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Abstract. The Object Constraint Language (OCL) is a well-accepted ingredi-
ent in model-driven engineering and accompanying modeling languages like
UML (Unified Modeling Language) or EMF (Eclipse Modeling Framework)
which support object-oriented software development. Among various possibil-
ities, OCL offers the formulation of state invariants and operation contracts in
form of pre- and postconditions. With OCL, side effect free query operations
can be implemented. However, for operations changing the system state an im-
plementation cannot be given within OCL. In order to fill this gap, this paper
proposes the language SOIL (Simple OCL-like Imperative Language). The ex-
pression sub-language of SOIL is identical to OCL. SOIL adds well-known, tra-
ditional imperative constructs. Thus by employing OCL and SOIL, it is possi-
ble to describe any operation in a declarative way and in an operational way on
the modeling level without going into the details of a conventional programming
language. In contrast to other similar approaches, the embedding of OCL into
SOIL is done in a new, careful way so that elementary properties in OCL are pre-
served (for example, commutativity of logical conjunction). The paper discusses
the central principles behind this conservative embedding of OCL into SOIL.
SOIL has a sound formal semantics and is implemented in the UML and OCL
tool USE (UML-based Specification Environment).

1 Introduction

Modeling languages like UML (Unified Modeling Language) or EMF (Eclipse Mod-
eling Framework) play a central role in object-oriented software development and rely
on a model-centric approach for development in contrast to traditional code-centric ap-
proaches. One main idea when using models is to find and to formulate central structural
and behavioral properties of the system under development in an abstract, implementa-
tion independent way. Visual modeling notations are typically enriched by the textual
Object Constraint Language (OCL) [WK03,CW02] which combines elements of first
order predicate logic with object navigation. OCL allows the developer to formulate
properties of a model that cannot be expressed in the visual notation. Typical applica-
tions of OCL are the formulation of class invariants (to express structural properties)
and pre- and postconditions for operations as well as guards for state charts (to express
behavioral properties).
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While there are several visual possibilities like state charts or activity diagrams for
modeling behavior, there is no way which allows the developer to express imperative
algorithms in textual form. However, there are two important areas that require such a
complementary textual notation for models, because they involve a considerable num-
ber of imperative algorithms: executable models and model transformations. Both areas
typically combine a visual notation like state charts and graph transformations with
imperative formulations of algorithms.

– For example, the Executable UML approach [MSUW04,Mel02] describes UML
models that can be actually executed. This is achieved by providing Moore state
charts for all operations of the model. Furthermore, a textual action language is
used to describe the effects of the states in the state machines.

– A second application of textual imperative languages within modeling is found in
the Model-Driven Architecture (MDA) [OMG03]. The OMG Query, Views, Trans-
formation (QVT) specification [OMG08] describes several layers to transform ab-
stract models into more specific models. At its core, it offers a textual imperative
language, ImperativeOCL, which is based on OCL.

– A third area, where textual imperative descriptions within models are needed, are
operations which change the state of the system under development. It is possible
to formulate so-called query operations with textual OCL. Such operations do not
modify the system state but retrieve other objects and data from source objects.
However, it is not possible to formulate the implementation of state changing op-
erations in OCL whereas one can determine the behavior of such operations by
stating pre- and postconditions.

Thus, one the one hand side, there is OCL, which has already proven to be a valuable
expression language with broad support of tools. On the other hand, there are several
areas that require an imperative language for and within models. Since imperative state-
ments like assignments or conditionals require expressions, the idea to use OCL as an
expression language within an imperative programming language naturally comes up.

Indeed, there is a number of imperative languages that reuse OCL as an expression
language. However, if one looks on the reuse of OCL in these approaches in depth,
there are different understandings of reuse. ImperativeOCL is an example for a kind of
weak OCL reuse that prohibits the direct reuse of OCL tools and it is also an exam-
ple for a language that introduces semantic problems for OCL expressions [BK09]. As
an alternative, we developed the language SOIL (Simple OCL-based Imperative Lan-
guage) [Büt11]. SOIL has a sound formal semantics and is type safe. SOIL is imple-
mented in the UML-based Specification Environment (USE) [GBR07].

In the present paper, we will use SOIL as a showcase to illustrate the major criteria for
reusing OCL in an imperative programming language. The rest of the paper is structured
as follows. We first motivate why OCL could be reused in an imperative programming
language in Sect. 2. In Sect. 3, we give an example of how SOIL is applied to specify the
semantics for operations in models. In Sect. 4 we discuss general criteria for the reuse
of OCL in an imperative programming language. When necessary, we refer to SOIL
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to illustrate a modular kind of reuse. Section 5 shortly highlights the consequences of
a modular embedding in terms of language expressiveness. We conclude our paper in
Sect. 6.

2 Motivation for Reusing OCL

In the context of model-driven engineering and model-transformation, there are several
reasons to reuse OCL. Formal approaches such as Executable UML and MOF QVT
require precise operational descriptions that cannot always be expressed reasonably us-
ing only visual notation. Textual imperative languages are required to fill this gap. The
official OMG language ImperativeOCL extends OCL by so-called imperative expres-
sions to suit this need. Other approaches combining OCL or an OCL-like language with
imperative programming are EOL [KPP06] and OCL4X [JZM08].

There are several reasons to build these languages on top of OCL. First of all, we can as-
sume OCL to be already known in context where these languages are used. Developers
familiar with modeling languages typically know OCL already. Thus, learning the re-
spective imperative language becomes easier when the expression language is already
known. This is true in particular as these languages are typically rather lightweight.
They do not aim to compete against general purpose languages such as Java or C#.

Another reason for reusing OCL is the possibility to reuse existing OCL tools: The
implementation of a programming language based on OCL can be simplified if one
can avoid to deal with expressions again. The infrastructure for UML and EMF mod-
els and OCL expressions is already available in several tools. The long list of publicly
available OCL tools includes the Dresden OCL toolkit [HDF02], the OCL Environ-
ment (OCLE) [CPC+04], the ATL tool [JABK08], the Eclipse Model Development
Tools (MDT) Eclipse MDT OCL [MDT], KMF [AP08], the Octopus tool [Kla05], Ro-
clET [RT], and the UML-based Specification Environment (USE) [GBR07].

Furthermore, the scientific community has developed a number of formal ap-
proaches that deal with OCL expressions and OCL-annotated models. These ap-
proaches include expression transformation (e. g., in [MB08,CT07,Büt05]), expres-
sion analysis (e. g., in [CJMB08]), reasoning (e. g., in [BW08]), and model checking
(e. g., in [DKR00,KK08]). These results can be employed further, if OCL is used as an
expression language within an imperative programming language.

For these reasons, we think that there are strong arguments for reusing OCL in imper-
ative programming. However, as we will point out in Sect. 4, we have to be careful
in the definition of an OCL-based imperative language. OCL has to be embedded in a
modular way when one wants to take advantage of the mentioned profits.

3 SOIL by Example

In this section we give a concrete example for using an imperative programming lan-
guage for UML models: The language SOIL as part of the UML-based Specification
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Environment (USE). USE supports the modeler in two ways: (1) prototypical model
states for OCL-annotated UML models can be validated against structural constraints
(including OCL invariants), and (2) prototypical model executions can be validated
against dynamic constraints (i. e., OCL pre- and postconditions). Previously, there was
no universal means to specify imperative programs for OCL-annotated models employ-
ing general loops, operation calls and recursion. This gap was filled by SOIL. Using
SOIL, imperative definitions can be given for the operations of a model, and the imper-
ative definitions can be validated against the structural and dynamic constraints of the
model. The language has a formally defined semantics and the type system is proved to
be sound [Büt11].

The extended USE tool now enables stepwise refinement from a declarative model (pre-
and postconditions) towards an operational model (operation implementation) in an in-
tegrated model-based environment. The following short example shows how SOIL is
used to perform this refinement step. Consider the class diagram in Fig. 1. In this project
world, companies employ workers and carry out projects. Workers bring certain quali-
fications (e.g., programming) and projects require certain qualifications. In order for a
project to become active, it must have members for all required qualifications. In this
class diagram, we have only one non-query operation, schedule(), to assign workers to
projects. A good implementation of schedule() will ensure a good use of the company’s
human resources (ideally, carry out as much projects as possible).

1..*

«enumeration»

active

inactive

ProjectStatus

hire(w : Worker)

Company

projects {ordered}

1

0..*

CarriesOut Qualification

projects*

members1..*

Members

0..1 Employs 1..*

employees busy() : Boolean {query}

qualifications

requiredQualifications

Qualifications

Requires

Worker

missingQualifications() : Set(Qualification) {query}

status : ProjectStatus

Project

0..*

0..*

1..*

Fig. 1. Project World

Some properties of this operation are further specified in a declarative way by OCL
postconditions as shown in Listing 1.1: After scheduling projects, it has to be ensured
that no active project misses any qualifications and no employee is working in two ac-
tive projects at the same time. The listing also shows the definition of the two query
operations missingQualifications() and busy(). These side effect free operations are de-
fined straightforward by OCL expressions.
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1 context Project def: missingQualifications() : Set(Qualification) =
2 self.requiredQualifications - self.members.qualifications->asSet
3

4 context Worker def: busy() : Boolean =
5 self.projects->exists(p | p.status = #active)
6

7 context Company::schedule()
8 post activeProjectsHaveRequiredQualifications:
9 self.projects->forAll(p | p.status = #active implies

10 p.missingQualifications()->isEmpty)
11 post employeesNotOverloaded:
12 self.employees->forAll( w | w.projects->select(p |
13 p.status = #active)->size <= 1)

Listing 1.1. Declarative specification of Company::schedule

Obviously, several implementations of schedule() will full the above pre- and postcon-
ditions. The USE tool allows us define schedule() using SOIL statements. Giving an ini-
tial state, all SOIL defined operations can be invoked. Recursive invocation is supported,
as well. During the animation of the model, all structural and dynamic constraints are
checked. In our example, the execution of the schedule() operation is validated against
the above postconditions. We can compare this functionality to programming languages
that support design-by-contract (such as Eiffel [Mey92]). However, in our case we are
still in the context of the UML object model. In particular, OCL expressions can be
used within our imperative definition.

Listing 1.2 shows a very simple imperative version of schedule(). We can see that
the SOIL provides typical flow control constructs (for-loop, if-statement). Within these
statements, OCL expressions are used to describe the parameters (e.g., the range for
the iteration and the condition for the if-statement. Statements to manipulate the system
state are available (in the above example: link insertion and attribute assignment). The
semantics of these statements is straightforward.

1 context Company def: schedule() =
2 for w in self.employees do
3 for p in self.projects do
4 if p.missingQualifications()
5 ->intersection(w.qualifications)->notEmpty then
6 insert (p, w) into Members;
7 if p.missingQualifications()->isEmpty and not w.busy() then
8 p.status := #active
9 end

10 end
11 end
12 end

Listing 1.2. Operational specification of Company::schedule

While this very simple implementation of schedule() conforms to the postconditions,
it is not an optimal implementation, since it will not result in a maximum number of
projects being active. We can construct a more sophisticated version that schedules and
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reschedules project members to achieve an optimal number of active projects. How-
ever, such an implementation is much more complex and, therefore, error prone. The
integrated descriptive and operation specification in USE with OCL and SOIL allows a
smooth and step-wise refinement process from the descriptive model to an actual imper-
ative model, guiding the developer by validating the models through animation against
the constraints.

4 Embedding of OCL into SOIL

In the previous section, we gave an example for an imperative programming language
for UML models. As several other related languages such as ImperativeOCL, it reuses
OCL for expressions. However, not all of these languages realize the benefits we gave
as reasons for reusing OCL in Sect. 2.

In this section, we now discuss several concepts of imperative programming languages
from the perspective of reusing OCL. We start with a short recapitulation of the for-
malization of OCL expressions, then we inspect the amalgamation of statements, local
variables, operation invocation, and state manipulation. As we will see, the major pit-
falls in a successful modular reuse of OCL lurk in the amalgamation of statements and
expressions and in an indeterminate treatment of operations with side effects and query
operations.

For each of the mentioned concept we provide the corresponding piece of SOIL to illus-
trate a safe and modular reuse. A complete guide to SOIL, including a formal definition
of the language as well as proofs for the type soundness can be found in [Büt11].

4.1 Formal Representation of OCL Expressions

We shortly sketch the formal definitions for UML static structure models and OCL
expressions. These definitions have been originally provided in [Ric02] and are now
enclosed in the OCL specification [OMG06]. For the objective of this paper, a complete
depiction of the formalization is not necessary as we only need the general concepts in
the following.

The object model

M = (CLASS,ATTc,OPc,ASSOC, associates, roles,multiplicities,≺)

is the formal representation of the major concepts UML provides for static structure
modeling (say class diagrams). It contains all classes along with their attributes, opera-
tion signatures, associations, and generalization relationships. The set µ denotes the set
of all instances ofM. Thus, a system state σ ∈ µ describes a set of objects, links, and
attribute values.

For the formalization of OCL expressions, we require a data signature overM which
is a structure

ΣM = (TM,≤, ΩM)

6



where TM is the set of all types overM. This includes primitive types, user types (in
particular, classes), and all collection types can be constructed by the OCL collection
type constructors. The relation ≤ is the type hierarchy over TM. The set ΩM contains
the set of all query operations (operations without side effects), and thus corresponds to
a subset of OPc.

The semantics of ΣM is as follows. I(TM) assigns each type t ∈ TM an interpretation
I(t) (the domain of t). I(≤) implies for all types t′, t ∈ TM that I(t′) ⊆ I(t) if
t′ ≤ t. I(ΩM) assigns each operation ω : t1 × · · · × tn → t ∈ ΩM a total function
I(ω) : σ × I(t1)× · · · × I(tn)→ I(t).

Given the data signature ΣM, we can formalize the set Expr of all OCL expressions
that exists over ΣM. For each expression e ∈ Expr, the function free : Expr → Var
determines the free variables of e (Var being the set of all typed variables).

The interpretation of an expression e ∈ Expr is given by a function I[[ e ]] which assigns
a value to each pair τ = (σ, β) of a system state σ of M and a variable assignment
β : Var→ I(t).

4.2 Statements

Imperative programming languages typically refer to their smallest standalone elements
as statements. The effect of such a statement is determined by the effect is has on the
process environment (the state). For imperative languages that work on object models,
the state at least contains the available objects, links, and attribute values, as well as a
representation of the variable assignments.

If we want to describe the semantics of an imperative language in a similar fashion as for
OCL, then we have to describe the interpretation for each statement s of that language
by an interpretation function. A minimalistic interpretation function for statements is
a function I[[ s ]] which assigns each pair (σ, β) of a system state σ and a variable as-
signment β a new pair (σ′, β′). If we furthermore want a statement to have a value in
a functional sense, we require an interpretation that assigns each pair (σ, β) a triple
(σ′, β′, y) where y is the functional value of statement s.

Statements having a functional value may also occur where an expression is expected.
Several statements in common programming languages have this kind of semantics, for
example the assignment statement b = a in Java which (1) leads to a new environment
(with b having a new value) and (2) has a functional value (the value of a). It can be
used as an expression as well, therefore a statement like c = (b = a) is valid in several
programming languages.

However, for a modular reuse of OCL, it is important to keep statements and OCL
expressions clearly separated. We will use the language ImperativeOCL to illustrate the
problems that result from an amalgamation of statements and OCL expressions.

ImperativeOCL defines several new kinds of OCL expressions. These new expressions
are called imperative expressions and have a combined functional resp. imperative se-
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mantics as explained above. In the ImperativeOCL metamodel, the imperative expres-
sions are introduced as subclasses of OclExpression (and therefore, imperative expres-
sions extend the set of OCL expressions).

In particular, the compute expression can be used to capture the result of a sequence of
imperative statements as a functional value. In ImperativeOCL, the following expres-
sion has the value 6 (1 + 2 + 3):

1 1 + compute(b : Integer) { a := 1; b := a + 1 } + 3

The compute expression declares a local variable and contains a sequence of imperative
expressions. The value 2 of the above compute expression is determined by the final
value of b after executing the statements of the body. If we assume the second variable
a to be declared somewhere before, the compute expression also has an effect that is
visible outside the compute expression, as a (possibly) new value (1) will be assigned
to a after the evaluation of the compute expression.

Now we use a more complex example. Assume true has been assigned to the variables
a and b before, and notice that the imperative assignment expression x := y of Impera-
tiveOCL has the same value semantics as discussed above:

1 compute(c:Boolean) { if ((a:=false) and (b:=false)) { ... }; c := a }

The value of this compute expression is false (it returns the value of c at the end of
the block). The interpretation, however, becomes less obvious if we change the last
assignment:

1 compute(c:Boolean) { if ((a:=false) and (b:=false)) { ... }; c := b }

The interpretation of this compute expression depends on how we define the imperative
semantics of the logical connectives. Given Boolean expressions e1 and e2, we have at
least two choices to define I[[ e1 and e2 ]](σ, β):

1. Lazy evaluation semantics like in Java or C (returns true for the above example):

I[[ e1 and e2 ]](σ, β) =

{
I[[ e2 ]](σ′, β′) if y = true
(σ′, β′, y) otherwise

where (σ′, β′, y) = I[[ e1 ]](σ, β). Under this semantics (also called short-circuit
evaluation) the right-hand side of the and operator is not evaluated unless the left-
hand side evaluates to true. Therefore, b stays true.

2. Strict evaluation semantics (returns false for the above example):

I[[ e1 and e2 ]](σ, β) =

{
(σ′′, β′′, true) if y1 = true ∧ y2 = true
(σ′′, β′′, false) otherwise

where (σ′, β′, y1) = I[[ e1 ]](σ, β) and (σ′′, β′′, y2) = I[[ e2 ]](σ′, β′). Under this
semantics, both sides of the and operator are always evaluated. Therefore, false is
assigned to b.
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There is no rule on short-circuit evaluation in OCL. OCL, which can be regarded as
a kind of first order predicate logic, does not need such a rule. An optimizing OCL
compiler might even decide to short-circuit evaluate the second operand first if this
seems reasonable.

However, in order to have a clear semantics, ImperativeOCL implicitly requires a de-
cision on this question. Similar issues regard the commutativity of operators etc. Of
course these decisions can be made for ImperativeOCL, but they may be inappropriate
for other applications of OCL. And, existing OCL tools may have differing implemen-
tations and may be therefore unusable to implement ImperativeOCL.

A more general argument against the amalgamation of statements and expressions is
that OCL expressions are no longer side effect free by introducing ImperativeExpres-
sion as a subclass of OclExpression. In our understanding, this breaks a fundamental
property of the OclExpression class. Therefore the ImperativeOCL metamodel breaks
the subtype substitution principle. The direct result is that formal approaches such as
expression transformations, expression analysis, reasoning, and model checking cannot
longer be applied to OCL expressions in the context of the ImperativeOCL extension.

Therefore, we require a strict distinction of statements and OCL expressions for a mod-
ular reuse of OCL. Fig. 2 depicts this requirement on the level of the language meta-
models. Notice that, from the perspective of modular reuse, an imperative programming
language might add further kinds of expressions which are not OCL. However, these
expressions must not occur as OCL expressions.

package

imperative language

metamodel package

OclExpression

(OCL)

(ImperativeLanguage)

Non−OCL Expression

OclExpression

(OCL)

(ImperativeLanguage)

Statement

<<imports>>

OCL metamodel

Fig. 2. Modular Embedding

A similar argumentation for composition and modularity of domain specific languages
can be found in [KRV08] and [Hud98]. It is also aligned with [MSS04] in the sense that
side effected non-modular extensions of OCL should be avoided.

SOIL Example For the reasons given, statements are clearly separated from OCL ex-
pressions in SOIL. To illustrate the formalization of statements in SOIL, we show how
the syntax and semantics of the imperative if-then-else are defined.
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The syntax is defined as follows1: If e ∈ ExprBoolean and s1, s2 ∈ Stmt then

if e then s1 else s2 end ∈ Stmt.

We can see that this kind of statement contains an expression. But despite syntactic sim-
ilarities to the functional if-then-else of OCL, the imperative if-then-else is a completely
different entity: The definitions of Expr and I[[ e ]] are not changed or extended by SOIL.
The imperative language defines a new set of statements Stmt, which is disjoint with
Expr.

The meaning of each statement s ∈ Stmt is given by an interpretation function I[[ s ]]
which assigns each pair (σ, ζ) of a system state and a variable assignment a new pair
(σ′, ζ ′). Notice that, for technical reasons, we distinguish the imperative variable as-
signments ζ (which actually are a stack structure) and the variable assignments β used
to evaluate OCL expressions).

The semantics of the if statement is defined as follows.

I[[ if e then s1 else s2 end ]](σ, ζ) :=

{
I[[ s1 ]](σ, ζ) if I[[ e ]]

(
σ, binding(ζ)

)
= true

I[[ s2 ]](σ, ζ) otherwise

Corresponding to the syntactic containment of OCL expressions as part of statements,
the interpretation function for OCL expressions occurs within the above definition of
the interpretation function for the if statement. The condition expression e is evaluated
in the same context (state, variables) as the statement. To pass the variable assignments
from I[[ s ]] to I[[ e ]] we require a transformation binding to map between the different
notions of variable assignments in SOIL and OCL (see next subsection).

All kinds of statements in SOIL are defined in this manner.

4.3 Local Variables

Variable assignment is a core concept available in all imperative programming lan-
guage. When statements contain OCL expressions, the assignments of previous state-
ments will be visible for the evaluation of OCL expressions in subsequent statements.
Consider the imperative program:

1 a := 1; b := a + 1.

The OCL expression in the second statement has one free variable a. A value for a will
be available after the execution of the first statement (as a furthermore has the right type,
the above concatenation of statements is even type sound). This relationship is depicted
in Fig. 3. In SOIL the mapping from the imperative variable environment (which is a
stack) to the variable assignment (which is a flat mapping) required for the evaluation
of OCL expressions is realized by the binding operation which already occurred above.
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eval context

for expressions

eval context

for expressions

and Variables

Initial System State

and Variables

New System State

and Variables

New System State
statement 2statement 1 ...

Fig. 3. Evaluation Chain for Statements and Expressions

Technically, binding makes the assignments in the top-most stack frame in ζ available
as a flat mapping from typed variables to values.

There are no particular obstacles regarding local variables w.r.t. modularity of OCL.
However, if we want static type checking, it is important to ensure that correctly typed
values are available for all free variables in the OCL expressions that are part of our
statements (we provide such a type system in SOIL).

4.4 Operations with Side Effects

The application of operations with side effects within OCL expressions constitutes a
similar problem as the amalgamation of statements and OCL expressions. While the
interpretation of a query operation is a value (see Sect. 4.1), the interpretation of an
operation with side effects yields a new state (and possibly a value). For a modular
reuse of OCL we cannot allow the second one to occur in OCL expressions.

In order not to stretch short-circuit evaluation or commutativity of relational operations
for the explanation, again, we take a look on the let expression in OCL. This expression
substitutes an expression for a variable. As for predicate logic, the following important
equivalence rule holds for OCL:

I[[ let v : T = e1 in e2 ]](σ, β) = I[[ e2{v/e1} ]]
(
σ, β).

However, this rule is broken if we allow operations with side effects within OCL ex-
pressions. Assume a class Person with attributes firstName and lastName. Consider an
operation newPerson():

1 def: newPerson(firstName : String, lastName : String):Person =
2 w := new Worker;
3 w.firstName := w.firstName;
4 w.lastName := w.lastName;
5 return w

Obviously, the interpretation of

1 Notice that we omit all typing rules in this paper as they are not relevant for the discussion of
modularity. The full definition of SOIL provides typing rules to ensure that all statements are
statically type safe.
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1 let w : Worker = newWorker('Bob', 'Builder') in
2 w.lastName.concat(', ').concat(w.firstName)

is different from the interpretation of

1 newWorker('Bob', 'Builder').lastName.concat(', ').concat(
2 newWorker('Bob', 'Builder').firstName)

which will create two Worker objects.

As mentioned above, these problems can be constructed in several ways if we allow
operations with side effects in OCL expressions. Therefore, we require a distinction be-
tween query operations and operations with side effects. Within OCL expression, only
query operations must be used. Otherwise, we run into the same problems mentioned
in Sect. 4.2. Consequently, an imperative language must include a dedicated means to
invoke operations with side effects.

SOIL Example The language provides specific statements to invoke operations with
side effects. Here, we show the form which invokes an operation that has a return value
(another statement is available to invoke operations without return value). Its syntax is
as follows: If e1 ∈ Exprt1 , . . . , en ∈ Exprtn

, v ∈ Varname, and ω : (v1 : t1, . . . , vn :
tn → t) ∈ ΩM then

v := ω(e1, . . . , en) ∈ Stmt.

The most important point here is that the operation to be invoked has to be in the set of
the operations with side effects ΩM, whereas query operations (which can be occur in
OCL expressions) are in ΩM (c.f. Sect. 4.1).

Given Z being the set of all variable assignments ζ, the semantics of each ω : t1×· · ·×
tn in ΩM is a total function

I(ω) : µ× Z × I(t1)× · · · × I(tn)→ µ× Z

that assigns to the current system state, variable assignments, and parameters a new
system state and a new variable assignment.

The semantics of s is then given as follows. Let x1, . . . , xn =
I[[ e1 ]]

(
σ, binding(ζ)

)
, . . . , I[[ en ]]

(
σ, binding(ζ)

)
, then

I[[ v := ω(e1, . . . , en) ]](σ, ζ) := (σ′, ζ ′{v/z})

where (σ′, ζ ′, z) = I(ω)(σ, ζ, x1, . . . , xn).

4.5 State Manipulation Statements

Imperative languages that operates on UML models typically at least provide the fol-
lowing capabilities: object creation and destruction (unless a garbage collection ap-
proach is applied), link manipulation, and attribute assignment. Most of these state-
ments have parameters (e.g., to determine the elements of a link) which can be given

12



by OCL expressions. If the modularity aspects highlighted so far are obeyed, there are
no further obstacles w.r.t to a modular reuse of OCL. As for local variables, state ma-
nipulations in a previous statement have to be visible in OCL expressions as part of a
subsequent statement.

5 Consequences of a Modular Embedding

In the previous sections we discussed several pitfalls for a modular embedding of OCL.
If we avoid these pitfalls, we can achieve benefits stated in Sect. 2. Apart from the
syntactical differences, languages that reuse OCL in a modular way (such as SOIL)
can be able to express programs in a similar way as languages that do not reuse OCL
that way, like ImperativeOCL. Comparing SOIL and ImperativeOCL, both languages
provide the full power of OCL for expressions.

There are, however, kinds of statements that cannot be translated one-to-one from Im-
perativeOCL to SOIL or to any language that obeys the rules given in the previous sec-
tion. Specifically, these statements are statements that contain expressions that contain
statements. Constructions such as

1 mySeq := Sequence{1,2,3}->collect( x |
2 compute(y:Integer) {
3 y := 0; Sequence{1..x}->forEach(z){ y := y + z }
4 })

are not possible in SOIL and have to be decomposed into several steps in SOIL:

1 mySeq := Sequence(Integer){};
2 for x in Sequence{1,2,3} do
3 y := 0; for z in Sequence{1..x} do y := y + z end;
4 mySeq := mySeq->append(y)
5 end

Such amalgamation of expressions and statements have to be resolved in several steps in
a modular embedding of OCL. Notice that this includes invocations of non-query (i.e.,
side effected) operations from OCL expressions: Assuming f and g to be operations
with side effects that furthermore yield integer values, the following ImperativeOCL
expression

1 result := f() + g() + 1

has to be rewritten in SOIL to

1 fVal := f();
2 gVal := g();
3 result := fVal + gVal + 1.

Of course a imperative language might allow the upper syntax as a shortcut for the lower
syntax, but it is important to see that this effectively introduces a new set of non-OCL
expressions as part of that imperative language (as depicted in the middle part of Fig. 2
on the metamodel level). While the syntax might look the same as OCL, existing OCL
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compilers (or interpreters) cannot be used to implement it, nor can we reuse other formal
approaches for OCL expressions, for the reasons given in Sect. 3. Of course, one might
believe this redundant approach to be viable for simple arithmetic expressions as above.
However, we cannot see where to draw the line here: If we want to allow operations with
side effects anywhere in a right-hand side expression of an assignment statement (for
example), we have to re-implement the whole OCL syntax for this custom expression
language (i. e., we don’t anymore reuse OCL in the sense of Sect. 2). If we only allow
certain (say, simple) expressions such as arithmetic expressions, it will probably appear
inconsistent and confusing to the modeler, as operations with side-effects are allowed
in some expressions only.

For these reasons, we believe that such a redundant approach should be avoided com-
pletely. The resulting general restrictions are the price we have to pay for a language
that reuses OCL in a modular and comprehensive way. In the scope of programming
(with) models, we think that the benefits by far outweigh this price. This holds in par-
ticular if we consider that we already have the full power of OCL expressions as part of
the imperative language and therefore a lot of programming can be done in a functional
manner.

6 Conclusion

In this paper we presented our understanding of a modular reuse of OCL in an im-
perative language. If languages embed OCL this way, the reuse of existing tools and
libraries, of knowledge that developer already gained for OCL, and of formal methods
for OCL expressions, is possible. Several OCL-based, or OCL-inspired languages fail
to fulfill this requirements, in particular ImperativeOCL.

Based on this observation we developed the language SOIL. SOIL is a simple and un-
spectacular but complete imperative language that can be used to operationally specify
UML models (i. e., to program (with) UML models). We used SOIL to illustrate the
major drawbacks in the design of OCL-based imperative languages.

The intrinsic drawbacks of SOIL (and any other language that is based on OCL in a mod-
ular way) w. r. t. to monolithic languages such as ImperativeOCL regard amalgamation
of expressions and statements. These constructs have to be decomposed in SOIL, which,
in general, leads to larger programs. We believe, however, that for most of the (rather re-
stricted) scenarios of programming with models, the benefits of reusing the well-known
and established language OCL outweigh these extra efforts.

A number of topics will be addressed in future work. SOIL has already been employed in
smaller case studies, but larger case studies must give feedback on the usability and ef-
ficiency of the language. Further imperative constructs like more convenient loops and
error handling should be addressed. SOIL is compliant with the UML Actions meta-
model. Therefore, it could be used, in the Executable UML approach, in conjunction
with state machines in order to create fully executable descriptions of a system.
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