
Workshop in OCL and Textual Modelling
Report on Recent Trends and Panel Discussions

Robert Bill1, Achim D. Brucker2, Jordi Cabot3,4, Martin Gogolla5,
Antonio Vallecillo6, and Edward D. Willink7

1 TU Vienna, Austria
bill@big.tuwien.ac.at

2 The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk

3 ICREA, Spain
4 UOC, Spain

jordi.cabot@icrea.cat
5 University of Bremen, Bremen, Germany

gogolla@informatik.uni-bremen.de
6 Universidad de Málaga, Málaga, Spain

av@lcc.uma.es
7 Willink Transformations Ltd, Reading, UK

ed_at_willink.me.uk

Abstract This paper reports on the panel session of the 17th Workshop
in OCL and Textual Modelling, As in previous years, the panel session
featured several lightning talks for presenting recent developments and
open questions in the area of OCL and textual modelling. During this
session, the OCL community discussed, stimulated through short pre-
sentations by OCL experts, proposals for improving OCL to increase the
attractiveness of textual modelling.
This paper contains a summary of the workshop from the workshop
organisers as well as summaries of two lightning talks provided by their
presenters.

Keywords: OCL · textual modelling

1 Introduction

Textual modelling in general and OCL in particular are well established. This
year does not only mark the 17th edition of the OCL workshop, it also marks
the twentieth anniversary of the first publication of the OCL standard by the
OMG [3]. Nevertheless, textual modelling in general and OCL in particular is an
active field of research. This year, the Workshop in OCL and Textual Modelling
features five regular talks and three lightning talks that covered topics such as
the translation of OCL to programming and specification languages, proposals
for improving textual modelling languages and their tool support, as well as the
development of an OCL benchmark.

http://www.brucker.ch/
mailto:"Achim D. Brucker" <a.brucker@sheffield.ac.uk>

2

The lighting talks at the panel session of the workshop provided a platform
for the textual modelling community to discuss and present tools, ideas, and
proposals to support textual modelling as well as to shape the future of textual
modelling. The following sections, each of them contributed by one expert of the
field, discuss the different tools and ideas that were discussed during the panel
session.

2 Sometimes Postconditions Do Not Suffice
Martin Gogolla and Antonio Vallecillo

2.1 Non-Determinateness and Randomness in OCL

Recently there have been proposals for incorporating the option to express ran-
domness in OCL [2, 4]. In many modelling and simulation environments, the use
of random numbers and probability distributions are used to combine definite
knowledge with an uncertain view on the result or the population of a test case.
Thus, there is an interest to express such requirements in UML and OCL.

OCL already has operations that possess a flavor of randomness, like the
operation any(). One could also consider a new collection operation random()
that randomly chooses an element from the argument collection. Our under-
standing of such operations is that they cannot be characterized only by ‘tradi-
tional’ postconditions. In particular special attention has to be given in order to
express the difference between any() and random(): A ‘traditional’ postcondi-
tion would characterize ‘one’ call to the respective operation (for example, with
Set{1..6}->includes(result)); but these two operations must be character-
ized by ‘many’ operation calls and a comparison between their actual and their
expected results. We show with a small example how such a ‘non-traditional’
postcondition in form of an invariant could look like.

2.2 Formulating Randomness Quality Criteria as an Invariant

Consider the class diagram in Fig. 1 that is intended to model a dice. Every time
the operation random6() is called it should return a random number between 1
and 6. Our expectation for the operation any() would be that it can also return
any number between 1 and 6, but that different calls to any() always yield the
same result. In contrast, different calls to random() should show different results.

The attributes in the class Dice (see Lst. 1.1) give a simple measure for
the quality of the generated random numbers. Basically the attributes say that
the number of tests for random6() that have to be performed is numChecks
and that, for example, the difference between (a) the amount of operation calls
yielding 2 and (b) the amount of operation calls yielding 5 is at most deltaMax.
These requirements are formulated as an OCL formula in terms of an invariant
of the class Dice. The requirement should not be formulated as a random6()
postcondition because this would lead to a situation where a recursive call to
the operation would occur in the postcondition. Much better criteria for the
random distribution could be formulated in OCL as well. The purpose of the

3

class Dice
attributes

numChecks:Integer
deltaMax:Integer

operations
random6 (): Integer=Set{1..6}-> random ()
post returns_1_6: Set{1..6}-> includes(result)

constraints
inv manyRandom6CallsResultInNearlyEquallyDistributedValues:

-- call random6 () many times
-- store resulting amounts in Sequence{A1,A2 ,A3,A4,A5,A6}
-- check differences between A1..A6
let amts=Set {1.. numChecks}->iterate(i:Integer;

amts:Sequence(Integer)= Sequence {0,0,0,0,0,0} |
let r=random6 () in
Sequence{

if r=1 then amts ->at(1)+1 else amts ->at(1) endif ,
if r=2 then amts ->at(2)+1 else amts ->at(2) endif ,
if r=3 then amts ->at(3)+1 else amts ->at(3) endif ,
if r=4 then amts ->at(4)+1 else amts ->at(4) endif ,
if r=5 then amts ->at(5)+1 else amts ->at(5) endif ,
if r=6 then amts ->at(6)+1 else amts ->at(6) endif }) in

Sequence {1..5}-> iterate(i; diffs:Sequence(Integer)= Sequence {} |
Sequence{i+1..6}-> iterate(j; diffs2:Sequence(Integer)= diffs |

diffs2 ->including ((amts ->at(i)-amts ->at(j)).abs())))->
forAll(d | d<= deltaMax)

end

Listing 1.1. Specification of the Dice example.

shown invariant is only to demonstrate that many calls to an operation may be
necessary in order to express desired properties.

Figure 1. Class diagram for Dice example.

3 Commutative Short Circuit Operators
Edward D. Willink

OCL’s 4-level logic has been a source of much unhappiness and while various
solutions have been suggested, none have met with enthusiasm. We look at where
the unhappiness comes from and thereby suggest a new solution.

4

The OCL designers defined an underlying model in which all expressions have
types. Consequently the mathematical concept of truth was reified by a Boolean
type with associated Boolean library operations. The designers chose to avoid
exceptions. This in combination with UML conformance required a null value
for the missing value of properties with optional multiplicity, and an invalid
value for everything bad that might be evaluated.

Unfortunately null and invalid pollute the simplicity of truths and so the
Amsterdam Manifesto [1] elaborates Boolean operators with short-circuit like
functionality for problems such as:

a <> null and a.doSomething ()

However the operators remain commutative and so it is suggested that all
terms are evaluated in parallel until the result is knowable. A Karnaugh Map
defines the mapping from the true (T), false (F), null (ε) and invalid (⊥)
values of Left and Right inputs to the and output.

Left Right and requires ‘and2’
T T T T T
T F F F F
T ⊥,ε ⊥ ⊥ ⊥
F - F
F T,F F F
F ⊥,ε F ⊥
⊥,ε - ⊥
⊥,ε T,F,⊥,ε ⊥ ⊥

Parallel execution is an implementation nightmare and the intermediate
invalid results can be inefficient. If we eliminate commutative short circuits,
we find that invalid results are exceptional rather than normal.

a <> null requires a.doSomething ()

A new requires operator imposes a left argument first evaluation order
for and. This avoids the spurious invalid results from the right argument and
clearly indicates the intent to handle non-truths. The and operator can then be
used for truths only. Once static analysis verifies that neither left nor right input
of an and operator can be null or invalid, an implementation may implement
a regular ‘and2’ operation that returns invalid for any null or invalid input.

A new obviates operator is also needed to regularize or short circuiting.

4 Conclusion

The lively discussions both during the lighting talks as well as for each paper
that was presented showed again that the OCL community is a very active
community. Moreover, it showed that OCL, even though it is a mature language
that is widely used, has still areas in which the language can be improved. We

5

all will look forward to upcoming version of the OCL standard and next year’s
edition of the OCL workshop.

Acknowledgments. We would like to thank all participants of this years OCL
workshop for their active contributions to the discussions at the workshop. These
lively discussions are a significant contribution to the success of the OCL work-
shop series.

Bibliography

[1] Cook, S., Kleppe, A., Mitchell, R., Rumpe, B., Warmer, J., Wills, A.: The ams-
terdam manifesto on OCL. In: Clark, T., Warmer, J. (eds.) Object Modeling with
the OCL: The Rationale behind the Object Constraint Language, Lecture Notes in
Computer Science, vol. 2263, pp. 115–149. Springer-Verlag, Heidelberg (2002)

[2] Johnson, P., Ullberg, J., Buschle, M., Franke, U., Shahzad, K.: P2AMF: Predictive,
Probabilistic Architecture Modeling Framework. In: van Sinderen, M., Luttighuis,
P.O., Folmer, E., Bosems, S. (eds.) Enterprise Interoperability - Proc. 5th Int. IFIP
Working Conf., IWEI, 2013, LNBIP, vol. 144, pp. 104–117. Springer (2013)

[3] OMG: Object constraint language specification (version 1.1) (1997). Available as
OMG document ad/97-08-08

[4] Vallecillo, A., Gogolla, M.: Adding Random Operations to OCL. In: Posse, E.,
Ratiu, D., Selim, G., Zalila, F. (eds.) Proc. Workshop on Model Driven Engineering,
Verification and Validation (MODEVVA 2017). CEUR Proceedings (2017)

http://www.omg.org/cgi-bin/doc?ad/97-08-08

	Workshop in OCL and Textual Modelling

