular due to their sophisticated tool support (in particular on
the Eclipse platform) and because OCL is employed in almost all OMG specifications.
Model transformations can be considered as programs that operate on instances of meta-
models. In this sense, we can also apply the classical notion of correctness to model
transformations. In this paper, we are interested in a Hoare-style notion of partial cor-
rectness, i.e., in the correctness of a transformation with respect to the constraints of the
involved metamodels. In other words, we are interested in whether the output model
produced by an ATL transformation is valid for any valid input model.

In this paper we present a verification approach based on transformation models.
Transformation models are a specific kind of what is commonly called a ‘trace model’.
Given an ATL transformation T : MI → MF from an input metamodel MI to an
output metamodel4 MF , a transformation model MT is a metamodel that includes
MI andMF , and additional structural modeling elements and constraints in order to
capture the execution semantics of T . In our opinion, this approach brings advantage
because it reduces the problem of verifying rule-based transformations between con-
strained metamodels to the problem of verifying constrained metamodels only. This
way, in terms of automated verification, we can reuse existing implementations and
work for model verification, benefiting from the results achieved by a broad community
over a decade.

The transformation model methodology was first presented in [12] and [7]. We pro-
vided a first sketch of how to apply the methodology to ATL in [5]. In this paper, we
now present a precise description of how to automatically generate transformation mod-
els from declarative ATL transformations. Furthermore, we show how existing model
finders for OCL-annotated metamodels can be employed ‘off-the-shelf’ in practical
verification. We employ a transformation ER-to-Relational (ER2REL) to illustrate our
approach, as this example is well-known and conceptually ‘dense’ (it contains only few
classes but comparatively many constraints). We show how the transformation model
is derived using our algorithm and how it can be used to effectively verify the ATL
transformation using UML2Alloy [1] and Alloy as a bounded model verification tool
(with Alloy being based on SAT in turn). Notice, however, that the methodology is
independent from a specific verification technique.

Organization. Sect. 2 describes the running example ER2REL. Sect. 3 shows how to
derive transformation models for ATL. In Sect. 4 we present how UML2Alloy could
be employed to validate ER2REL (based on the derived transformation model). Sect. 5
puts our contribution in the context of related work. We conclude in Sect. 6.

2 Running Example

We have chosen an ATL transformation (ER2REL) from a simple Entity-Relationship
(ER) to a simple relational (REL) data model as a running example for our paper for
two reasons. First, this domain is well-known (the results can be easily validated). Sec-
ond, almost all elements are constrained by one or more invariants, including several
universal quantifiers. This makes the verification of this transformation reasonably hard.

4 For typographical reasons we use F (think: ‘final’), inMF , to denote the output.

2

1..*

name : String

RelshipEnd

attrs

{xor}

ends

2..* 1

name : String
isKey : Boolean

ERAttribute

attrs

type

1
RelshipEntity

name : String

SchemaElement
ERSchema

1

elements

(a) ER

attrs

name : String

Relation

RELSchema

name : String
isKey : Boolean

RELAttribute

0..1

*

relations0..1

*

(b) REL

Fig. 1. ER and REL metamodels

context ERSchema inv ER_EN: -- element names are unique in schema
self.elements->forAll(e1,e2 | e1.name=e2.name implies e1=e2)

context Entity inv ER_EAN: -- attr names are unique in entity
self.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

context Relship inv ER_RAN: -- attr names are unique in relship
self.attrs->forAll(a1,a2 | a1.name = a2.name implies a1=a2)

context Entity inv ER_EK: -- entities have a key
self.attrs->exists(a | a.isKey)

context Relship inv ER_RK: -- relships do not have a key
not attrs->exists(a1 | a1.isKey)

-- -

context RELSchema inv REL_RN: -- relation names are unique in schema
relations->forall(r1,r2| r1.name=r2.name implies r1=r2)

context Relation inv REL_AN: -- attribute names unique in relation
self.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

context Relation inv REL_K: -- relations have a key
self.attrs->exists(a | a.isKey)

context RELSchema inv REL_mult1: self.relations->size() > 0 -- mult. 1..*
context Relation inv REL_mult2: self.schema.isDefined() -- mult. 1..1

context Relation inv REL_mult3: self.relations->size() > 0 -- mult. 1..*
context RELAttribute inv REL_mult4: self.relation.isDefined() -- mult. 1..1

Fig. 2. OCL constraints for ER and REL

Fig. 1 depicts the ER and REL metamodels5. Fig. 2 shows the corresponding OCL
constraints. The constraints are as expected: names must be unique within their re-
spective scopes, entities and relation must have a key, relationships must not have a key.
Notice that we encoded the multiplicity constraints for REL as explicit OCL constraints
(REL_mult). We only left the unrestricted multiplicities of 0..1 (for object-typed nav-
igations) and 0..∗ (for collection-typed navigations) in the class diagram, because we
want to verify the validity of ER2REL w.r.t. these multiplicities later and require names
for these constraints.

The ATL transformation that we show in Fig. 3 contains only matched rules, which
are the main constructs of ATL. A matched rule is composed of a source pattern and a
target pattern. The source pattern specifies a set of objects of the source metamodel and
uses, optionally, an OCL expression as a filtering condition. The target pattern specifies

5 Notice that we simply refer to the elements of a ER database schema as entities, relationships,
and relations instead of entity types, relationship types, and relation types.

3

module ER2REL; create OUT : REL from IN : ER;

rule S2S {
from s : ER!ERSchema
to t : REL!RELSchema (relations <- s.entities->union(s.relships))}

rule E2R {
from s : ER!Entity
to t : REL!Relation (name<-s.name, schema<-s.schema) }

rule R2R {
from s : ER!Relship
to t : REL!Relation (name <-s.name, schema<-s.schema) }

rule EA2A {
from att : ER!ERAttribute, ent : ER!Entity (att.entity=ent)
to t : REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-ent) }

rule RA2A {
from att : ER!ERAttribute, rs : ER!Relship (att.relship=rs)
to t : REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-rs) }

rule RA2AK {
from att : ER!ERAttribute,

rse : ER!RelshipEnd (att.entity=rse.entity and att.isKey=true)
to t : REL!RELAttribute

(name<-att.name, isKey<-att.isKey, relation<-rse.relship) }

Fig. 3. Initial version of the ATL transformation ER2REL

a set of objects of the target metamodel plus a set of bindings. The bindings describe
assignments to features (i.e., attributes, references, and association ends) of the target
objects. The execution semantics of matched rules can be described in three steps: First,
the source patterns of all rules are matched against input model elements. Second, for
every matched source pattern, the target pattern is followed to create objects in the
target model. The execution of an ATL transformation always starts with an empty
target model. In the third step, the bindings of the target patterns are executed. These
bindings are performed straight-forwardly with one exception: An implicit resolution
strategy is applied as follows when assigning a value to a property of an object of the
output model (i.e., to an object created by one of the rules). If the value is referencing an
object value of the source model, and this object has been matched by a matched rule,
then the object value of the first output pattern element of this rule is assigned instead.
By default, the ATL execution engine would report an error if no or multiple of such
matches exist.

The first rule S2S maps ER schemas to REL schemas, the second rule E2R maps each
entity to a relation, and the third rule R2R maps each relationship to a relation. The
remaining three rules generate attributes for the relations. Both entity and relationship
attributes are mapped to relation attributes (rules EA2A and RA2A). Furthermore, the
key attributes of the participating entities are mapped to relation attributes as well (rule
RA2AK).

Next, in order to illustrate the ATL execution semantics, we explain how it
works, for instance, for the rule RA2A. This rule is applied to every combina-
tion of an ERAttribute att and a Relship rs instance for which the condition

4

att.relship=rs holds. For each such match, one RELAttribute t is created. The
values of the name and isKey properties of t are simply copied from att. For the bind-
ing of the property relation, the implicit resolution strategy of ATL will replace the
value of the input pattern element rs (which is an object of the source model) by a
reference to the Relation object that has been created by R2R for rs. In this case, R2R is
the only rule that can be used to resolve Relation-objects. However, in general, there
can be multiple rules for each type.

3 Transformation Models for ATL

Model transformations can be considered as programs that operate on instances of meta-
models. In this sense, we can also apply the classical notion of correctness to model
transformations. We will consider the input and output models of a transformation as
valid if and only if they conform to the constraints of their metamodels. Partial cor-
rectness then states that if the transformation produces an output model from a valid
input model, that output model is valid as well. Total correctness extends this notion
and states that the transformation produces a valid output for every valid input model
(i.e., that the transformation terminates for every valid input model and does not abort
with an error message).

Our notion of a transformation model MT of a transformation T : MI → MF

aims to support the verification of partial correctness of T usingMT as an equivalent
surrogate as follows. A transformation model MT is a metamodel (i.e., a structural
specification of classes, associations, and constraints) that integratesMI andMF and
additional structural modeling elements that capture the execution semantics of T . A
pair of anMI instance MI and anMF instance MF is related by T if and only if there
is an instance ofMT whoseMI part is MI and whoseMF part is MF . In practice,
we want to loosen this equivalence to hold only for those MI for which T terminates.
However, for the declarative subset of ATL that we consider, recursive OCL helper
operations are the only source of non-termination, as the actual execution of ATL rules
is non-recursive and non-looping (and also deterministic [18]).

Having such an equivalent transformation model, we can verify partial correctness
of T using off-the-shelf model finders (e.g., based on SAT solving). In the remaining
section, we show how to derive it systematically for ATL transformations. We pro-
vide a general algorithm for this (Sect. 3.1) and discuss the validity of our transla-
tion (Sect. 3.2).

3.1 An Algorithm to Derive Transformation Models for ATL

Our translation does cover a significant subset of ATL, namely matched rules, which are
the workhorse of ATL, in the form provided in Fig. 4. We presume that all expressions
and bindings in the transformation are correctly typed. We do not support imperative
extensions, called or lazy rules at the moment, and we do not allow recursive OCL
helper operations.

The algorithm that createsMT for T : MI → MF is depicted in Fig. 5. It con-
sists of four main steps. The results of the algorithm for ER2REL is shown in Fig. 6

5

rule r

from s1 : t1, . . . , sm : tm (filterExpr)

to o1 : t′1(prop1,1 ← expr1,1, . . . , prop1,k1
← expr1,k1

),

...

on : t′n(propn,1 ← exprn,1, . . . , propn,kn
← exprn,kn

)

where each expr j,p has one of the following shapes:

Sh. I: propj,p ← expr j,p where expr j,p has a basic type
Sh. II: propj,p ← o where o is an output pattern variable of r
Sh. III: propj,p ← col{o1, . . . , oq} a collection of output pattern variables of r
Sh. IV: propj,p ← expr j,p where expr j,p has type t and t corresponds to a class inMI

Sh. V: propj,p ← expr j,p where expr j,p has type col(t) and t corresponds to MI

Fig. 4. ATL matched rule’s patterns currently supported by our mapping.

(generated classes and associations) and Fig. 7 (generated constraints). The first step in-
cludes all elements (i.e., classes, associations, attributes, constraints) ofMI andMF .
The second step adds a new class cr for each rule r in T (step 1a; e.g., class ‘S2S’
in Fig. 6), connects cr to the types of the input and output pattern variables (steps 1b
and 1c). Then it adds two matching constraints that ensure that exactly those combina-
tions of MI objects are connected to a cr object, that are matched by r (steps 1d and
1e; e.g., match_EA2A and match_EA2A_cond in Fig. 7). For each binding to an out-
put pattern object, corresponding binding constraints over cr are added (step 1f; e.g.,
bind_E2R_t_name). For unassigned properties, a constraint is added that ensures that
these properties are null (step 2g). The third step considers each class in MF and adds
a creation constraint to ensure that each MF object is created by exactly one rule of T
(e.g., create_Relation in Fig. 7). The fourth step is specific to those transformations that
have potentially overlapping patterns. Recall that ATL does not allow a combination
of MI objects to be matched by more than one rule (the engine would abort on this
condition). The fourth step corresponding mutual exclusion constraints for all pairs of
potentially overlapping rules (ER2REL does not contain such rules).

We make use of some auxiliary functions in the description of the algorithm that
generate OCL expressions for the more complex constraints. We define them below. To
create the associations that connect the classes cr to the resp. class in MI and MF ,
we assume −→s and −→o to generate the corresponding navigable association ends for
the pattern variables s and o (from the perspective of the rule class), and ←−s and ←−o
to generate unique opposite association end names (from the perspective of the resp.
classes in MI and MF). Furthermore, we use the hat notation ẑ to denote a fresh
variable.

Auxiliary function matchExpr(r). The function matchExpr(r) that we use in step 1d
yields a Boolean OCL expression of m nested ‘forAll’ expressions for the m input
pattern elements of r such that for each combination of objects in MI that matches r

6

1. Copy all model elements ofMI andMF .

2. For each matched rule r in T let s1 : t1, . . . , sm : tm denote the input pattern variables
of r and o1 : t′1, . . . , o1 : t′n the output pattern variables of r. Then:

(a) Add a class cr .

(b) If m = 1 (i.e., r has only single input pattern variable), add an association

t1 cr
1..1

−→s1
0..1

←−s1

.

Else, if m > 1, add the following association for each 1 ≤ i ≤ m

ti ci
1..1

−→si
0..∗

←−si

.

(c) For each output pattern variable oj : t
′
j of r with 1 ≤ j ≤ n add an association

cr t′j0..1

←−oj
1..1

−→oj

.

(d) Add a constraint context t1 inv : matchExpr(r).

(e) Add a constraint context cr inv : filterExpr ′ where
filterExpr ′ = filterExpr [s1 . . . sm]/[self.−→s1 . . . self.−→sm]
is the filter expression with all input pattern variables are replaced by navigations
from the rule object.

(f) For each binding propj,p ← expr j,p to an output pattern variable oj of r with
1 ≤ j ≤ n and 1 ≤ p ≤ kn, add a constraint
context cr inv : self.−→oj .propj,p = resolve[[expr ′j,p]]

where expr ′j,p = [s1 . . . sm]/[self.−→s1 . . . self.−→sm].

If expr j,p is of shape IV furthermore add a constraint
context cr inv : expr ′j,p.isDefined() = resolve[[expr ′j,p]].isDefined().

If expr j,p is of shape V furthermore add a constraint
context cr inv : expr ′j,p → size() = resolve[[expr ′j,p]]→ size().

(g) For each property prop of oj that is not bound by r, we add a constraint
context cr inv : self.−→oj .prop = null.

3. For each class c inMF add a constraint
context c inv : self.←−o1 → size() + · · ·+ self.←−oq → size() = 1
if {o1 : t′1, . . . , oq : t′q} = creators(c). Otherwise, when there are no creators for c,
add a constraint context c inv : false.

4. For each pair of rules r, r′ in T that have input patterns of the same size m and each
sequence ofMI types t′′1 , . . . , t′′m, add a mutual exclusion constraint
context t1 inv : mutexExpr(r, r′, 〈t′′1 , . . . , t′′m〉)
if r and r′ potentially overlap on t′′1 , . . . t

′′
m. The rules r and r′ overlap on t′′1 , . . . t

′′
m

when t′′i ≤ ti and t′′i ≤ t′i holds for each i with 1 ≤ i ≤ m.

Fig. 5. Algorithm

7

exactly one instance of cr is connected to these objects. It is defined as follows.

matchExpr(r) := t1 → forAll(ŝ1 | t2 → forAll(ŝ2 | . . . tm → forAll(ŝm |
filterExpr ′ implies cr.allInstances()→ one(ẑ |

ẑ.−→s1 = ŝ1 and . . . and ẑ.−→sm = ŝm) · · ·)
where filterExpr ′ = filterExpr [s1 . . . sm]/[ŝ1 . . . ŝm] is the filter expression of r in
which the pattern variable names are replaced by the variable names used in the above
iteration.

Auxiliary function resolve[[expr]]. The function resolve[[expr]] that we use in step 1f
is the most complex one. We use it to translate the implicit resolve mechanism of ATL
into OCL. Recall that ATL, when processing a binding prop ← expr , replaces each
object value from MI by an object value from MF . To do this, it uses the first output
pattern variable of the (unary input pattern) rule that matched the resp. object in MI . Let
t be the type of expr . Let {(x1 : t1, y1 : t′1), . . . , (xq : tq, yq : t′q)} be the set of pairs
(xi : ti, yi : t

′
i) of the one input pattern variable and the first output pattern variables

with t ≤ ti or ti ≤ t, taken from all rules in T that have a unary input pattern. Notice
that in this set we consider pattern variables of multiple rules in T , hence we prefer to
use a different maximum index q here.

– For shapes I, II, and III, no resolution is required, as the result is either a basic
type or a (collection) value of MF – recall that we have already replaced all target
pattern variables o by self.−→o in step (2f). We have resolve[[expr]] := expr .

– For shape IV we distinguish two cases. When we have q = 1 (there is only one
rule that can possibly match this type), then we can translate the resolution into
two simple navigation steps6 (the type cast may be omitted when expr already has
a sufficient specific type):

resolve[[expr]] := expr .oclAsType(t1).←−x1.
−→y1.

When we have q > 1, then there are multiple potential rules to be used for this
resolution step. Notice that there cannot be two rules applied at the same time (and
we guarantee this by mutual exclusion constraints), so we can use the ‘any’ operator
to select one.

resolve[[expr]] := col{expr .oclAsType(t1).←−x1.
−→y1,

. . . ,

expr .oclAsType(tq).←−xq.
−→yq} → any(true)

– For shape V, the translation is similar to the previous one, but now we have to
apply the resolution step to each element of the collection (using ‘collect’). The
intermediate result is a Bag consisting of several empty collections and at most one
non-empty collection. We turn this into a flat collection using ‘flatten’.

resolve[[expr]] := col{ expr → collect(ẑ|ẑ.oclAsType(t1).←−x1.
−→y1),

. . . ,

expr → collect(ẑ|ẑ.oclAsType(tq).←−xq.
−→yq)} → flatten()

6 Recall that only matched rules with unary input patterns are used, so ←−x1 is an object-valued
navigation, cf. step 2b

8

1

ERSchema

name : String

RelshipEnd

RELSchema

EA2A

S2S

E2R

R2R

RA2A

RA2AK

Entity

rs

s

name : String
isKey : Boolean

ERAttribute

1

att

1

s

rse

1

0..1

Relation

name : String

1t

t

1

t

1
name : String
isKey : Boolean

RELAttribute

1

t

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

1
Relship

1ent

s 1

Fig. 6. Class diagram of the generated transformation modelMER2REL

Auxiliary function creators(c). We use creators(c) to identify all locations where a
class ofMF may be instantiated. More specifically, this is the set of all output pattern
variables {o1 : t1, . . . , oq : tq} from the set of all rules of T with tj ≤ c for each j with
1 ≤ j ≤ q.

Auxiliary function mutexExpr(r, r′, 〈t′′1 , . . . , t′′n〉). This function yields a mutual ex-
clusion expression for a pair of potentially overlapping rules r, r′ in step 4. Recall that
each tuple of MI objects can be matched by at most one rule, otherwise the ATL engine
aborts. Let s1 : t1, . . . sm : tm and s′1 : t′1, . . . s

′
m : t′m be the input pattern variables

of the rules r and r′. Let t′′1 , . . . , t
′′
m denote a sequence of MI object types that can

be matched potentially by both r and r′. The function mutexExpr(r, r′, 〈t′′1 , . . . , t′′n〉)
generates an Boolean OCL expression that states that no combination of instances of
t′′1 , . . . t

′′
m can be connected to both a cr and a cr′ instance.

mutexExpr(s, s′, 〈t′′1 , . . . , t′′n〉) :=
t′′1 .allInstances()→ forAll(ŝ1| · · · t′′m.allInstances()→ forAll(ŝm|

not(cr.allInstances()→ exists(ẑ|ẑ.−→s1 = ŝ1 and · · · and ẑ.−→sm = ŝm) and

cr′ .allInstances()→ exists(ẑ′|ẑ′.
−→
s′1 = ŝ1 and · · · and ẑ′.

−→
s′m = ŝm)) · · ·)

3.2 Validity of the Translation

As said in the beginning of this section, a transformation modelMT shall be equivalent
to T (for transformations that do not employ recursive helper operations), in order to
useMT as a surrogate to verify the (partial) correctness of T . Recall that we defined
the notion of a transformation model as follows: A pair of anMI instance MI and an
MF instance MF is related by T if and only if there is an instance ofMT whoseMI

part is MI and whoseMF part is MF . As there is not formal semantics for ATL so far,
we have to justify our OCL axiomatization informally. In the following, we consider the
different aspects of the execution semantics of ATL matched rules and give reasons why
our translation into OCL constraints is appropriate. For the sake of brevity we simply
say ‘MT over MI and MF ’ to state that MT is an instance ofMT whoseMI part is
MI and whoseMF part is MF .

9

-- constraints generated by steps 2d and 2e: matching constraints
context ERSchema inv match_S2S: ERSchema.allInstances()->forAll(x1 : ERSchema |
S2S.allInstances()->one(z : S2S | z.s = x1))

context Entity inv match_E2R:
Entity.allInstances()->forAll(x1 : Entity |

E2R.allInstances()->one(z : E2R | z.s = x1))

context Relship inv match_R2R:
Relship.allInstances()->forAll(x1 : Relship |

R2R.allInstances()->one(z : R2R | z.s = x1))

context ERAttribute inv match_EA2A:
ERAttribute.allInstances()->forAll(x1 : ERAttribute |

Entity.allInstances()->forAll(l_ent : Entity | x1.entity=(l_ent) implies
EA2A.allInstances()->one(z : EA2A | z.att = x1 and z.ent = l_ent)))

context EA2A inv match_EA2A_cond: self.att.entity = self.ent

context ERAttribute inv match_RA2A:
ERAttribute.allInstances()->forAll(x1 : ERAttribute |

Relship.allInstances()->forAll(x2 : Relship | x1.relship=x2 implies
RA2A.allInstances()->one(z : RA2A | z.att = x1 and z.rs = x2)))

context RA2A inv match_RA2A_cond: self.att.relship = self.rs

context ERAttribute inv match_RA2AK:
ERAttribute.allInstances()->forAll(x1 : ERAttribute |

RelshipEnd.allInstances()->forAll(x2 : RelshipEnd | x1.entity=x2.entity and
x1.isKey implies

RA2AK.allInstances()->one(z : RA2AK | z.att = x1 and z.rse = x2)))
context RA2AK inv match_RA2AK_cond: self.att.entity = self.rse.entity and

self.att.isKey

-- constraints generated by step 2f: binding constraints
binding constraints
context S2S inv bind_S2S_t_relations: self.t.relations =

Set{self.s.elements->collect(z|z.oclAsType(Entity).e2r.t),
self.s.elements->collect(z|z.oclAsType(Relship).r2r.t)}->flatten()

context E2R inv bind_E2R_t_name: self.t.name = self.s.name
context R2R inv bind_R2R_t_name: self.t.name = self.s.name

context EA2A inv bind_EA2A_t_relation: self.t.relation = self.ent.e2r.t
context EA2A inv bind_EA2A_t_name: self.t.name = self.att.name
context EA2A inv bind_EA2A_t_isKey: self.t.isKey = self.att.isKey

context RA2A inv bind_RA2A_t_name: self.t.name = self.att.name
context RA2A inv bind_RA2A_t_relation: self.t.relation = self.rs.r2r.t
context RA2A inv bind_RA2A_t_isKey: self.t.isKey = self.att.isKey

context RA2AK inv bind_RA2AK_t_isKey: self.t.isKey = self.att.isKey
context RA2AK inv bind_RA2AK_t_relation: self.t.relation =

self.rse.relship.r2r.t
context RA2AK inv bind_RA2AK_t_name: self.t.name = self.att.name

-- constraints generated by step 3: creation constraints
context RELSchema inv create_RELSchema: self.s2s->size() = 1
context Relation inv create_Relation: self.e2r->size() + self.r2r->size() = 1
context RELAttribute inv create_RELAttribute:
self.ea2a->size() + self.ra2a->size() + self.ra2ak->size() = 1

-- no constraints generated by step 4 (mutual exclusion constraints)

Fig. 7. Constraints of the generated transformation modelMER2REL

10

Abnormal termination. For the considered subset of ATL (well-typed matched rules, no
imperative extensions, no recursive helper operations), the engine will always halt, and
there are only two abnormal terminations of applying a transformation T to an input
model MI . The first one is when two or more rules are applied to the same tuple of
MI objects. Our translation prevents this by mutual exclusion constraints (generated in
step 4). The second one abnormal termination condition is when an MF object cannot
be resolved to an MI object when processing the bindings. This condition is excluded
by the constraints generated in step 2f. Thus, when T aborts on MI , there is no instance
ofMT that completes MI .

Matching. The constraints generated in step 2d require that every tuple of objects that
matches the input pattern of a rule r must be connected to exactly on instance of cr.
The 1..1 multiplicities generated for the input associations for cr ensure that no other
instances of cr exist. Thus, taking also into account thatMT does exclude MI instances
that would result in abnormal termination on multiple matches, the matching constraints
inMT encode exactly the matching semantics of ATL.

Binding and Resolution. In ATL, an MF object can only be created by one rule, and
only by this rule the properties of that object are assigned. This is mirrored one-to-one
by the binding constraints we generate in step 2f. We already justified that our auxiliary
function resolve encodes the implicit resolution mechanism of ATL. Thus, taking also
into account that MT does exclude MI instances that would leave unresolved refer-
ences, the binding constraints inMT encode exactly the binding semantics of ATL.

Frame problem. So far, we have justified by the matching and binding constraints that
an instance MT over MI and MF exists if MF = T (MI). The creation constraints
created in step 3 guarantee that MT must not contain any MF objects that are not
generated by a rule. Furthermore, step 2g guarantees that properties are null unless
they are assigned by a rule. Together, this concludes the if and only if correspondence
regarding T andMT .

4 Employing Model Finders to Verify ATL Transformations

Having translated an ATL transformation T into a purely structural transformation
model MT (i.e., a metamodel consisting of classes and their properties, and con-
straints), we can employ off-the-shelf model finders (model satisfiability checkers) to
verify partial correctness of T w.r.t. the metamodel constraints ofMF usingMT .

In particular, we can check whether T might turn a valid input model MI into
an invalid output model MF as follows: Let coni with 1 ≤ i ≤ n denote the i-th
constraints of MF . Let MF i

denote a modified version of MF stripped of all its
constraints and having one new constraint negconi that is the negation of coni. Let
MT i

denote the transformation model constructed for T :MI → MF i
. T is correct

w.r.t. coni if and only if MT i
has no instance. If such an instance exist, its MI is a

counter example for which T produces an invalid result.

11

4.1 Verification using UML2Alloy

We implemented the presented translation as a so-called ‘higher-order’ ATL transfor-
mation, that is, an ATL transformation that takes an ATL transformation (the one to be
verified, including the input and output metamodels) that produces the corresponding
transformation model. The metamodels and constraints are technically represented us-
ing EMF and OCLinEcore. Then we employed the UML2Alloy model finder [1] (and
some gluing code) to check the ‘negated’ transformation model (as explained before)
for satisfiability.

UML2Alloy translates the metamodel and the OCL constraints into a specifica-
tion for the Alloy tool, which implements bounded verification of relational logic. In
the resulting specification, each class is represented as an Alloy signature each OCL
constraint is represented by exactly one Alloy fact with the same name as the OCL
constraint. Thus, we can check for the constraint subsumption easily by disabling and
negating the facts (one after another) for theMF constraints.

Table 1 shows the verification results for ER2REL. We verified all seven constraints
of REL using an increasing number of objects per class (the maximum extent per sig-
nature must be specified when running Alloy). We can see that a counter example for
(only) the constraints REL_AN can be found using at least three objects per class. This
means that there exists a valid ER instance that is transformed into an invalid REL in-
stance by ER2REL. Alloy presents the counter example in both an XML format and in
a graphical, object-diagram like notation.

Figure 8 depicts such a counter example for REL_AN: Apparently, ER2REL does
not treat reflexive relationships appropriately, while all attribute names are unique
within their owning entities and relationships in the input model, the transformation
generates identical attribute names within one relation in the output model. There are
several ways to deal with this particular problem in ER2REL. As one solution we could
modify rule RA2AK to use the name of the relationship end (instead of the key attribute)
to determine the name of a foreign key attribute. But in this case, we must disallow com-
bined keys, or we will get another violation of REL_AN in the next verification round.
As a more general solution we could introduce qualified names for foreign keys (com-
bining the name of the association end and the name of the key attribute). We leave it to
the reader to decide what is the most appropriate solution for which situation. Instead
we want to consider again Fig. 8 and emphasize the benefits of the counter examples
that our method produces: The counter examples present at the same time the offending
input model (that reveals the problem) and an explanation of the transformation execu-
tion (how the rules turn the input model into an invalid output model). In our view, this
makes our method an intuitive and powerful tool for transformation developers.

4.2 Scalability

Table 1 also provides some insights on the scalability of the verification method. De-
pending on the constraint, the verification time starts to become significant above 100
objects. Of course, these numbers are highly dependent on the constraint complexity.
While the ER2REL example is simple in terms of the number of classes and associa-
tions, we consider it to have a comparatively high constraint complexity per class. We

12

Obj/Class Obj/Total REL_RN REL_AN† REL_K REL_M1 REL_M2 REL_M3 REL_M4
2 28 0.06 * 0.06 0.05 0.05 0.05 0.7 0.05
3 42 0.15 0.11 0.10 0.11 0.11 0.11 0.09
5 70 3.12 0.51 0.70 0.40 0.21 0.52 0.20
7 98 38.62 0.58 4.21 1.21 0.54 3.93 0.48

10 140 543.93 1.70 136.61 4.96 1.53 17.03 1.33
Table 1. Avg. solving times (in seconds) using Alloy. Non-subsumed constraint marked with †.
Undetected counter example marked by (*). All checks were conducted several times on a 2.2
Ghz office laptop running Alloy 4.1, Windows 7, and Java 7.

could confirm that larger class diagrams / larger instance sets do not necessarily in-
crease the solving times, whereas harder (more overlapping, less tractable) constraints
do. In this sense, we are confident that our method is applicable to larger metamodels as
well. However, for the verification of industrial size metamodels and transformations,
we expect that further heuristics and separation of concerns strategies will be required
(e.g., metamodel pruning [25]).

name = x

: ERAttribute

isKey = true
name = x

: EA2A: RelshipEnd

: RelshipEnd

: Entity : E2R : Relation

: RELAttribute

isKey = true
name = x

: Relship
: R2R

: Relation

: RELAttribute

name = x

isKey = true

: RA2AK

: RA2AK

: RELAttribute

isKey = true

Fig. 8. Counter example: REL_AN violation

With respect to the chosen model verification tools (UML2Alloy and Alloy), it is
important to remark again that these tools can only perform bounded verification. Thus,
if Alloy cannot find a counter example, this does not mean that no counter example
exists outside the fixed search bounds.

5 Related Work

We can relate our paper to several works. There are a couple of approaches that ad-
dress partial, Hoare-style correctness of model transformation with respect to meta-
model constraints as transformation pre- and postconditions. Inaba et al. automatically
infer schema (i.e., metamodel) conformance for transformations based on the UnCAL
query language using the MONA solver [15]. The schema expressiveness in this ap-
proach is more restricted than OCL and describes only the typing of the graph. For
example, uniqueness of names, as in ER and REL, could not be expressed. Asztalos et
al. infer assertions for graph transformation-based model transformations, using Pro-
log [2]. They use an assertion language based on graph patterns, to enforce or avoid

13

certain patterns in the model, which is a different paradigm than OCL. Rensink uses
unbounded model checking on first-order linear temporal properties for graph trans-
formation systems [24]. In the same vein, Lucio et al. map transformations into the
DSLTrans language, and pattern-based properties into a model-checking problem (in
Prolog, too) [20].

More specifically, there are also approaches that translate model transformations
into transformation models in a similar fashion as we do: In a previous work, we trans-
late triple graph grammars (which have a different execution semantics than ATL) and
verify various conditions such weak and strong executability [8]. We do not address ex-
ecutability but focus on partial correctness (although we expect that executability could
be expressed for ATL, too, using a tailored version of our algorithm). In similar vein
Guerra et al. use triple graph grammar based transformation specifications and generate
OCL invariants to check the satisfaction these specifications by models [14]. To our
knowledge, we are the only ones to present such a verification approach for ATL. Our
paper is a successor of earlier results [5]. In that previous work, we gave a first sketch
of the translation, but did not describe how to perform the actual translation into OCL,
as we do in our current contribution.

Related to the transformation model concept, the works of Braga et al., Cariou et al.,
and Gogolla and Vallecillo use OCL constraints to axiomatize properties of rule-based
model transformation in terms of transformation contracts (but they do not generate
them from a transformation specification) [3,10,13].

To our knowledge, there are only two other approaches for the verification of ATL:
First, Troya and Vallecillo provide a rewriting logic semantics for ATL and uses Maude
to simulate and verify transformations, but do not consider the verification of Hoare
style correctness [28]. Second, we recently presented an alternative approach to the for-
mal verification of partial correctness of ATL using SMT solvers and a direct translation
of the ATL transformation into first-order logic [6]. This approach is complementary to
our current one and to other bounded verification approaches for ATL: It reasons sym-
bolically and does not require bounds on the model extent, but it is incomplete (not
all properties can be automatically decided this way, although it is refutationally com-
plete in many cases). It can be used to verify several pre-post-implications, but is not
well suited to find counter examples. Furthermore, it builds on the translation of OCL to
first-order logic by Egea and Clavel [11] which can only handle a subset of OCL. While
the lightweight OCL axiomatization presented in our current work is fine for bounded
model finders (and has an intuitive interpretation of counter examples as trace models),
we were not able to employ SMT solvers for its verification. Using a direct translation
of ATL+OCL into FOL [6] we could automatically prove several desired implications
using the Z3 theorem prover solver (for the price that this approach requires of a full
FOL encoding of ATL and OCL).

In this paper, we employed UML2Alloy [1] to perform the actual model verifica-
tion. The community has developed several strong alternative approaches for the formal
verification of models with constraints that we could use as well. They have in com-
mon that the model is translated into a formalism that has a well-defined semantics.
Most approaches employ automated reasoning in the target formalism, for example, de-
scription logic [23], first-order logic [11], relational logic [19], constraint satisfaction

14

problems [9], or propositional logic [26]. Others, such as [4], use interactive theorem
proving. We could already reproduce the UML2Alloy results using the prototype of
Kuhlmann et al. [19].

6 Conclusion and Future Work

In our paper, we have presented an approach that eases the verification of ATL transfor-
mations and thus helps to improve the quality of the MDE methodology in practice. As
its core it is based on an automatic translation from ATL into a transformation model,
which is a constrained metamodel that can be used as a surrogate for the verification
of partial transformation correctness w.r.t. to the constraints of the input and output
metamodels. We have presented a precise, executable description of the translation for
a significant subset of ATL. We have also shown how this methodology can be im-
plemented in practice using an ATL higher-order transformation and an off-the-shelf
model satisfiability checker (UML2Alloy). To our knowledge, we are the first ones to
provide such an automatic approach for the verification of partial correctness for ATL.

We want to emphasize that the verification process can be automated as a “black
box” technology, in the sense that the transformation developer is in contact only with
models, in which the generated transformation models and their instances have a famil-
iar representation for him.

In the future, we plan to explore the capabilities of different model finders as back-
ends to our approach, in order to evaluate which are best suited for this kind of veri-
fication. Regarding ATL, we have already implement an important subset of ATL, but
we will incorporate (a restricted form) of so called lazy rules, which can be found in
several transformations. Last but not least, comprehensive case studies must give more
feedback on the applicability of our work.

References

1. Anastasakis, K., Bordbar, B., Georg, G., I.Ray: UML2Alloy: A Challenging Model Trans-
formation. In: MoDELS 2007. LNCS, vol. 4735. Springer (2007)

2. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards Automated, Formal Verification of
Model Transformations. In: ICST’2010, Proc. pp. 15–24. IEEE Computer Society (2010)

3. Braga, C., Menezes, R., Comicio, T., Santos, C., Landim, E.: On the Specification, Veri-
fication and Implementation of Model Transformations with Transformation Contracts. In:
SBMF 2011. LNCS, vol. 7021. Springer (2011)

4. Brucker, A.D., Wolff, B.: HOL-OCL: A Formal Proof Environment for UML/OCL. In: FASE
2008. LNCS, vol. 4961. Springer (2008)

5. Büttner, F., Cabot, J., Gogolla, M.: On Validation of ATL Transformation Rules By
Transformation Models. In: MoDeVVa’2011, Proc. ACM Digital Library (2012), DOI
10.1145/2095654.2095666

6. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-shelf’ SMT
solvers. In: MoDELS’2012, to appear. LNCS, Springer (2012)

7. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model Transforma-
tions? Transformation Models! In: MoDELS 2006. LNCS, vol. 4199. Springer (2006)

15

8. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declarative model-
to-model transformations through invariants. Journal of Systems and Software 83(2), 283–
302 (2010)

9. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL
models using constraint programming. In: Automated Software Engineering, ASE 2007,
Proc. ACM (2007)

10. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of model
transformations. Electronic Communications of the EASST 24 (2009)

11. Clavel, M., Egea, M., de Dios, M.A.G.: Checking Unsatisfiability for OCL Constraints. Elec-
tronic Communications of the EASST 24, 1–13 (2009)

12. Gogolla, M.: Tales of ER and RE Syntax and Semantics. In: Transformation Techniques in
Software Engineering. IBFI (2005), dagstuhl Seminar Proc. 05161

13. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: ECMFA 2011.
LNCS, vol. 6698. Springer (2011)

14. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A Visual Specification Language for
Model-to-Model Transformations. In: 2010 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2010). pp. 119–126. IEEE Computer Society (2010)

15. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verification using
monadic second-order logic. In: ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, PPDP, 2011, Proc. pp. 17–28. ACM (2011)

16. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-
put. Program. 72(1-2), 31–39 (2008)

17. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Formal Methods for
Open Object-Based Distributed Systems, FMOODS 2006, Proc. LNCS, vol. 4037, pp. 171–
185 (2006)

18. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Proc. of the Model Transforma-
tions in Practice Workshop at MoDELS 2005 (2005)

19. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models by Integrat-
ing SAT Solving into USE. In: TOOLS 201. LNCS, vol. 6705, pp. 290–306. Springer (2011)

20. Lucio, L., Barroca, B., Amaral, V.: A Technique for Automatic Validation of Model Trans-
formations. In: MODELS 2010, Part I. LNCS, vol. 6394. Springer (2010)

21. OMG: The Object Constraint Language Specification v. 2.2 (Document formal/2010-02-01).
Object Management Group, Inc., Internet: http://www.omg.org/spec/OCL/2.2/ (2010)

22. OMG: Meta Object Facility (MOF) Core Specification 2.4.1 (Document formal/2011-08-
07). Object Management Group, Inc., Internet: http://www.omg.org (2011)

23. Queralt, A., Rull, G., Teniente, E., Farré, C., Urpí, T.: AuRUS: Automated Reasoning on
UML/OCL Schemas. In: ER 2010. LNCS, vol. 6412. Springer (2010)

24. Rensink, A.: Explicit State Model Checking for Graph Grammars. In: Concurrency, Graphs
and Models, Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday.
LNCS, vol. 5065, pp. 114–132. Springer (2008)

25. Sen, S., Moha, N., Baudry, B., Jézéquel, J.M.: Meta-model Pruning. In: MODELS 2009,
Proc. LNCS, vol. 5795, pp. 32–46. Springer (2009)

26. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based Verification
of UML/OCL Models. In: TAP 2011. LNCS, vol. 6706, pp. 152–170. Springer (2011)

27. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework.
Addison-Wesley Longman, Amsterdam, 2nd edn. (2008)

28. Troya, J., Vallecillo, A.: A Rewriting Logic Semantics for ATL. Journal of Object Technol-
ogy 10, 5: 1–29 (2011)

29. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Getting Your Models Ready
for MDA. Addison-Wesley, 2nd edn. (2003)

16

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org

	Verification of ATL Transformations Using Transformation Models and Model Finders

