
Electronic Communications of the EASST
Volume 44 (2011)

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

Workshop on OCL and Textual Modelling

(OCL 2011)

Extending ASSL: Making UML Metamodel-based Workflows

executable

Jens Brüning, Lars Hamann, Andreas Wolff

12 Pages

OCL 2011

1 / 12 Proc. OCL 2011

Extending ASSL: Making UML Metamodel-based Workflows

executable

Jens Brüning
1
, Lars Hamann

2
, Andreas Wolff

1

1
University of Rostock, Department of Computer Science,

D-18059 Rostock, Germany

{jens.bruening, andreas.wolff}@uni-rostock.de
2
University of Bremen, Department of Computer Science,

D-28334 Bremen, Germany

lhamann@informatik.uni-bremen.de

Abstract. ASSL is a language that enables UML developers to test and certify

UML and OCL models [5]. Snapshots of system states are semi-automatically

created and main parts of the UML action semantics is implemented by the

language. Its interpreter is the well-known UML modeling tool USE. The article

proposes a number of language extensions to ASSL. These include (sub-)

procedure calls and pre- and postcondition checks on entering and exiting of

operations using OCL. The paper motivates the need for these extensions as well

as their usage and development along the problem of metamodel-based execution

of workflow models. Executable workflow models, driven by ASSL procedures,

are introduced in detail to present the usage of ASSL and our extensions.

Keywords: Model validation, Model execution, A Snapshot Sequence Language,

Workflow Metamodels

1 Introduction

The UML-based Specification Environment (USE) [6] is a tool that can generate UML object

diagrams from class diagrams manually or semi-automatically. These derived object diagrams

can be seen as snapshots of a running system. USE enables a developer to specify declarative

OCL constraints in class diagrams. During runtime, these constraints, like e.g. invariants for

system states or pre- and postconditions for UML operations, are permanently checked against

the current snapshot.

USE provides a language called A Snapshot Sequence Language (ASSL) [6]. ASSL has the

ability to semi-automatically generate object diagrams. In this process all possible assignment

combinations of objects and variables are attempted to find a stable state which satisfies every

defined constraint [5]. If no assignment meets all OCL invariants the ASSL generation

procedure finishes without results. For finding valid snapshots the special command Try

provides the possibility to assign values to ASSL variables that are further used for generating

valid snapshots. The special command Any assigns any value of a set to a variable. To generate

 ECEASST

Volume 44 (2011) 2 / 12

object diagrams ASSL procedures must represent imperative specifications. It implements a

large part of the UML action semantics including the creation or deletion of objects and links

and the setting of attribute values in UML object diagrams. This is crucial for testing as well as

executing UML models. The approach of this paper relies on those operations as basis for

executing workflow models.

ASSL has been implemented in combination with the parser generator ANTLR [11].

However, this article does not focus on implementation details. It rather explains how we use

the extensions in the context of UML metamodel-based workflow execution. We are confident

that there is a number of further promising applications of the proposed ASSL extensions.

Especially the area of model testing and certification in connection with the unique commands

Try and Any for semi-automatic snapshot generation seems to bear good prospects for use.

The workflow modeling and execution approach is a new application for the USE tool and

ASSL. The presented approach comprises of a declarative and an imperative part, while the

focus of this article is on the imperative part. Our approach enables us to express the workflow

patterns presented in [12]. In contrast to established workflow languages like EPCs, UML

activity diagrams or BPMN the modeling approach has a flexible background driven by design

principles. All execution sequences of the process model are allowed if they are not forbidden

by OCL constraints. In contrast, the established languages uses a more Petri net-like modeling

approach in which only the allowed execution flows are determined. The developer defines

action sequences that may restrict the user too much while executing the workflow [13]. In our

view, the work presented in this paper is a new direction in the context of workflow languages

with a declarative metamodel-based approach.

The rest of the article is structured as follows. Section 2 introduces our metamodel for

workflows. We model an example workflow on basis of that. Also we present a design time

plugin to USE that captures workflow models as ASSL instantiation procedures. This way we

can reuse these models at runtime. Section 3 introduces the workflow plugin that presents the

workflow to the developer for interaction. We also go into details about ASSL and our ASSL

extensions as they are the basis for workflow executions. A UML sequence diagram shows the

relevant ASSL procedure calls. Section 4 discusses related work and Section 5 concludes the

work.

2 Workflow modeling with UML metamodel

In this section we introduce the metamodel for workflows and demonstrate how workflows are

modeled by means of the USE tool. We introduce a design time plugin of USE that

persistently stores the workflow models for later reuse by generating ASSL procedures.

2.1 UML metamodel for workflows

An earlier version of our metamodel for workflows was introduced in [2]. Figure 1 shows an

extended version that now supports all original 20 workflow patterns [12]. Besides the class

model, the metamodel contains of OCL invariants and pre- and postconditions to express the

semantics of most metamodel elements declaratively. Behaviors of the temporal or causal

relations are also expressed imperatively. This particular part of the metamodel is implemented

OCL 2011

3 / 12 Proc. OCL 2011

as ASSL code. It will be explained in section 3 and is the main contribution of this paper. The

following is intended as an overview to roughly explain the metamodel, as this is the key to

understanding the semantics implemented in ASSL.

Fig. 1. a) The metamodel shown as UML class diagram b) UML state diagram showing life cycle of objects of the

class Activity c) object life cycle of the objects of the class Iteration

An analysis of how far our metamodel supports the workflow patterns is beyond the scope

of this paper. However, a first discussion of this matter can be found in [2].

The pivotal class of the metamodel is Activity, shown in the center of Figure 1a).

Enumeration State lists the possible execution states of an activity. Figure 1b) shows a life

cycle of an activity as UML state diagram. In our work state transitions are expressed by OCL

pre- and postconditions. For instance the precondition of the start() operation requires the

object to be in the state waiting. Its postcondition consequently assures that the state has

changed to running. States of activities can be changed by calling operations of the classes

Activity, IterationGroup, Cancel and CancelProcess. They are implemented with ASSL.

 ECEASST

Volume 44 (2011) 4 / 12

Note that not all operations changing an Activity’s state are declared in that class. For

example, an object of IterationGroup can initiate another iteration through the operation

nextIteration(). This would store all execution data of the current iteration to the archive and

reset all included activities to waiting. Class Activity itself does not directly provide an

operation for resetting its instances’ state.

The state diagram of the class Iteration is shown in Figure 1c). It differs from Activity’s (see

Figure 1b) in that new iterations can be started after one is finished without resetting the

activity. If an Iteration object is in the state running and the operation finish is called a new

iteration can be started directly by calling start again. The behavior of Iteration is described

more deeply in [7].

Operation execution can have side effects on other activities, depending on causal or

temporal relation between them. ASSL procedures implement those. If for example an activity

starts and this activity is member of a DeferredChoice group all other activities of that group

are skipped. Thus, the other activities cannot be started anymore and the choice was done

implicitly. Explicit decisions are expressed through the class Decision and its subclasses. The

criteria to select follow-up activities here are declared in the association class Guard. The

selection is user-driven and executed at runtime. This process will be discussed in subsection

3.1.

2.2 Workflow model shown as UML object diagram

Figure 2 exemplifies the use of the workflow metamodel for the case of a medical emergency

process. It essentially shows a screenshot of the USE tool, which provides the modeling

environment and thereby an abstract syntax for workflow models.

The main Process object is arranged topmost left in Figure 2. It serves as root object to

which all other model objects are connected; either direct or indirect through transitive

associations. There is an OCL operation to collect all these elements through calculating the

transitive closure. The operation also is part of the metamodel but not explicitly listed in

Figure 1a).
The emergency process begins with the delivery of the patient. She can either be transported

by helicopter or ambulance. For this initial part of the workflow the hospital staff is not
responsible to decide what transport type should be taken. Therefore both available
transportation activities are modeled in a DeferredChoice relationship [2]. After the patient has
arrived at the hospital, she has to be checked whether she has to be operated immediately or if
there is time to prepare a normal surgery. This check is done by a doctor at the hospital.
Depending on its decision, an immediate or a normal surgery takes place. The NormalSurgery
as well as the EmergencySurgery is assisted by nurses and an anesthetist. This fact is modeled
by Assist activities that are related together with the respective Surgery activities in Parallel
relationships. Afterwards, the patient wakes up which has to be observed by the hospital staff
and is represented as an activity in the workflow model. During the whole process the
medication of the patient proceeds and has to be continuously documented. This fact is modeled
by AdjustMedication that activity is an Iteration and thus can be executed several times during
process execution. No further temporal constraints to other process fragments are to be
observed here.

OCL 2011

5 / 12 Proc. OCL 2011

Fig. 2. Example process model with the abstract syntax provided by USE

2.3 USE design time plugin

USE is capable of storing the current snapshot of models. But USE is not able to duplicate a

snapshot in the object diagram. In the following a process and a developed plugin for USE is

proposed to enable the user to instantiate a workflow model several times. Thus, instances of a

process model can run in parallel after they have been instantiated. For this purpose a

specialized plugin to USE had to be developed. We call it “design time plugin” as this

describes the time when it is applied in contrast to the “runtime plugin” that we introduce in

subsection 3.1. It persistently stores the workflow model as ASSL instantiation procedures.

A process developer will invoke the plugin after she completed modeling the workflow.

The plugin provides a dialog to choose an ASSL file into which the ASSL instantiation

procedure is generated. Listing 1 shows parts of an ASSL instantiation procedure that was

generated from our sample workflow model. When executed, the procedure recreates the

objects and associations of the model shown in Figure 2. Furthermore, the states of the Activity

objects are set to the initial state waiting according to the state diagrams of the metamodel of

Figure 1.

To use these instantiation procedures for executable workflows, another USE plugin was

developed, the “workflow runtime plugin”. Among other things, in this plugin a user can select

the desired ASSL file and the included workflow instantiation procedure to invoke it and

consequently instantiate the workflow.

Original ASSL commands, as presented in [5], are sufficient for this purpose. Only some

procedures of the workflow execution require ASSL language extensions, which will be

discussed in section 3. One characteristic of ASSL is the use of square brackets to enclose

OCL expressions. They may contain and use ASSL variables declared and initialized earlier in

that ASSL procedure. OCL expressions may become quite complex as, e.g., shown in

Listing 3.

 ECEASST

Volume 44 (2011) 6 / 12

Listing 1. Excerpt of an ASSL workflow instantiation procedure

procedure instantiateEmergencyProcess()
var a1:Activity, a2:Activity, d1:DeferredChoice ... ;
begin
 a1 := Create(Activity);
 [a1].name := [‘HelicopterDelivery’];
 [a1].state := [#waiting];
 a2 := Create(Activity);
 [a2].name := [‘AmbulanceDelivery’];
 [a2].state := [#waiting];
 d1 := Create(DeferredChoice);
 Insert(group, [d1], [a1]);
 Insert(group, [d1], [a2]);
 ...
end;

3 Workflow model execution

This section introduces the execution of workflow models using the workflow runtime plugin.

This plugin presents a workflow instance to its user in an appropriate way and provides a GUI

to invoke the ASSL procedures. Subsection 3.2 introduces the ASSL extensions that provide

the basis to implement the execution semantics of the workflow models. Subsection 3.3

discusses the ASSL implementations for model execution. A non-plugin feature, but

nevertheless very handy is USE’s ability to log the ASSL procedure executions and present

them as a sequence diagram. This is demonstrated in subsection 3.4.

3.1 Workflow runtime plugin

Figure 3 is a screenshot of the workflow runtime plugin presenting an instance of the example

workflow of Figure 2. The activity list uses colors to indicate the state of each activity. The

workflow plugin distinguishes between waiting and enabled activities. Enabled activities

appear in a light green color. Waiting activities that are forbidden to be executed by OCL

constraints are colored in a darker green color. The workflow plugin checks the enabled

property of activities in a preprocessing step.

Currently, in the scenario of Figure 3 the activity CheckPatientCondition is running which

is expressed by the blue color. This activity is a Decision. This decision is to be made by the

user, thus, a further interactive window is generated by the workflow plugin to request the

user’s decision interactively. The available options or alternatives and its selection criteria are

declared in the workflow model. Having selected the appropriate criterion, the Decision

activity ought to be finished by clicking on the corresponding button at the bottom of Figure 3.

Consequently the plugin invokes the ASSL finish procedure on the selected activity. Those

buttons represent the Activity operations as shown in the metamodel of Figure 1. ASSL is used

to implement those operations. Details on this matter are in subsection 3.3.

OCL 2011

7 / 12 Proc. OCL 2011

Fig. 3. Workflow runtime plugin showing a workflow instance

3.2 ASSL language extensions

Table 1 lists our ASSL extensions, primarily new commands. ASSLCall provides a command

to invoke procedures. This provides the ability for recursive procedure calls.

Table 1. New ASSL commands

New ASSL commands Explanations

ASSLCall <proc-name>
(< arguments>);

Calling another ASSL procedure (in the

same ASSL file). The arguments are

separated by comma.

OpEnter <OID> <op-name >
(<arguments>);

Enters an operation with the op-name in

the context of the object identified by its

OID. Arguments are separated by comma.

USE checks the OCL preconditions.

OpExit; Exits the running operation that lies on top

of the (operation) call stack and USE

checks the OCL postconditions.

OpEnter steps into the given operation of a certain specified object. OpEnter only checks

the OCL preconditions of the declared operation and object, but is not executing the operation.

Instead it pushes the operation on top of the general (operation) call stack which is

administered by USE.

Command OpExit specifies that the given operation is finished and the OCL postconditions

ought to be checked. The developer can neither declare an object nor an operation to exit. The

USE environment checks the postconditions of the operation lying on top of the call stack.

This is the last operation that was started with an OpEnter command before.

 ECEASST

Volume 44 (2011) 8 / 12

3.3 ASSL procedures for the workflow model execution

Several ASSL procedures implement the base operations of the workflow metamodel classes.

Some operations get overridden by specified implementations in subclasses. For example the

start() operation of Activity behaves differently than the start() operation of Iteration.

Overriding operations is achieved by ordering the procedures in the ASSL file in a certain

way. Procedures with more specialized types as arguments are declared before the ones with

more general types. The semantics of finding a procedure with a fitting signature is as follows.

By invoking an ASSL procedure USE parses the ASSL file top-down. The first procedure with

a signature fitting to the called procedure name and passed on arguments, is selected for

execution. Thus, we would order a procedure start(i:Iteration) before start(a:Activity). Then, if

start() is invoked with an Activity object the first signature would not fit but the second one

does, so consequently start(a:activity) is used.

Ordering the procedures the other way round implies that start(a:Activity) also fits with

Iteration objects because of the substitution principle [8]. Consequently, USE would never

execute start(i:Iteration) with Iteration objects.

Listing 2. Excerpt of the ASSL start procedure for class Activity

procedure start(a:Activity)
var setA:Set(Activity);
begin
 -- checking precondition of operation
 OpEnter [a] start();
 -- changing state to running
 [a].state:=[#running];
 for gr:Group in [a.group->asSequence] begin
 -- skipping all deferred choice activities
 if [gr.oclIsTypeOf(DeferredChoice)] then begin
 setA := [gr.activity
 ->select(a2|a2.state=#waiting)];
 for a2:Activity in [setA->asSequence] begin
 ASSLCall skip([a2]);
 end;
 end;
 -- starting all parallel activities
 if [gr.oclIsTypeOf(Parallel)] then begin
 setA := [gr.activity->select(a2|
 a2<>a and a2.state<>#running)];
 for a2:Activity in [setA->asSequence] begin
 ASSLCall start([a2]);
 end;
 end;
 end;
 ...
 OpExit;
end

Listing 2 shows an excerpt of the ASSL start(a:Activity) procedure and demonstrates the

use of the ASSL language extensions of Table 1. At the beginning of this procedure the

OpEnter command causes the preconditions to be checked. Then a change of the activity’s

state is specified, from waiting to running. Following up, side effects on other activities are

OCL 2011

9 / 12 Proc. OCL 2011

implemented. All activities related within the same DeferredChoice group are skipped and all

Parallel activities are started. Finally, the OpExit command initiates the postconditions checks.

As discussed earlier the ordering of ASSL-procedures in a command file is of importance.

Consequently, procedure finish(d:Decision) precedes finish(a:Activity) in the ASSL file. A call

finish(CheckPatientCondition) (see workflow model of Figure 2) matches the ASSL procedure

for Decisions and USE would select that implementation for execution. Listing 3 declares the

behaviour of it. A special characteristic of that procedure is that it causes side effects on

subsequent activities. Non-selected activities and groups of activities are skipped because they

must not be executed afterwards. In contrast, selected activities are enabled for execution.

Listing 3. Excerpt of the ASSL finish procedure for class Decision

procedure finish(d:Decision)
var setAG:Set(ActivityGroup), setA:Set(Activity);
begin
 OpEnter [d] finish();
 [d].state := [#done];
 -- get all non-selected activities and groups
 setAG:=[d.option->select(a|
 a[option].guard.selected <> true)];
 -- collect all non-selected activities
 setA:=[setAG.oclAsType(Activity)
 ->select(isDefined())
 ->union(setAG.oclAsType(Group)
 ->select(isDefined()).activity)->asSet()];
 -- skip all non-selected activities
 for a:Activity in [setA->asSequence] begin
 ASSLCall skip([a]);
 end;
 ...
 OpExit;
end;

3.4 UML sequence diagram showing the ASSL procedure calls

Figure 4 shows a scenario of a workflow execution. USE has logged the ASSL commands

OPEnter and OPExit as they occurred and presents the chronology of executed calls as a

sequence diagram.

This scenario, started with a HelicopterDelivery. As shown in the start() procedure’s

implementation all activities that are related in a DeferredChoice were skipped implicitly.

According to the ASSL implementation USE skipped AmbulanceDelivery for this case. After

arriving at the hospital, a doctor has checked the patient. Finishing that decision activity

caused any non-selected activity to be skipped. This semantic is implemented in the ASSL

finish() procedure shown in Listing 3. Here, NormalSurgery was skipped. Calling the ASSL

skip() procedure has the consequence that all parallel activities are skipped, too. Thus,

AssistNormalSurgery is also skipped. The same applies for the start() and finish() operation of

activity EmergencySurgery and AssistEmergencySurgery.

 ECEASST

Volume 44 (2011) 10 / 12

Fig. 4. A workflow execution scenario shown in a UML sequence diagram

4 Related work

There exist several other languages that implement the UML action semantics, a well-known

example is QVT [9]. Kermeta [1] is an open source metamodelling environment that has been

designed as an extension to the metadata language EMOF [9] with an action language for

specifying semantics and behavior of metamodels. Parallel to this work of extending ASSL,

the OCL-based imperative programming language SOIL (Simple OCL-based Imperative

Language) has been developed [3] that can also be interpreted by the USE tool. As mentioned

in the introduction, ASSL can be used for semi-automatically generate snapshots of object

diagrams in contrast to the languages listed above.

For workflow modeling some metamodel-based approaches exist like for example the EMF

metamodel-based Bflow [7] tool in which Event-driven Process Chains (EPC) are used as

workflow language. Bflow checks static properties of the workflow models but lacks

execution semantics. Execution semantics used with a metamodel approach for UML activity

diagrams is presented in [4]. Following the UML specification [10 (section 12)], this approach

uses a Petri net-like token flow semantics. In contrast, the approach presented in this paper is,

to our knowledge, the only one that uses a pragmatic UML metamodel-based declarative

approach to express the workflow patterns and execute the workflow models on basis of

imperative ASSL code.

OCL 2011

11 / 12 Proc. OCL 2011

5 Conclusion

This article presented extensions of the ASSL language: (Sub-) procedure calls as well as

precondition checks on entering operations and postcondition checks on exiting are now

possible with ASSL. The ASSL language extensions were introduced in the context of the

metamodel-based workflow modeling and execution.

The workflow approach comprises a declarative part with OCL invariants, pre- and

postconditions and an imperative part with ASSL procedures for the model execution. USE

provides a modeling and a runtime environment for workflows. A newly developed workflow

plugin to USE presents the workflow instance to the developer in an appropriate way. By

clicking on buttons that represent operations of the metamodel, the user invokes ASSL

procedures implementing the selected activity. Thus, the developer can execute scenarios and

test dynamic control flow properties of its workflow models. USE logs the scenarios as a

sequence diagram to visualize the workflow executions for further analysis.

References

1. Baudry, B., Nebut, C., Le Traon, Y.: Model-driven Engineering for Requirements Analysis,

11th Enterprise Distributed Object Computing Conference (EDOC 2007), IEEE

International (2007)

2. Brüning, J., Gogolla, M., Forbrig, P.: Formally Checking Workflow Properties Using UML

and OCL. 9th

International Conference on Perspectives in Business Informatics Research

(BIR 2010), Springer, LNBIP vol. 64 (2010)

3. Büttner, F., Gogolla, M.: Reusing OCL in the Definition of Imperative Languages.

http://www.db.informatik.uni-bremen.de/publications/intern/fb_mg_soil_2010.pdf

(accessed: 04/01/2011)

4. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML Activities Using Dynamic

Meta Modeling. Conference on Formal Methods for Open Object-based Distributed

Systems (FMOODS 2006), Springer, LNCS vol. 4468 (2007)

5. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE by

automatic snapshot generation. Software and System Modeling, 4(4):386–398 (2005)

6. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environment for

Validating UML and OCL. Science of Computer Programming, 69:27-34 (2007)

7. Kühne, S., Kern, H., Gruhn, V., Laue, R.: Business process modeling with continuous

validation, Journal of Software Maintenance and Evolution: Research and Practice, Volume

22, Issue 6-7, pages 547–566 DOI: 10.1002/smr.517 (2010)

8. Liskov, B., Wing, W.: A Behavioral Notion of Subtyping. ACM Transactions on

Programming Languages and Systems, 16:1811-1841 (1994)

9. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification. OMG document formal/08-04-03, (2008)

http://www.omg.org/spec/MOF/2.0/PDF (visited: 04/01/11)

10.Object Management Group. Unified Modeling Language (UML) version 2.3. OMG

document formal/2010-05-05 (2010) ,

http://www.omg.org/spec/UML/2.3/Superstructure/PDF (accessed: 04/01/11)

 ECEASST

Volume 44 (2011) 12 / 12

11.Parr, T.: The Definitive ANTLR Reference Guide: Building Domain-specific Languages,

Pragmatic Programmers (2007)

12.van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow

Patterns. Distributed and Parallel Databases, 14(3):5-51 (2003)

13.van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative Workflows Balancing Between

Flexibility and Support. Computer Science - Research and Development, 23(2):99–113,

2009.

