
UML Metamodel-based Workflow Modeling and Execution

Jens Brüning

University of Rostock

Department of Computer Science

D-18059 Rostock, Germany

jens.bruening@uni-rostock.de

Martin Gogolla

University of Bremen

Department of Computer Science

D-28334 Bremen, Germany

gogolla@informatik.uni-bremen.de

Abstract—In this paper, we present a UML metamodel-based

approach for creating and executing workflow models. The

workflow modeling language is introduced through its abstract

syntax, and an evaluation shows how this language supports

known workflow patterns. Some patterns can be expressed

easier compared to established languages like EPCs or BPMN.

Organizational and data aspects in workflow models can be

described on the basis of the presented metamodel. The

workflow models can be instantiated and executed with a tool

realizing parts of the UML action semantics. At an early stage

of design, our workflow models can be evaluated by testing

scenarios with the used tool in combination with the developed

workflow plugin. Employing the tool, dynamic aspects of the

workflow process models together with data and

organizational aspects can be evaluated. During execution of

the workflow scenarios, the workflow models can be adaptively

changed, and data can be captured and evaluated by

formulating process mining queries with UML's OCL (Object

Constraint Language).

Keywords: Business process models, Business process

metamodels, Workflow execution, Unified Modeling Language,

Model Validation.

I. INTRODUCTION

Business process modeling gets more and more
important with the increasing complexity and automation of
business processes in companies and organizations. Business
process models are used to document, restructure and
optimize the processes. Furthermore, requirements for
software and computer services that support the business
processes are captured in these models. Nowadays flow
oriented languages are frequently used for business process
modeling like Event-driven Process Chains (EPC), UML
activity diagrams and BPMN. These are languages based on
Petri net token semantics which may restrict developers too
much since they are following the principle “all executions
paths are forbidden if they are not allowed in the model” [2].
Besides, the well-accepted workflow patterns are driven by
Petri net token semantics. In contrast, declarative workflow
models have a flexible background driven by design
principles. That means, all execution paths are allowed if
they are not explicitly forbidden. This declarative view is
followed in this paper.

Compared to a Petri net-like modeling language, our
work is an alternative possibility to express the workflow
patterns in a declarative way with a metamodel based

modeling approach using UML and OCL. In our view, this is
a new direction in the context of workflow languages. There
are several graph- or block oriented languages like UML
activity diagrams [21] or BPEL [22] that are checked against
the workflow patterns, but no language uses a declarative
foundation to express them and to check declaratively
formulated properties.

The literature provides many metamodels for business
process modeling. Some of them are used for conceptual
modeling to define elements of the workflow language and
their interrelations [18, 14]. These metamodels can be further
used to implement modeling tools [10]. The approach
presented in this paper uses a UML metamodel along with
the tool USE [9]. USE checks static properties of the
workflow models during the modeling process by
observation of OCL invariants. The modeler gets quick
feedback as identified problems and the involved modeling
elements are immediately indicated.

There are even more benefits to UML workflow
metamodels with respect to dynamic properties. They
provide means to define execution semantics. OCL
invariants are used for system states and pre- and
postconditions for operations. They describe the causal or
temporal relationships between the modeling elements.
During execution of the workflow model, the execution
semantics is interpreted and disallowed flows of a process
are forbidden. Furthermore, enabled activities can be
identified and a worklist visualization is possible.

In our approach, a workflow plugin is implemented for
the USE tool that presents the activities and the
corresponding execution states in an appropriate way. The
user can interact with the workflow plugin. Related data
objects are presented to the user so that scenarios can be
played through by the user interacting with the tool. Thus,
the integrated workflow and data models can be tested before
system implementation and the workflow models can be
validated at an early design state.

It is also possible to test and compare different
organizational models and configurations. Such comparison
can be achieved by instantiating multiple workflows which
are then tested in varying contexts.

Resource management is another important aspect. In our
approach resources are allocated during the workflow
execution. The shortness of particular resources may be
identified in the system animation.

Our workflow models are flexible in two ways. On the
one hand they are flexible by design because of the
declarative modeling perspective. On the other hand the
process instances can be adaptively changed during runtime
to support a flexible change principle. The models are
executed within the modeling environment that also includes
the runtime environment by the USE tool. The process
instance can be changed in the modeling environment during
runtime. The adaptive changes do not take place in a
distributed Workflow Management System like for example
in [15]. The process instance is presented in the same
modeling environment known from the design time. The
process instances are enriched with execution data like for
example timing information.

During the execution of the workflow the time aspect is
captured by the workflow plugin and is stored as meta-data
of the process instance. After or even during the execution
the USE tool provides an interface to state OCL queries for
process mining purposes. Thus, USE provides a powerful
mechanism to explore properties of the execution data of the
workflows.

The rest of this article is structured as follows. In section
II the metamodel is introduced. OCL is used to express the
semantics of the metamodel elements. In section III the
metamodel is applied to model an example workflow with
the USE tool and with its abstract syntax. Data and
organizational aspects of the workflow are also captured in
the model. In section IV the execution of the workflow
models is presented. Running processes and activities are
shown to the user in a specialized workflow view. Section V
discusses related work while section VI concludes the paper.

II. METAMODEL FOR WORKFLOWS

The workflow metamodel is the basis to define the
control flow perspective where activities and the causal or
temporal interrelations are expressed. In subsection A the
metamodel for the control flow perspective is introduced as a
UML class diagram enhanced with OCL invariants. Further
on, an analysis is given how the workflow patterns [1] are
supported. In subsection B the metamodel is enhanced with a
data perspective by introducing data flows and queries.
Subsection C introduces the metamodel for organizational
modeling and connection to the activities.

A. Capturing the Control Flow in the Metamodel

Figure 1 shows the main workflow metamodel. It has

been extended in comparison to the version presented in [6]

and supports now all 20 workflow patterns [1]. Classes

Activity and Iteration are an integral part of the metamodel.

Figure 2 is showing the related object lifecycles as UML

state diagrams. OCL invariants are used to define the

semantics of the modeling elements. The used states of the

state machines of Figure 2 are defined in the enumeration

State in Figure 1. Calling the operations provided by the

classes Activity, Cancel, CancelProcess and IterationGroup,

object states change according to the state diagrams of

Figure 2. The transitions of the state diagrams are

implemented by OCL pre- and post conditions. For example

the precondition of the start() operation requires the object

to be in the state waiting. Its postcondition consequently

assures that the state has changed to running. To allow

Figure 1: Workflow metamodel

model execution, operations are implemented using the

ASSL [9] language. ASSL provides commands for realizing

main parts of the UML action semantics. It is a scripting

language that is interpreted by USE.

Note that not all operations that change object states

have to be assigned to its class. For example the class

IterationGroup can initiate another iteration with the

operation nextIteration(). This resets all included activities

to the state waiting and stores the execution data of the last

iteration to a new group linked via the association archive.

Class Activity itself does not directly provide an accessor for

resetting its instances’ state.

Class Iteration state diagram differs from the previous

Activity’s as new iterations can be started after one is

finished without resetting the activity. If an Iteration object

is in the state running and the operation finish is called new

iteration cycles can be started by calling start again. The

behavior of Iteration is described more deeply in [6].

Figure 2: UML state machines to model lifecycles of objects from class (a)

Activity and (b) Iteration

Table 1 lists all workflow control flow patterns (WCP)

[1] that are directly or indirectly supported by the

metamodel. Patterns that are indirectly supported are

explained with example process models. Explanations use

the abstract syntax for the workflow models which is

provided by the USE tool. OCL invariants that define the

semantics of the model elements are omitted in this article.

For a deeper introduction of the OCL invariants please refer

to [6].

In the metamodel of Figure 1 the class Activity is the

central part. A process contains several FlowObjects that

can be FlowOperators, Groups or Activities. For practical

reasons it is sufficient to connect a process object with at

least one FlowObject that connects all other FlowObjects

transitively. The operations getFlowObjects() and

getActivities() calculate that transitive closure. They are part

of the metamodel but not explicitly shown in Figure 1.

The class FlowObject has a reflexive association called

seq to define the sequence relationship (WCP1). The

semantics of the seq association is defined in an OCL

invariant of the class Activity. It says: If an Activity is in the

state running, all its predecessor activities connected via the

role pred of the association seq have to be done or skipped

[6].

TABLE I. WORKFLOW PATTERN ANALYSIS

Workflow Pattern

(WCP)
Expression in the metamodel approach

1. Sequence
Expressed with the seq association and OCL

invariant in class Activity (see [6])

2. Parallel Split
Expressed with AndOperator and seq
association like pictured in Figure 3

3. Synchronisation
Expressed with AndOperator and seq

association analogue to Figure 3

4. Exclusive Choice
Expressed with XorDecision like described in

[6]

5. Simple Merge
Expressed with MergeOperator like pictured in

Figure 4

6. MultiChoice
Expressed with OrDecision like described in

[6]

7. Structured

Synchronizing Merge

Expressed with MergeOperator like pictured in

Figure 4

8. MultiMerge

Expressed with MultiMerge – all included
activities have to have so many iteration cycles

as pred objects have been executed like

pictured in Figure 5

9. Structured
Discriminator

Expressed by Discriminator – after one pred
object is executed the succ objects can start

10. Arbitrary Cycles
Activities linked arbitrarily with

IterationGroups like pictured in Figure 6

11. Implicit

Termination

Is directly supported – the process is done if all

included activities are done, skipped or
canceled

12. Multiple Instances

(MI) without

Synchronization

Expressed with MIWithoutSync – the attribute

noOfInst indicates the number of instances at

design time. At runtime the instances are linked
by the association instance

13. MI with a priori

Design-Time
Knowledge

Expressed with MIWithSync and enriched with

an invariant that ensures synchronization
compared to WCP12

14. MI with a priori

Run-Time Knowledge

Expressed with MIRuntime – the attribute

noOfInst is determined at runtime by the
workflow plugin

15. MI without a

priori Run-Time
Knowledge

Expressed with MIRuntimeWithAdd – has a

addInstance() operation

16. Deferred Choice
Expressed with DeferredChoice – like

described in [6]

17. Interleaved

Parallel Routing

Expressed with InterleaveParallelRouting –

like described in [6]

18. Milestone
Expressed by the exceeded association like

pictured in Figure 7

19. Cancel Task
Expressed with Cancel – the cancel interface
button is provided by the workflow plugin for

these activities

20. Cancel Case

Expressed with CancelProcess – all waiting or
running activities will be canceled if operation
cancel() is invoked. The further execution of

the process is not possible.

The seq association is used in several other contexts, for

example with the FlowOperators shown as subclasses in

Figure 1. The class And is used to express WCP2 as

demonstrated in Figure 3. An OCL invariant of the class

And defines that all pred objects have to be in the state done

or skipped if one of the succ activities is allowed to be in the

state running.

Figure 3: workflow model for WCP2 and WCP3

An OCL invariant for static design time properties is

defined which ensures all objects connected with a

FlowOperator to either be activities or groups. Thus

FlowOperator cannot be connected to FlowOperators by

the seq association. A similar static property is needed with

the WCP8 in which all pred objects have to be activities or

groups but not flow operators. The expression of that pattern

in a workflow model is shown in Figure 5.

Another invariant for static properties of the process

models ensures that no sequence cycles exist. Those could

cause a deadlock during the execution of the workflow

model. The invariants are also part of the metamodel.

Examples can be found in [6].

In Figure 4 the MergeOperator is used in combination

with the XorDecision activity (WCP4) in a certain structure

[12]. It ensures that all pred activities are in state done or

skipped before the succ activities, or groups of activities,

can start. If the pred object is a group all included activities

have to be done or skipped. Merges typically appear in such

composite structures. This is essential in WCP7 and

emphasized by its name: Structured Synchronizing Merge. It

requires to have a decision directly prior each Merge.

Decisions are expressed through decision activities that have

to be finished before a merge is possible. The non-selected

activities and groups are immediately skipped after the
decision activity is done [6]. With this characteristic the

Merge can express WCP5 and WCP7.

Figure 4: Workflow model for WCP4 and WCP5

The WCP9 is expressed by Discriminator. It uses a

similar composite structure as the one in Figure 4, but the

invariant is somewhat different to the one of Merge. It

allows succ activities connected to the Discriminator object

to start after one pred object is finished.

Figure 5 is showing the WCP8 which is expressed by the

MultiMerge object. MultiMerge is a subclass of

IterationGroup that allows iterative executions of the

included activities one after another by calling the

nextIteration() operation. To define the semantics of the

WCP8, two OCL invariants are used. One says that the

number of iterations is not allowed to exceed the number of

executed pred activities or groups. The other invariant states

that all succ activities are not allowed to be started before

the number of iterations are equal to the number of executed

pred objects. A group is classified as executed if at least one

included activity is done and no other activity is waiting,

running or failed. As discussed before, an invariant assures

the static property that only activities or groups are allowed

to be connected as pred objects to the MultiMerge object.

Figure 5: Workflow models for (a) WCP8 and (b) WCP9 and WCP12

In Figure 6(a) the WCP10 is expressed. New iteration

cycles can be initiated by calling nextIteration() of

IterationGroup at runtime. An OCL precondition states that

all included activities are skipped, done or canceled. The

included activities are reset to waiting and execution data of

the previous iteration is stored through the association
archive. In this archive every iteration cycle is expressed as

a group object that itself is connected to the executed

activity instances with the assigned execution data as

timestamps in the attributes start and finish.

Figure 6: Workflow models for (a) WCP10 and (b) WCP18

In Figure 6(b) WCP18 is expressed by using the

exceeded association. This association may have side effects

on linked activities or groups. If an activity with the role

until starts, all activities with the role before that are not

already started or finished will skip. These side effects are

implemented in the ASSL start procedure that is used for the

execution of the process models at runtime. If, in the

example of Figure 6(b), the activity d is started while the

activities of group it1 and the activity c are still waiting they

are skipped. If the current iteration cycle of it1 is running

that iteration can finish but no further iterations can be

initiated. This integrity constraint is expressed in the

precondition of the nextIteration() operation in the class

IterationGroup.

The Deferred choice pattern can also be realized using

the exceeded association in contrast to the definition that is

described in [6]. The activities that are related together with

the WCP16 can be mutually linked together with exceeded

links. If one activity starts all connected ones are skipped

following the semantics of the exceeded association. Thus,

the choice is implicitly made.

B. Integration of Data in the Metamodel

This subsection discusses the data aspect in the workflow
metamodel. USE is a tool that is used for validating UML
data models at an early design stage before they are realized
in a database system during a system implementation [9].
Data model integration seems to be very promising, because
an integrated workflow model can describe data in
connection with the control flow properties and vice versa.
Further on, these models can be executed in the workflow
plugin so that the integrated models can be validated which
will be subject of discussion in subsection IV B.

The goal of the data model integration into the workflow
metamodel is to specify which data is needed to be captured,
edited or read by the user to accomplish its task. Figure 7
demonstrates two options for connecting activities to data
objects. The first one is the association use that connects
activities with objects that represent data queries or creation.
Within the attribute classname of the class DataObject the
classname of the queried objects or the object to be created
should be specified. The subclasses DataRead and DataEdit
store an OCL selection term, for inquiring data, in the
attribute selection. These objects are interpreted by the
workflow runtime plugin and they are translated in OCL
queries. For example a DataRead object with the value ‘C’ in
attribute classname and ‘z>10’ for attribute selection is
translated into the OCL query ‘C.allInstances()-
>select(z>10)’.

Figure 7: Workflow metamodel with data integration and data model in an

UML class diagram

Additionally, there is the possibility to refer to the
workflow model from the data model using the attributes
creationActivity and editingActivities. These attributes, see
class C in Figure 7, will be recognized by the workflow
plugin and if an object is created during the workflow
execution the attribute creationActivity will be set to the
corresponding activity object. If the attribute is not modeled
in the class of the created object the backward reference will
not be set. In an analogous way the editing of data objects
will be recognized by the runtime plugin. If an activity has

inquired a data object and attributes have been edited by the
user during the activity execution using the workflow plugin
the reference to the activity is inserted into the
editingActivities attribute of the data object.

Having such back references enables the use of data
integrity constraints. An example will be given in subsection
III C.

Another possibility to integrate data to workflow models
is by using the DataflowObject and the flow association. In
the data model an inheritance relationship expresses that
objects of a special data class are used to be passed from one
activity to another.

Data and workflow modeling uses several different
diagram types in this approach. Data modeling employs
UML class diagrams while workflow modeling uses UML
object diagrams to express the abstract syntax of the
workflow language. Table II gives an overview on modeling
concepts and their associated diagram types.

TABLE II. USED DIAGRAMS AND PROPERTIES OF THE WORKFLOW-
AND DATAMODEL DEVELOPMENT

Development

time

Workflow model with

data aspects
Data model

Metamodeling
Class diagram

pictured in Figure 1

and 7

No metamodel needed (The
UML metamodel

implemented in USE is used)

Design time

Object diagram as
a workflow model

with faded out

workflow-execution
data

Class diagram –
DataflowObjects are

integrated in the workflow

metamodel with inheritance
and specially named attributes

links to the workflow model

like pictured in Figure 7

Runtime

Object diagram as
a workflow model

with enriched
workflow-execution

data

Object diagram – a snapshot
of a system state of the data

model is generated before or
during workflow execution

C. Integration of Organisational Aspects into the

Metamodel

This subsection is about integration of organizational
aspects into the workflow metamodel. In USE an
organizational model can be integrated quite easily. Figure 8
shows the organizational metamodel with the integration of
the activity class of the workflow metamodel. It expresses
the allocation of the Role to the Activity at design time and
the Person to Activity at runtime.

In the ARIS method and toolset [18] and in several other
models like [8] or [7] the organization aspect of an enterprise
is modeled hierarchically. Using an organization tree, the
root node represents the company as whole. Its subunits are
modeled directly beneath it. This dividing into subunits stops
at leaves level. Roles are exclusively assigned to
organization unit. They can be interpreted as positions in the
company [20]. A difference might be that a position is
typically assigned to exactly one person. In the
organizational metamodel of Figure 8 a person can take over
several roles. An example will be given in section III. To
achieve the hierarchical structure of the organizational
model, the reflexive association contains in the metamodel is

used similar to [8] and [7]. Mapping of roles to units are
expressed by the association has. The correlation of persons
to roles is expressed by the assign association.

The assignment to activities is achieved by the abstract
class BindingObject and the association allocation. Similar
to the ARIS method [18] activities can be assigned to
organizational units or rather departments with the
association class alloc_Unit. The selection of the persons
from the department is specified in the attribute allocType.
Three types are given by the metamodel within the
enumeration AllocationType. AnyPerson selects a idle person
of that department to execute the task. AllRoles selects for
every role assigned to the department a person at runtime to
the activity execution. The last value allPersons would
allocate all persons of the department to the task execution.
An example will follow in subsection III C.

Figure 8: Organizational metamodel with connection to the workflow
metamodel

III. MODELING WORKFLOWS, DATA AND

ORGANISATIONAL ASPECTS

 In this section we demonstrate how the metamodel is

used to model an actual workflow with respect to data and

organizational aspects. Firstly the workflow is explained

using natural language. Afterwards the metamodels

introduced in section II will be applied to create the

necessary models. In the last subsection a development

process and a tool chain will be presented.

A. The process in natural language

A peri surgical emergency process should be modeled
from the arrival in hospital until wake up of the patient.

The process starts with the transportation of the patient.
She can either be transported by helicopter or ambulance.
For this initial part of the workflow the hospital staff is not
responsible to decide what transport type should be taken.
Therefore both transportation activities are correlated in a
deferred choice relationship [1]. After the patient has arrived
at the hospital, she has to be checked whether she has to be
operated immediately or if there is time to prepare a normal
surgery. This check is done by a doctor at the hospital.
Depending on its decision, an immediate or a normal surgery
takes place. Afterwards, the patient wakes up which has to be
observed by the hospital staff. During this whole process the
medication of the patient proceeds and has to be
continuously documented. The control flow of the model is
extensively pictured in [6].

The model of this paper integrates the data view. Patient
data comprises of name (or id), age, disease and urgency of
the case. It is determined and entered one after the other in
several activities during the process execution. The patient

data can be viewed as a dataflow that is handed over from
one activity to another one. During transportation name and
age of the patient should be determined. After reaching the
hospital, an exact diagnosis takes place during the check of
the patient. To help a doctor finding the correct diagnosis a
list of diseases and respective symptoms could be presented
by an information system.

A number of data items is created during the emergency
process. For example a nurse has to document if she gives
medication to the patient. Kind and amount of medicine are
important for the medication protocol. To avoid applying an
overdose it can be helpful to present this protocol to her
during the execution of the corresponding activity.

B. Modeling workflow and data aspects of the workflow

Initially, needed data has to be modeled in a UML class
diagram. As shown in Table II UML class diagrams are used
for data modeling at design time. During this step of the
design process, a data model may be already validated with
USE by creating snapshots as object diagrams and stating
OCL queries (see [9]). The data model for the data aspect of
the emergency process is shown in Figure 9. Class
PatientData provides needed data within the attributes. It is a
subclass of DataflowObject which in turn is a part of the
workflow metamodel. Thus, PatientData may be used as a
dataflow object within the workflow model.

Figure 9: Data model for the emergency workflow model as UML class
diagram

Class Disease represents possible diseases with their
associated symptoms, as stored in the hospital’s information
system. PatientData has an attribute that links to the
particular Disease which is identified during the initial
diagnosis.

Class MedicationDosage is used to protocol the
medication during an emergency process. For every new
medication a new object of the class should be instantiated.
Attributes of such newly created object must be filled after
the creationActivity has been finished. This can be expressed
by an OCL invariant similar to the one presented in the
following.

Dataflow objects are connected via links of the
association flow to activities that need the corresponding data
object. The integrated model is pictured in Figure 10.
EmergencyProcess is linked with an activity and a group of
activities. AdjustMedication is independent to any other
process fragments. Remaining activities are correlated to the
process by calculating the transitive closure as described in
subsection II A. After delivery is done, the patient is

checked. This is expressed with the seq link between these
objects. Depending on the decision made in
CheckPatientCondition either the NormalSurgery or
EmergencySurgery take place. PatientData is a central data
flow object in the model. It is related to the delivery
activities and CheckPatient. That activity has a DataRead
object which inquires all diseases from the database of the
information system to assist the doctor finding the correct
diagnosis. This database is represented by data objects in the
UML object diagram. The AdjustMedication activity is an
Iteration that creates a new MedicationDosage object with a
DataCreate object. Additionally, past MedicationDosage
objects, created by the same activity, are inquired by the
DataRead object. Past medications are presented to the user
so that she can avoid medication overdoses.

Figure 10: Workflow model with data integration as UML object diagram

The following OCL invariant expresses a data integrity
constraint in combination with workflow data. It states: If the
transportation of the patient is done the name and age of the
patient must be filled.

context PatientData inv NameAndAgeFixAfterTransp:
 self.activity->select(state=#done)
 ->includes(name=’HelicopterDelivery’
 or name=’AmbulanceDelivery’) implies
 (name.isDefined() and age.isDefined())

C. Modeling the organisational parts

Modeling the organizational aspect is the core of this
subsection. The organizational chart of Figure 11(a) is
showing the hierarchical decomposition of the hospital. It is
divided into three subunits FacilityManagement,
MedicineDepartment and Accounting. Two roles have been
introduced and are assigned to the MedicineDepartment.

Activities are either assigned to roles or to OrgUnits in
Figure 11(b). They are assigned to Persons at runtime by
(ASSL) allocation procedures. The person has to hold the
role to accomplish the allocation. Roles and persons are parts
of the hierarchical organizational model.

In the model of Figure 11(b) the activities are assigned to
corresponding roles. For example CheckPatientCondition is
executed by a surgeon. AdjustMedication is assigned to
MedicineDepartment. The allocation strategy is indicated by
the anyPerson object assigned to that link. Thus, any person
of that department can execute that task.

Regarding the layout of the models, it is obvious that
integrated workflow models are hard to read, because of the
number of objects and links that might inevitably tend to
overlap. This is not solely a problem of workflow models in
USE though its abstract syntax might amplify the effect. But
USE offers support by providing a filter mechanism for
displaying the desired aspects of a model [9]. Thus, the
designer can inquire relevant model elements exclusively for
the control flow, organizational or data aspects of the
workflow model.

Figure 11: (a) Hierarchical organizational chart (b) Allocation to activities

D. Development and Validation Process and Tool Chain

In Figure 12 the development and validation process is
pictured.

Figure 12: Process and tool chain of model development

The diagrams used in USE and the plugins are listed and
related to the activities within the development process. On
the left hand side of Figure 12 an activity diagram is
pictured. For every activity, a diagram, plugin or tool is
linked within the tool chain. The arrows sequenzing the
activities and tools represent object flows that are outputs of
the previous activity or tool and input for the next activity or
tool in the chain. The figure illustrates the order in which the
diagrams and plugins are applied in USE.

IV. EXECUTING AND ANALYZING WORKFLOWS

In this section the workflow runtime plugin is presented
which provides an environment for workflow instantiation
and execution. The plugin presents the workflow instance in
an appropriate way to the user so that she can interact with
activities work items and related data in an appropriate way.
Validation of dynamic control flow properties and related
data integration are conducted here. Furthermore,
organizational resource aspects can be tested and process
mining can be done on the executed processes.

A. Preparation of the Workflow Execution

Before the workflow is executed in the workflow plugin,
the snapshot of the data model should be prepared in the
USE object diagram. In the example workflow of this paper
the diseases that should be stored in the hospital information
system are created before the process simulation starts.

The process for the workflow instantiation is as follows:
The runtime plugin gets the models from the design time
plugin as an ASSL file as presented in the tool chain of
Figure 12. The user only needs to load the desired ASSL
runtime file with the included process instantiation
procedures. Afterwards the possible instantiation procedures
are listed and the user has to select one, which is
consequently instantiated. As a result the process instance
appears in the workflow plugin for execution.

B. Testing dynamical control flow and data aspects with

the workflow plugin

As described in subsection III B the workflow plugin is

used to visualize the execution of the workflow models. In

the scenario of Figure 13 the process model of Figure 10 is

interpreted. The activity CheckPatientCondition is started

and correlated data is presented to the user within the

workflow plugin. The USE class extent view is shown on

top. It lists all the queried data objects and their attribute

values. With the getAllDiseases:DataRead object in the

workflow model of Figure 10 all the stored diseases are

queried. Three were found and are listed in that data

window.
The connected DataFlow object PatientData1 was

interpreted and is shown within the USE Object properties

view. The activity HelicopterDelivery has already been

executed as can be seen by the black colored dot. This

represents that activity to be in the state done. Activities get

particular colors assigned depending on their execution

states. Activity states can be changed by the user by clicking

on the activity buttons shown on the bottom of the workflow

runtime plugin windows.

Values for name and age have already been entered

during the execution of the AbulanceDelivery activity, as

was assured by the data integrity constraint presented in

subsection III B. The attribute disease is set to the

corresponding Disease2 object. Moreover, the urgency

attribute is entered.

Figure 13: USE workflow runtime plugin with a normal view and the

corresponding data presentation and a worklist view

The CheckPatientCondition activity is a decision

activity. The criterion has to be selected together with the

corresponding guard. This is done by the user during the

execution of the decision activity within the window shown

beneath the USE Object properties view in Figure 13.

Decision modeling is similar to EPCs, where there is the

rule that only activities have the competence to make

decisions [11, 5]. UML activity diagrams or YAWL handle

decision modeling slightly different. In these languages the

choice operators are data driven and automatically executed

by the (workflow) system.
The organizational aspects are also tested during the

workflow execution. The ASSL allocation procedure which
is derived from the design time allocation model of Figure
11(b) tries to find an idle person for executing the activity. If
someone is found, then the person is assigned to the activity
by the allocation link. If none is found the procedure stops
with no result. An invariant states that no person can execute
two activities in parallel. This should apply for most
situations in real life. Nevertheless, the metamodel could be
extended to allow activities that can be executed by one
person in parallel with certain other activities. This is not
considered in the current metamodel.

C. Adaptations during runtime

During the execution of the workflow, model elements
can be adaptively changed in the workflow instance.
Adaptation Patterns [19] are supported on the process
instance level. Changes cannot take effect from the instance
level back to the process model or “type level” (see [19]).

The user can conduct adaptive changes in the object
diagram view of USE. That is already known from the
design time shown in Figure 10. Activities, data or
organizational aspects can be added, deleted or changed by
manipulating the workflow execution data or objects of the
data or organizational model.

But the adaptive changes of the workflow instance by
deletions and state modifications of activities generate some
problems. Certain changes are not reasonable but still
allowed by the tool, for example if historical data is deleted
in the workflow instance. Furthermore, an activity state
change could be conducted although it is not allowed by the
life cycle specification of Figure 2. In general Activity
objects must not be deleted or changed within the object
diagram in USE. If an activity should not be executed during
the process execution it shall be skipped instead of deleting it
in the object diagram. In contrast, adding activities should
not cause any problems during the process execution.

Restricting the process execution by adding execution
constraints can cause problems, too. But they are recognized
by the USE tool as constraint violations. OCL invariants are
permanently checked by USE so that constraint violations
are instantly displayed by the OCL invariant view [9].
Anyway, the workflow runtime plugin will recognize any
changes in the object diagram and it will instantly update its
view on the workflow instance model.

To improve the recognition of unreasonable changes that
are not already recognized, some pre- and postconditions can
be assigned to another operation adaptiveChange() added to
the class Process of the metamodel of Figure 1. Before
applying adaptive changes, the operation must be entered in
USE [9], then the process instance is modified and
afterwards the operation is exited. With OCL the workflow
instance state before the adaptive change can be compared
with the state after the change so that unreasonable changes
can be identified.

Furthermore, an adapted USE object diagram could be
implemented as another plugin for USE to provide a user
interface that only allows valid adaptive changes.

D. Execution Properties and Process Mining with OCL

During or after the execution of a workflow, its instance
data can be evaluated. There are several ways to analyze this
data. First of all, the workflow plugin itself is logging the
instructions taken from the user. It builds a list in which the
call events like start, finish, skip, cancel and fail are assigned
with timestamps and the activity.

Operation calls are logged by an UML sequence
diagram. Here side effects of Activity operation calls can be
easily detected. Changing state of an activity can have side
effects on other activities that are related with certain
temporal or rather causal relations. A sequence diagram of a
process scenario captured in the USE tool can be seen in [6].

The object diagram in USE is showing the workflow
instance at runtime in which the execution data is captured.
This can also be used for inspection but the data is not
presented in an easily readable way. It seems to be more
promising to use process mining with OCL queries to get
certain properties of a workflow execution. An example
OCL term is given in the following. This query lists the
activities ordered by elapsed execution time each activity has
needed. Any number of further queries can be stated and
evaluated in the OCL evaluation window [9].

EmergencyProcess.getActivities()->iterate(a:Activity;
acc:Set(Tuple(n:name, t:Integer))=Set{} |
acc->including(Tuple{n:a.name, t:a.finish – a.start}))
->select(t.isDefined())->sortedBy(t)

V. RELATED WORK

The ARIS method and toolset is widely used in industry
to model business processes with organizational and data
aspects [18]. It is a proprietary solution that uses the Event-
driven Process Chains (EPCs) and BPMN as workflow
languages. The ARIS toolset provides a translation into
executable BPEL code which is much more complicated and
heavy-weighted compared to the approach presented in this
paper.

The Bflow [10] toolbox provides a workflow modeling
environment with EPCs. Static aspects of workflow models
are instantly checked at design time similar to the static
analysis of process models within our approach (see [6]).
Bflow also uses a metamodel with EMF and GMF in
combination with Eclipse [10]. The models cannot be
executed so that dynamic aspects cannot be validated.

Task tree models that represent hierarchy oriented
workflow models can be tested and executed within the
modeling environment CTTE [13]. This is similar to the
method presented here. But CTTE provides less integration
of data and organizational aspects and does not allow
workflow models to be adaptively changed at runtime.

Declare is a tool for declarative workflow modeling on
basis of LTL formulas [2]. The models are executable and
the organizational with role-person assignments and data
aspects of the workflows are rudimentary captured. The
declarative background is similar to the one presented in this
paper.

Metamodels are widely used for modeling the
interrelations of the workflow models with other diagrams
like organizational, data or goal diagrams. Scheer has used
metamodels to formally introduce ARIS [18]. Zur Mühlen
has evaluated workflow management systems with
metamodels [14]. Organizational aspects of workflows are
formally modeled in combination with metamodels and OCL
in [3] but these models are neither executable nor tested by a
UML tool. In the context of organizational modeling
workflow resource patterns are identified in [16]. An
analysis together with our approach goes beyond the scope
of this paper.

Data integration in workflow diagrams is widely done
with object flows. Ambiguities of interpreting object flows in
UML activity diagrams and BPMN are identified in [4].

These problems are avoided in the approach presented here
by having an integrated process and data model within the
USE object diagram. The integration of the data views into
the workflow models is identified with the workflow data
patterns [17].

VI. SUMMARY AND CONCLUSION

In this paper a UML metamodel based approach for
workflow modeling is presented. This technique is powerful
which is demonstrated by checking it against the workflow
patterns. The original 20 workflow patterns can be expressed
and some of them can be expressed easier than in popular
languages like BPMN or EPCs like for example the
Interleave Parallel Routing Pattern [6].

Data and organizational aspects can be modeled. An
abstract syntax is provided with the UML tool USE for
workflow-, data- and organizational modeling. The
workflow models can be captured by the developed
workflow design time plugin for USE. The model is
persistently stored in ASSL-files for later reuse at runtime.

We developed also a workflow runtime plugin which was
presented in this paper. It uses the tool realizing parts of the
UML action semantics for executing the workflow model
based on the ASSL language [9]. The required data objects
are presented to the user during the workflow execution.
Mutual dependencies can be specified between data and the
control flow specification. Such constraints are observed by
USE and missing data entries are identified during workflow
execution. The user is directed to the corresponding objects
that violate the OCL invariants.

The workflow instances can be analyzed and adaptively
changed at runtime. The same applies to the snapshots of the
organizational and data model. Time aspects are captured by
the workflow plugin and are stored during workflow
execution. Thereafter, this data can be analyzed in a log
window of the workflow plugin, by a UML sequence
diagram or by OCL mining queries. So, important properties
of the executed process instances can be discovered.

REFERENCES

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, and Kiepuszewski,
“Workflow Patterns,“ Distributed and Parallel Databases, 14(3):5-
51, 2003.

[2] W.M.P. van der Aalst, M. Pesic, and H. Schonenberg, Declarative
workflows: Balancing between flexibility and support. Computer
Science - Research and Development, 23(2):99–113, 2009.

[3] W.M.P. van der Aalst, and A. Kumar, “Team-Enabled Workflow
Management Systems,” Data and Knowledge Engineering, 38(3):335-
363, 2001.

[4] J. Brüning, and P. Forbrig “Behaviour of flow operators connected
with object flows in workflow specifications,” 7th International
Conference on Perspectives in Business Informatics Research
(BIR2008), University of Gdansk, 2008.

[5] J. Brüning, and P. Forbrig, “Modellierung von Entscheidungen und
Interpretation von Entscheidungsoperatoren in einem WfMS”, EPK
2009 Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, Berlin, CEUR-WS 554, 2009.

[6] J. Brüning, M. Gogolla, and P. Forbrig, “Modeling and formally
checking workflow properties using UML and OCL,” 9th
International Conference on Perspectives in Business Informatics
Research (BIR2010), LNBIP vol. 64, Springer, 2010.

[7] H.-E. Eriksson, and M. Penker, “Business Modeling with UML:
Business Patterns at Work,” Wiley, 2000.

[8] M. Fowler, “Analysis Patterns: Organization Structures
(Accountability),” http://martinfowler.com/apsupp/accountability.pdf
(visited: 02/28/2011)

[9] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-Based
Specification Environment for Validating UML and OCL,” Science of
Computer Programming, 69:27-34, 2007.

[10] S. Kühne, H. Kern, V. Gruhn, and R. Laue, “Business process
modeling with continuous validation,” Journal of Software
Maintenance and Evolution: Research and Practice, Volume 22, Issue
6-7, pages 547–566, 2010. DOI: 10.1002/smr.517

[11] G. Keller, M. Nüttgens, and A.-W. Scheer, “Semantische
Prozeßmodellierung auf der Grundlage Ereignisgesteuerter
Prozeßketten (EPK)“. Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89, Saarbrücken, 1992.

[12] B. Kiepuszewski, A.H.M. ter Hofstede, and C.J. Bussler, “On
Structured Workflow Modelling,” 12th International Conference on
Advanced Information Systems Engineering (CAiSE2000),
Stockholm, LNCS vol. 1789:431-445, 2000.

[13] G. Mori, F. Paterno, and C. Santoro, “CTTE: Support for Developing
and Analyzing Task Models for Interactive System Design,” IEEE
Transactions on Software Engineering, 2002, pp.797-813.

[14] M. zur Mühlen, “Evaluation of Workflow Management Systems
Using Meta Models”, In: R. Sprague Jr, editor, 32nd Annual Hawaii
International Conference on Systems Sciences, Wailea, Hawaii, USA,
1999.

[15] P. Dadam, and M. Reichert, “The ADEPT Project: A Decade of
Research and Development for Robust and Flexible Process Support -
Challenges and Achievements,” Computer Science - Research and
Development, Springer. Vol. 23, No. 2, pp. 81-97, 2009.

[16] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der
Aalst, “Workflow Resource Patterns,” BETA Working Paper Series,
WP 127, Eindhoven University of Technology, Eindhoven, 2004.

[17] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der
Aalst, “Workflow Data Patterns,” QUT Technical report, FIT-TR-
2004-01, Queensland University of Technology, Brisbane, 2004.

[18] A.-W. Scheer, “ ARIS: Business Process Modeling,“ Springer, 2000.

[19] B. Weber, Rinderle, S., and Reichert M., “Process Change Patterns
(Aktuelles Schlagwort),” EMISA Forum, 27(2):45-51, 2007.

[20] M. Weske, “Business Process Management,” Springer, 2007.

[21] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede,
and N. Russel, “Pattern-based Analysis of the Control-Flow
Perspective of UML Activity Diagrams,” 24th International
Conference on Conceptual Modeling (ER2005), LNCS vol. 3716,
Springer, 2006.

[22] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter
Hofstede, “Pattern-Based Analysis of BPEL4WS, ” QUT Technical
report, FIT-TR-2002-04, Queensland University of Technology,
Brisbane, 2002.

