
A Comparison of Textual Modeling Languages:
OCL, Alloy, FOML

Mira Balaban1, Phillipa Bennett2, Khanh Hoang Doan3, Geri Georg2,
Martin Gogolla3, Igal Khitron1, Michael Kifer4

1 Computer Science Department, Ben-Gurion University of the Negev, ISRAEL
mira@cs.bgu.ac.il, khitron@cs.bgu.ac.il

2 Computer Science Department, Colorado State University, Fort Collins, CO, USA
georg@CS.ColoState.EDU, Phillipa.Bennett@colostate.edu

3 Department for Mathematics and Computer Science, University of Bremen, Germany
gogolla@informatik.uni-bremen.de, doankh@informatik.uni-bremen.de

4 Department of Computer Science, Stony Brook University, NY, USA
kifer@cs.stonybrook.edu

Abstract. Textual modeling languages are used in model-driven engi-
neering for a variety of purposes. Among the most important purposes
are querying a model and formulating restrictions like state invariants
or operation pre- and postconditions. This paper compares three such
languages. OCL augments UML as a precise language that provides con-
straint and object query expressions that cannot otherwise be expressed
by a diagrammatic notation. Alloy is a simple but expressive logic based
on the notion of relations. FOML is a logic rule language that supports
object modeling, analysis, and inference. The paper shows typical models
in each of the three languages and discusses similarities of and differences
between the languages.

1 Introduction

Textual modeling languages are used in model-driven engineering for a variety
of purposes, among the prominent ones, querying a model and formulating
restrictions like state invariants or operation pre- and postconditions. This paper
provides a comparison between three such languages. OCL is augmenting UML
as a precise language that provides constraint and object query expressions that
cannot otherwise be expressed by diagrams. Alloy is a simple but expressive logic
based on the notion of relations. FOML is a logic rule language that supports
object modeling, analysis, and inference. The paper shows typical models in each
of the languages and discusses similarities and differences among the languages.

This paper is organized as follows. Section 2 introduces the general comparison
criteria used in this paper. In sections 3, 4, 5 the three languages are described,
using three typical models. In Section 6 the three languages are compared, and
section 7 concludes the paper.

57

2 Modeling Criteria

Modeling tools use modeling languages for expressing software models and to
provide means for model management and for solving modeling questions. Ac-
cordingly, our comparison of modeling languages has two aspects: (1) mode of
usage and problems being solved and (2) the representation aspects.

The mode of usage includes constraining a model, querying and analysis,
checking satisfiability of constraints, instance creation or completion, instance
validation (testing), multiple domains and levels of modeling, and others.

To compare the representations, we consider five categories: navigation through
the elements of the models, support for collections, aggregation, recursion, and
subtyping/instantiation. Navigation refers to traversal of inter-references among
elements of a model. Many languages involve special kinds of navigation expres-
sions that enable direct reference among objects. These navigation expressions
can vary in the amount of flexibility and control, such as support for filtering of
undesirable references or use of wild-cards over navigation paths.

The collections and aggregation criteria refer to the ability of a language to
express known kinds of collections, specify new kinds of structures, and aggregate
answers to queries using such collections. Support for recursion means the ability
to define recursive modes of computation. Subtyping (or type hierarchy) refers to
specification of inclusion relationships among types, and instantiation refers to
specification of instances of abstraction, like application of predicates or functions
to data, or specification of class instances.

Sections 3, 4, and 5 introduce each of the three surveyed languages using
typical models, keeping in mind the above representation criteria and the typical
modes of usage. Section 6 then compares these languages.

3 Modeling with OCL

3.1 OCL Concepts

The Object Constrains Language (OCL) [1, 2] is a textual, descriptive expression
language. OCL is side effect free and is mainly used for phrasing constraints and
queries in object-oriented models. Most OCL expressions rely on a class model
which can be expressed in a (graphical) modeling language like UML [3], MOF
or EMF. The central concepts in OCL are objects, object navigation, collections,
collection operations and boolean-valued expressions, i.e., formulas.

Objects: An OCL expression will often begin with an object literal or an
object variable and denotes a value, an object or a collection of these entities.
For example in the context of classes Researcher and Paper and an association
submission(author:Researcher, submission:Paper) that also defines rolenames, one
could use the objects ada, bob, cyd of type Researcher and subICSE, subMODELS
of type Paper. Furthermore variables like p:Paper and r:Researcher could be
employed.

Object Navigation: Object navigation is realized by using role names from
associations or object-valued attributes which are applied to objects or object

58

collections. For instance, the following navigation expressions could be stated as
ada.submission or subICSE.author.

Collections: Collections can be employed in OCL to merge different elements
into a single structure containing the elements. There are four collection kinds:
sets, bags, sequences and ordered sets. Sets and ordered sets can contain an
elements at most once, whereas bags and sequences may contain an element
more than once. In sets and bags the element order is insignificant, whereas
sequences and ordered sets are sensitive to the element order. For a given class,
the operation allInstances yields the set of current objects in the class.

Collection Operations: There is a number of collection operations which
contribute essentially to the expressibility of OCL and which are applied with
the arrow operator. Among further operations, collections can be tested on
emptiness (isEmpty, notEmpty), the number of elements can be determined
(size), the elements can be filtered (select, reject), elements can be mapped to a
different item (collect) or can be sorted (sortedBy), set-theoretic operations may
be employed (union, intersection), and collections can be converted into other
collection kinds (asSet, asBag, asSequence, asOrderdSet).

Boolean-Valued Expressions: Because OCL is a constraint language, boolean
expressions which formalize model properties play a central role. Apart from
typical boolean connectives (and, or, not, =, implies, xor), universal and ex-
istential quantification are available (forAll, exists). Boolean expressions are
frequently used to describe class invariants and operation pre-and postconditions.
In postcondition expressions, the suffix @pre serves to access attribute and role
values at precondition time.

3.2 OCL Example Model: The Relational Data Model

This UML and OCL model describes the schema and state aspect of the relational
data model. It allows to define relational schemas incorporating tables, attributes
and data types. The model also pictures the state aspect in the sense that
tuples, tuple constituents (called tuple atoms below) and data type values are
characterized. One remark concerning spelling: Because the English word ‘tuple’
is a reserved word in OCL, the model and this text will employ the German
spelling ‘tupel’ whenever ‘tuple’ occurs in names of entities that are part of the
model (association names, role names, attribute names).

The class diagram for this model is displayed in Fig. 1. The light gray shaded
parts show operations that are added for convenient query formulation only and
that are not needed in the constraints. The figure also shows a valid example
object diagram that would result from the SQL statements indicated in the lower
left part.

Observe that three OCL collection kinds, Set, OrderedSet, Sequence, occur
in the operations and are thus conceptually needed. The fourth, Bag, would occur
if, for instance, the order in the operation tupel():Sequence(String) is not
relevant in a respective expressions or query. One could then apply additionally
the conversion operation asBag() resulting in tupel():Bag(String). Thus all

59

Fig. 1: Class diagram and object diagram.

4 OCL collection types occur in the example and must be employed in order to
deliver conceptually different result.

3.3 Constraints of the Relational Data Model

A constraint in OCL must be formulated at the class level and in the context of
a particular class (specified by the keyword context). There are three types of
constraints: invariant, postcondition and precondition. An invariant is a constraint

60

that states a condition that must always be true; it is recognized by keyword inv.
A precondition must be true just prior to the execution of an operation and a
postcondition must be true just after the execution of an operation. The keywords
pre and post are used to formulate preconditions and postconditions, respectively.
A number of constraints have been formulated for the relational data model. To
give examples, we introduce several of them in this section. The first constraint
is a technical requirement that arises due to modeling with reflexive associations.
The constraint guarantees that the order of Attribute objects defining a Table

object is acyclic.

context a:Attribute inv acyclicTableLinking:

Set{a.pred}->closure(pred)->excludes(a) and

Set{a.succ}->closure(succ)->excludes(a)

In this expression, we use the transitive closure operation to go through Attribute
instances through the Table link. The second constraint ensures that different
Attribute objects have different names within a Table.

context a:Attribute inv uniqueAttributeNamesWithinTable:

a.family()->forAll(a1,a2 | a1<>a2 implies a1.name<>a2.name)

Another constraint for the model is to guarantee the set of key Attribute

objects within a Table is not empty.

context a:Attribute inv keyAttributesNotEmpty:

a.family().key()->notEmpty

We also formulate a constraint to specify that two different Tupel objects of
a Table can be distinguished by a key Attribute of the Table. This constraint
is the core requirement of the relational data model expressing that two tuples
(or in other words rows) in a table show different values for the key attributes.

context t1,t2:TupelAtom inv keyAttributesHaveUniqueValues:

t1<>t2 and t1.attribute.family()=t2.attribute.family() and

t1.pred=null and t2.pred=null implies

t1.attribute.key()->exists(ka |

t1.applyAttr(ka)<>t2.applyAttr(ka))

A number of central OCL collection operations are employed in this model
(shown in the order of appearance): closure, excludes, forAll, size, notEmpty,
exists.

Verifying and validating UML and OCL models like the above one is supported
by the design tool USE (UML-based Specification Environment) [4, 5].

61

4 Modeling Examples: Alloy

4.1 Brief Description of Alloy

The declarative Alloy language [6], [7] can be used to specify the structure of a
system textually, and the Alloy Analyzer can then be used to explore it. Behavior
can be explored using predicates that query the system in various ways. The
Alloy Analyzer searches for system instances or counterexamples that satisfy the
predicates, assertions, and system constraints that have been specified.

The central concepts of Alloy are called signatures (their instances are called
atoms) and the relations between them. We have created a RolePermissionEm-
ployee model that demonstrates navigation and transitive closure, in addition
to constraints and predicates to explore the model. We define a signature Sys,
to specify the relations among the other signatures, and facts about the sets
of signatures, their relations, and other constraints to which the system must
comply. The Alloy Analyzer uses a SAT solver or the Kodkod model finder to
find instances or counterexamples of predicates and assertions. The search space
is bound through a scope that limits the number of elements of each signature
in the model. Experience has shown that a small scope is often able to find the
same issues as a larger scope, so limiting the scope to small numbers to make the
analysis more tractable is a common approach when using the Alloy Analyzer.

4.2 Modeling Criteria with Alloy

Navigation in Alloy occurs via relations, using the dot operator (which also serves
as a relational join operator). Collection and aggregation are specified as sets
referenced through the dot operator with optional predicate logic to constrain
the results. Alloy handles recursion by unrolling and is limited to a maximum
depth of three.

4.3 RolePermissionEmployee model

The RolePermissionEmployee Alloy model, called a module in Alloy, is textual.
Listing 1.1 shows the specification for a portion of the model that does not
contain the facts and constraints of the Sys signature or the predicates used to
explore it. The full model can be found at [8].

Listing 1.1: Portion of RolePermissionEmployee Alloy textual model

module RolePermissionEmployee

open util/graph[Role] as g_r

sig Name {}

sig Role { roleName: Name }

sig Permission {}

sig Employee {}

sig Sys {

roles: set Role, perms: set Permission, roleHierarchy: roles-> roles,

rolePermissions: roles some -> some perms }

62

Alloy keywords are bolded in Listing 1.1. The model name (RolePermis-
sionEmployee) follows the module keyword, and signature names follow the
sig keyword. Signatures can be abstract. They can also be restricted to a single
instance using the keywords lone sig, and hierarchies are supported (extends
keyword). Relations are specified with the name of the relation (e.g. rolePermis-
sions), and the participants in the relation separated with the − > symbol. The
keyword some specifies that there must be at least one instance of the signature
indicated. The keyword open allows other file contents to be imported, here,
Alloy-supplied graph utilities that define a forest, tree, and acyclic graph; these
are used in the model Sys signature constraints, where roleHierarchy is defined
as a forest (forest[roleHierarchy]).

The RolePermissionEmployee model can only be visualized as an instance
using the Alloy Analyzer; a visualization of the Alloy model signatures and
relations is not possible. However, the similarity between the concepts of signatures
and classes allows us to create a representation of the Alloy model as a UML
model. Figure 2 shows the complete RolePermissionEmployee model.

Fig. 2: The RolePermissionEmployee Alloy model as a UML class diagram

4.4 Constraints of the RolePermissionEmployee Model

Two system constraints are shown in Listing 1.2. Brief explanations of the
constraints are shown as comments (//) in the listing. Transitive closure is
provided by Alloy (ˆ in Listing 1.2), so the constraint that accesses the role
hierarchy is straightforward to specify. We can also write predicates to look
for instances with particular characteristics, for example, a predicate that an
employee has all the roles of its supervisees. This predicate, a predicate it calls,
and the Alloy Analyzer command to search for an instance that exhibits this
behavior are shown in Listing 1.3.

63

Listing 1.2: Some Sys signature constraints

roleNames = roles.roleName

all n: roleNames | lte[#roleName.n, 1] // role names are unique

all r1, r2 : roles | some r1->r2 & (^roleHierarchy) implies
no r1.rolePermissions & r2.rolePermissions // permissions not repeated

Listing 1.3: A RolePermissionEmployee model predicate

pred twoSigsRelated_WithConstraintRelation

(sig1, sig2: univ, rel: univ->univ) {

let al = allRelations[] | no sig1.rel and //allRelations is a function

some rel.sig2 and no sig1->sig2 & al and some sig1->sig2 & ^al }

pred employeesHasRoleThroughDescendantRole

(sig1: Employee, sig2: Role) {

twoSigsRelated_WithConstraintRelation[sig1, sig2, Sys.roleHierarchy] }

run employeesHasRoleThroughDescendantRole expect 1

5 Modeling with FOML

FOML [9] is an expressive logic rule language that provides intensional and
executable formal basis for software models. It naturally supports model-level
activities, such as constraints (extending UML diagrams), dynamic compositional
modeling (intensional, transformational), analysis and reasoning about models,
model testing, design pattern modeling, specification of Domain Specific Modeling
Languages, and meta-modeling. Meta-modeling in FOML relies on uniform
treatment of types and instances and spans both definition of abstract syntax
and semantics. As an executable modeling language, FOML can express and
reason about multiple crosscutting multilevel dimensions, including instantiation
constraints.

Technically, FOML is a semantic layer on top of a compact logic rule language
of guarded path expressions, called PathLP, an adaptation of a subset of F-logic
[10]. In the overall schema of things, PathLP [11] provides reasoning services over
unrestricted instance-of and subtype relations and over typed object-link relations
while FOML [12] provides the modeling framework. The PathLP language consists
of membership and subtype expressions, path expressions for objects and for
types, rules, constraints, and queries, and is implemented on top of the XSB logic
reasoning engine.

Below we briefly review the main features of FOML and show how it can be
used for modeling, reasoning, and testing. All examples refer to the class model
in Figure 3. Details of the syntax and semantics of FOML can be found in [9]
and the precise representation of the class model in the figure is found in [13].

Path Expressions: The main syntactic construct in the language is an object
path expressions. The basic form of a path expression is root.link[guard],
where root, link, and guard are terms that denote semantic entities, and link,
applied at root, evaluates to a set that contains guard. For example,

64

grantor_perms

user_tableR

ownedowner

grantee_table granted
parent

child

table

table_perms
granteeR

grantee

grantee_perms

grantor

Permission

access():{read,write}

Table

domain:String

User

Id = Int
name = String

authorisedP(t:Table):Boolean
table_grantees(t:Table):List(User)
authorized_tables(domain:String):List(Table)

0..*

1

grantorR
0..*

1 0..*

1

table_permsR

0..*

0..*

tableDependency

0..* 0..*

1 0..*
ownerR

Fig. 3: A User-Table-Permission class model

t.owner[?User].grantor_perms[?Per].table[t]

User.property[?p]

are (object) path expressions that, when used as queries, have the following
meaning. The first expression: given a table object t, it retrieves user-permission
pairs (?User,?Per) such that ?User is an owner of t and a grantor of the access
permission ?Per to t. The second expression: retrieves the properties of class User.
Symbols that are preceded with “?” are variables and they can be instantiated
by terms.
Facts, Rules, Constraints, Queries: FOML uses the regular Logic Program-
ming nomenclature of facts, rules, constraints and queries.
Facts are used to specify the information that is stored explicitly. For example,
the facts

mary.owned[t1]; t1.table_perms[p1]; (1)

p1.grantee[john]; mary.grantor_perms[p1]; (2)

state that mary owns table t1, which has permission p1 in which mary is the
grantor and john is the grantee.
Membership and Subtyping: Membership and class hierarchies are modeled
using the relations “:” and “::”, respectively. For example:

t1:Table; mary:User; (3),(4)

t2:Table; john:User; (5),(6)

SystemTable::Table; (7)

Table:Class; User:Class; User.prop[owner]; (8)

are facts that state that t1,t2 are Table-objects, Table itself is a Class-object
that has a subclass SystemTable. The fact (7) is not shown in the diagram and
the facts in (8) talk about the meta-level. The facts (3)-(8) describe data in three
different layers in the OMG classification: Data, Model, and Meta-model.
Rules represent implications and are denoted by the symbol :-, which separates
the head (conclusion, on the left) from the body (premise, on the right). Rule 9,
below, states that if a user ?u is a grantee in some permission access to a table
?t, then ?u is granted access to ?t. Rule 10 states that a child table has the
domain of its parent table.

65

?u.granted[?t] :- ?u.grantee_perms.table[?t]; (9)

?t.domain[?d] :- ?t.parent.domain[?d]; (10)
The meta-level relationships between an association and its respective pairs

of properties and classes, including multiplicities, are specified by two path
expressions, one for each property of the association. For example, the association
grantorR between classes User and Permission, with properties grantor and
grantor perms and multiplicities 1..1 and 0..*, respectively, is expressed by:

grantorR.prop(grantor,1,1)[User];

grantorR.prop(grantor_perms,0,*)[Permission];
Queries are recognized by the prefix ?-. They are used to retrieve information
that is implicit in the specification. For example,

Find all grantor-grantee-permission triplets to tables in the teaching domain:
?- ?u:User, ?u.grantor_perms[?p].grantee[?v],

?p.table.domain["teaching"];

Find pairs of grantor-grantee ?u, ?v to permissions for table ?t
?- ?u.compose_via_obj(grantor_perms,?p,grantee)[?v],?p.table[?t];

The second query uses a higher-order property constructor compose via obj.
Another higher-order constructor is closure. Both are defined below:

Objects ?o and ?v are related by compose(?p1,?p2) if there is a path ?p1.?p2
from ?o to ?v:

?o.compose(?p1,?p2)[?v] :- ?o.?p1.?p2[?v];

?o.compose_via_obj(?p1,?u,?p2)[?v] :- ?o.?p1[?u].?p2[?v];

closure(?p) is a property that is the transitive closure of ?p:
?o.closure(?p)[?v] :- ?o.?p[?v];

?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v];

Constraints are recognized by the “!-” sign. They specify forbidden states. The
following example, involves forbidden grantor-grantee states: A user u cannot
be granted an access to a table t from grantor v that was granted (directly or
indirectly) access to t from u. That is, the composition of the grantor perms

and grantee properties, with respect to t is acyclic:
?u.grantor_grantee(?t)[?v] :-

?u.compose_via_obj(grantor_perms,?p,grantee)[?v],?p.table[?t];

!- ?t:Table, grantor_grantee(?t).circular[true]; (11)

where circularity of a property is defined, at the meta-level, by:
?p.circular[true] :- ?o.closure(?p)[?o]; (12)

Another example of constraints involves the status of class Permission (with its
associations granteeR and table permsR) as an association class with respect
to association user tableR.
Every pair of a granted user ?u to a table ?t has a corresponding permission:

!- ?u.granted[?t], not ?u.grantee_perms.table[?t]; (13)

For every grantee user ?u to a table, there is a single corresponding permission:
!- ?u.grantee_perms[?p1].table[?u.grantee_perms[?p2].table],

?p1!=?p2; (14)

66

The other direction of the association class constraint, which says that for every
permission its user and table are related by user tableR, is handled by inference
rule (9).
Type path expressions: FOML contains a construct that defines type level
implications and constraints. For example, the type path expression

Permission!grantor[User]{1..1};

means that a permission must have a single user as a grantor.
Class operations: Rules are used to specify class operations. For example, the
operation table grantees on class User that computes sequences of grantees to
a table ?t initiated (directly or indirectly) by a user ?u is defined as follows:

?u.table_grantees(?t)[?object_path] :-

?u.path(compose_via_obj(grantor_perms,?t,grantee))[?object_path];

where the path property constructor is defined by these rules:

?o.path(?p)[?v] :- ?o.?p[?v];

?o.path(?p)[[?v|?path]] :- ?o.?p[?v].path(?p)[?path];

The path constructor can be further restricted to create only simple paths (the
ones with no repeated nodes):

?o.simple_path(?p)[?v] :- ?o.?p[?v];

?o.simple_path(?p)[[?v|?path]] :-

?o.?p[?v].simple_path(?p)[?path], not ?path._member[?v];

The get access operation of class User, which retrieves the tables with a specified
domain to which a user has access is defined as follows:

?u.get_access(?d)[?tables] :-

set(?t, (?u.granted[?t].domain[?d]), ?tables);

Here set is an aggregate operator, which collects all ?t that satisfy the condition
given by the second argument of set and returns the list of all such ?t’s in the
variable ?tables.

6 Language Comparison

6.1 OCL vs. Alloy and FOML

OCL comparison to Alloy: There are many similarities between the ways
constraints are expressed in Alloy and OCL. Alloy navigates using the dot operator
through relation names, which can be equivalently expressed through association
end names in OCL. However, OCL supports n-ary associations and navigation
through them, which cannot be done in Alloy via the navigation methods based
on relations. The transitive closure functionality from Alloy (denoted with the
symbol ˆ in Listing 1.2) is also provided in OCL, so the constraints related to
the hierarchy structure, e.g., the permissions not repeated in the role hierarchy
constraint in the RolePermissionEmployee model, can be expressed in OCL as
presented in the listing below (where next is the end-role of the roleHierarchy
relation).

67

Listing 1.4: Equivalent constraint in OCL

context Role inv noRepeatedPermissions:

Role.allInstances()->forAll(r1,r2|r1.next->closure(next)->includes(r2)

implies r1.permissions->intersection(r2.permissions)->isEmpty)

In Alloy, a predicate is a Boolean expression for which satisfying instances
are to be produced. In OCL, one can use additional invariants for this purpose.
However, Alloy predicates can be parameterized, so one can use a predicate
within other logic statements, e.g., predicate or constraint. This is one major
difference between Alloy and OCL, because OCL does not directly support this
functionality. For example, to also express the employeesHasRoleThroughDescen-
dantRole predicate, one has to duplicate the same OCL code by putting it in two
different predicates, while in Alloy only one copy of the code would be used (for
instance, in a predicate twoSigsRelatedWithConstraintRelation), and that same
code will be called by whoever needs it. An alternative solution for introducing a
specialized predicate in UML and OCL is to extend the model with singleton
System class and place a boolean operation in it.

Another difference is the support for sets and collections. While OCL supports
one-dimensional sets and other collections, everything in Alloy is a set. For
example a relation is a multi-dimensional set of tuples. Therefore we have to
transform the set operator (&) on relations in Listing 1.2, to the single set
operator for an equivalent constraint (see Listing 1.4).

OCL comparison to FOML: Most of the language features of FOML are
supported in OCL. First of all, both languages navigate through association-
end names (role names) using the dot operator and both support composite
associations (n-ary associations). Therefore FOML can formulate the constraints,
queries, and rules on multi-relation models, like the User-Table-Permission model.
Additionally, one can use variables in both FOML and OCL. However, the FOML
variables are untyped whereas the OCL variables must be typed explicitly. Also
similarly to FOML, the closure functionality is provided in OCL. Consequently,
we can equivalently express the first constraint in the User-Table-Permission
model, which refers to the hierarchy relation between users through the grantorR
and the granteeR associations. That said, the powerful recursion mechanism of
FOML goes well beyond transitive closure.

The main difference between the two modeling languages is the multilevel
modeling support. While one cannot access the meta-model in OCL, FOML
supports three-layer specification: data, model, and meta-model. This enables
model queries such as “find the classes related to class User, and their relevant
roles.” This is not always possible in OCL. However, a full semantic description
of FOML will be probably much more involved than the specification of OCL
semantics.

6.2 Alloy vs. FOML and OCL

Alloy comparison to FOML: A major difference between the capability of
Alloy and FOML is FOML’s inclusion of the composition constructs in the

68

language. Compose navigation cannot always be equivalently defined in Alloy.
This is because in Alloy, navigation occurs through relation names whereas in
FOML (and OCL) it can occur through relation end roles. In the User-Table-
Permission model, compose navigates from a named association end to another
named association end. If a model has more than one association between the
same classes, compose can differentiate them by the role names passed into the
function. In Alloy, it is not possible to differentiate between the multiple relations
in the User-Table-Permission model. However, since each association end is
represented by a set in Alloy, the presence of the desired elements in the domains
and ranges of all the relations across the model can be checked.

Another issue in writing equivalent User-Table-Permission constraints and
queries with Alloy is that there is no metamodel. This means it is not possible,
for example, to retrieve all the relations that might exist in the model as part
of a compose function. Instead, a function must be defined that collects all the
relations, named explicitly, and use that function. It may be possible to define
the Alloy relations using the User-Table-Permission role names as attributes,
but this is probably not a general solution to the issue.

As discussed previously, navigation in Alloy uses the dot operator. Additional
predicate logic statements specify atoms that adhere to particular constraints.
Similarly to FOML, Alloy provides a closure language keyword (see Listing 1.2).
The utility functions provided with Alloy contain useful specifications such as
acyclic and the graph functions used in the RolePermissionEmployee model. These
allow specification of the acyclic constraint on the tableDependency relation, e.g.,
acyclic[tableDependency].

Alloy comparison to OCL: Alloy can be used to specify a model similar to
the RelationalData model. Classes must be specified as signatures, and attributes
as relations between signatures. There are no Boolean constants in Alloy, so
there can be no attributes that hold them. However a predicate invocation does
return a Boolean value that can be used in other logic statements. Methods
do not exist directly in Alloy. Instead, predicates must be defined and used in
model exploration. Alloy provides certain relation multiplicity keywords, such
as some and lone; if no such keywords are used in a definition explicitly then
any number of signature atoms is acceptable. Alloy constraints and predicates
use the fundamental concept of sets, so the invariants and constraints of the
RelationalData model can be specified for the Alloy model. However, due to the
analyzer’s search space issues, the size of integers that can be practically used in
a model is fairly small.

6.3 FOML vs. OCL and Alloy

FOML is an expressive logic language, with simple semantics, intended for three
modes of usage: a textual modeling language, a language for ad hoc querying of
(and more generally reasoning about) models and data, and as a language for
expressing constraints on models.
Textual modeling: FOML enables specification of models, data instances, and
includes a special sub-language for meta-modeling, i.e., enables specification

69

of a variety of models. OCL does not account for model or data specification.
Alloy provides its own concepts of signatures, constraints and predicates, and
can specify models and data, using these concepts. Alloy client models translate
their own concepts into Alloy.
Ad hoc querying: OCL is designed specifically as a language of constraints
that extends UML models. It can be used for ad hoc querying nonetheless, if all
queries of interest are included in the model as methods. If a new query comes
up, the model has to be extended. FOML includes a sublanguage for constructing
queries (more powerful, in fact, than SQL) and queries need not be specified
as methods in advance. Alloy is not designed specifically as a query language.
However, like OCL, it contains an evaluator to test ad-hoc queries over instances
generated from the Alloy model.
Inference: This is an essential usage mode for FOML. For example, rule number
(9) in Section 5 imposes part of the association-class constraint on class Permission
and association user tableR. This way, rather than rejecting an incomplete
instance, the system infers the missing association. In OCL and Alloy this
requirement must be formulated as a constraint.
Instance-validation, creation and completion: Specification of models and
data is typical for Alloy and for FOML. For OCL, specification of data is not
covered by the OCL language. Rather, most UML/OCL tools, e.g., [4, 5], provide
means for expressing data (e.g., with object-diagrams), and use some sort of a
SAT or a constraint solver for validation. In FOML, instance validation is done
by checking whether the constraints are satisfied. Alloy and most UML/OCL
tools use the solvers for either finding counter examples or verifying a given
instance. Instance completion or creation is not supported by FOML, while it is
a central service of Alloy and UML/OCL tools.
Comparison of the representation aspect in FOML vs. OCL and Alloy:
Navigation expressions are central in all three languages. OCL navigations follow
the associations in the given model. Alloy and FOML enable also navigation along
virtual relations between elements. OCL enables intermediate filtering of naviga-
tion paths, using its collection operators (e.g., select); in FOML, intermediate
filtering is done by intermediate guards in path expressions.

OCL distinguishes between two kinds of navigation – individual objects and
collections, while FOML is deliberately restricted to individual navigation. For
example, the uniqueAttributeNamesWithinTable constraint in Section 3, is
expressed in FOML, as follows:

!- ?a:Attribute,?a.family[?a1].name[?a.family[?a2].name],?a1!=?a2;

The constraint states that attributes in a “family” (a table) cannot have common
names. Comparison with the OCL formulation in Section 3 emphasizes the
differences between individual-based and set-based navigation. For example, it
seems that expressing the association-class constraint in Section 5 (constraints
(13), (14) and inference rule (9)) in OCL might be quite challenging.

Recursion is supported in Alloy and in OCL via a closure operator that is
applied to a property (association-end). FOML supports recursively defined rules,
which enable user-defined recursive operations, including recursively defined types

70

like trees, graphs, paths and cycles in graphs, etc. The closure operation is just
one of a rich variety of possible such structures. In particular, constraint (11)
in Section 5 shows a closure that is applied to a virtual (intensional) property,
defined using the compose via obj constructor of properties.

Subtyping and instantiation is supported in all three languages. However,
OCL and Alloy are confined for two level structures of a model and its in-
stances. OCl is restricted by the UML meta-modeling structure, and Alloy
is restricted by its underlying relational logic. FOML enables an unrestricted
structure of subtyping and instantiation. Therefore, it can naturally support
multilevel modeling and meta-modeling. For example, the acyclicity constraint
acyclicTableLinking in Section 3, is expressed in FOML as a meta-level con-
straint: !- ?pred.circular[true]; (Circularity of properties is defined in
rule (12) in Section 5).

6.4 Comparison Summary

The following tables summarize the comparisons of the three languages, discussed
above, based on the criteria proposed in Section 2. The comparison is split by
the different aspects of representation and usage.

Representation:

Navigation Recursion Subtyping Multilevel

OCL Individual & Collection; in-
termediate filtering; follows
associations and derived as-
sociations

Transitive closure Yes No

Alloy Individual; follows associa-
tions and virtual relations

Transitive closure Yes No

FOML Individual; intermediate fil-
tering; follows associations
and virtual relations; wild-
card navigation

User-defined recur-
sion (includes tran-
sitive closure)

Yes Yes

Usage:

Textual
modeling

Querying Inference Validation Instance cre-
ation & com-
pletion

OCL Yes Yes via tools Yes Yes

Alloy Yes Yes No Yes Yes

FOML Yes Yes Yes via constraints No

7 Conclusion and Future Research

This paper presents a first effort to compare textual modeling languages on
the basis of their mode of usage and representation aspects. We have sketched

71

the major aspects of each language, and emphasized similarities, differences,
strengths and weaknesses.

It seems that the mode of use of Alloy and OCL is closely related, as Alloy
can be viewed as a backend system that supports OCL modeling. On the other
hand, Alloy and FOML have complementing modes of use. In particular, FOML
enables to a certain degree inference, and multilevel modeling which seem not to
be directly supported by the other languages.

The representation aspects of the languages have similarities and differences
that call for a more thorough comparison. In particular, there is a need to compare
the expressivity of different forms of navigation.

References

[1] Gogolla, M.: Object Constraint Language. In Liu, L., Öszu, M.T., eds.:
Encyclopedia of Database Systems. Springer, Berlin (2009) 1927–1929

[2] Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A Definitive
Guide. In Bernardo, M., Cortellessa, V., Pierantonio, A., eds.: Proc. 12th Int.
School Formal Methods for the Design of Computer, Communication and
Software Systems: Model-Driven Engineering, Springer, Berlin, LNCS 7320
(2012) 58–90

[3] Gogolla, M.: Unified Modeling Language. In Liu, L., Öszu, M.T., eds.:
Encyclopedia of Database Systems. Springer, Berlin (2009) 3232–3239

[4] Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification En-
vironment for Validating UML and OCL. Science of Computer Programming
69 (2007) 27–34

[5] Gogolla, M., Hilken, F.: Model Validation and Verification Options in a
Contemporary UML and OCL Analysis Tool. In Oberweis, A., Reussner,
R., eds.: Proc. Modellierung (MODELLIERUNG’2016), GI, LNI 254 (2016)
203–218

[6] Jackson, D.: Software Abstractions. The MIT Press, Cambridge, Mas-
sachusetts (2012)

[7] Jackson, D.: Alloy . http://alloy.mit.edu/alloy/index.html (2012)
[8] Bennett, P.: RolePermissionEmployee Alloy Model . http://www.cs.

colostate.edu/~plarreeb/RolePermissionEmployee.pdf (2016)
[9] Balaban, M., Kifer, M.: Logic-Based Model-Level Software Development

with F-OML. In: MoDELS 2011. (2011)
[10] Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and

frame-based languages. Journal of ACM 42 (1995) 741–843
[11] Khitron, I., Kifer, M., Balaban, M.: PathLP: A Path-Oriented Logic Program-

ming Language. The PathLP Web Site (2011) http://pathlp.sourceforge.net.
[12] Khitron, I., Balaban, M., Kifer, M.: The FOML Site. https://sourceforge.

net/projects/pathlp/files/foml/ (2016)
[13] Khitron, I.: FOML coding for User-Table example (2016)

https://sourceforge.net/projects/pathlp/files/user class diagram/.

72

