
Tool Support for OCL and Related Formalisms -
Needs and Trends

Thomas Baar1 and Dan Chiorean2 and Alexandre Correa3 and
Martin Gogolla4 and Heinrich Hußmann5 and Octavian Patrascoiu6 and

Peter H. Schmitt7 and Jos Warmer8

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 “Babes-Bolyai” University of Cluj-Napoca, Romania

3 University of Rio de Janeiro, Brazil
4 University of Bremen, Germany

5 LMU Munich, Germany
6 University of Kent, United Kingdom

7 Universität Karlsruhe, Germany
8 Ordina, The Netherlands

Abstract. The recent trend in software engineering to model-centered
methodologies is an excellent opportunity for OCL to become a widely
used specification language. If the focus of the development activities is
shifted from implementation code to more abstract models then software
developers need a formalism to provide a complete, unambiguous and
consistent model at a very detailed level. OCL is currently the only
language that can bring this level of detail to UML models. The purpose
of the workshop was to identify future challenges for OCL and to discuss
how OCL and its current tool support can be improved to meet these
challenges. The workshop gathered numerous experts from academia and
industry to report on success stories, to formulate wishes to the next
generation of OCL tools, and to identify weaknesses in the language,
which make OCL sometimes cumbersome to use. The workshop could
also attract numerous people whose aim was to get an overview on the
state of the art of OCL tool support and on how OCL can efficiently be
applied in practice.

1 Motivation and Goals

Model-centric methodologies see modeling artifacts as the primary output of de-
velopment activities and not implementation code, as it is currently the case in
most software development projects. These new methodologies were triggered by
recent standardizations of meta-modeling technologies, which have facilitated the
syntactic and semantic specification of modeling languages. It has been reported
in numerous case studies how model-centric approaches can yield a productivity
leap and thus dramatically reduce development costs. Model-centric methodolo-
gies could, however, not become mainstream yet, because this would require a
matured, seamless tool support for all development phases. One of today’s great



challenges is to make modeling tools as powerful and easy to use as current
Integrated Development Environments (IDEs) for programming languages.

The Object Constraint Language (OCL) is a standardized, versatile, multi-
purpose specification language. It can bring a degree of preciseness to graphical
models that is needed if the graphical models should become the primary arti-
facts in the development process. The pressure to improve the tool support for
OCL goes along with the overall challenge to improve the quality of modeling
tools in general. Improved tool support is just one thing that has to be addressed
in order to increase the popularity of OCL. There are plenty of other questions
this workshop was devoted to. The following list is a (surely incomplete) classi-
fication of questions that need to be answered.

Technical questions on how to improve tool support for OCL There is
a technical dimension how the community can effectively provide better OCL
tool support. How can we facilitate the development of new tools? Which
features should an OCL tool offer to encourage the usage of OCL in practice?
Is it feasible to make OCL executable and to provide an animator for OCL?
Should we strive for a common architecture of OCL tools which would enable
us to reuse standard components, such as a parsing component?
These and similar questions are discussed in the workshop papers [5–8]. The
project described in [6] provides a new grammar for OCL that can be used
as a starting point to build a parser (actually, the grammar has been already
’implemented’ in form of a parser). This is a remarkable step forward since
the official grammar given in the OCL 2.0 language specification intentionally
abstracts from ’implementation glitches’.

Language issues The language specification for OCL has certainly improved
over the last years, but there are still some debatable points in the OCL
semantics. Furthermore, OCL is missing some constructs, e.g. a modifies
clause, that are widely accepted in the specification language community and
that are offered by other specification languages such as the Java Modeling
Language (JML).
The paper [9] strives to find a solution for the frame problem that has been
highly neglected in OCL so far. The papers [8, 5] discuss besides the seman-
tics of certain constructs also the general architecture of OCL. They try to
classify the concepts according to their importance from the language archi-
tecture’s point of view. Based on this concept classification, the definition of
OCL in syntax and semantics could be reorganized to make it more flexible
and to define OCL rather as a family of languages than one, entirely fixed
language.

Usability questions and application examples Besides improved tool sup-
port and a clear and concise language description, OCL would also benefit
from more convincing examples and application scenarios.
The paper [3] applies OCL to make the terminology used by meta-modeling
experts much more precise. So far, there was a rudimental common agree-
ment among meta-modelers on what basic meta-modeling concepts are sup-
posed to mean but this agreement has never been formalized beforehand.



The paper [4] describes an approach to guide the user when writing OCL
constraints. The paper shows how a widely-used class of OCL constraints
can actually be generated by instantiating a schematic OCL constraint. This
technique is especially suitable for software developers who write their first
constraints and want to become familiar with the language.

1.1 Organization

The workshop continued a series of OCL workshops held at previous UML con-
ferences: York, 2000, Toronto 2001, San Francisco, 2003, and Lisbon, 2004. The
workshop was organized by the authors of this article, some of them where al-
ready involved in the organization of previous OCL workshops and some of them
joint the organization team for the first time.

The organizing team formed also the programme committee of the workshop.
Each workshop submission received 2-4 reviews written by the members of the
organizing team. Based on the reviews, the decision on the paper acceptance
was taken unanimously. For papers that were co-authored by one of the work-
shop organizers, the review process, of course, ensured that the authors had no
influence on the acceptance/rejection decision for papers written by themselves.

2 Accepted Papers

All papers accepted at the workshop are published in [1], what can be down-
loaded either from EPFL’s publication archive http://infoscience.epfl.ch
or from the workshop’s website [2]. For the convenience of the reader, we have
included here the abstract of each paper.

Title: On Squeezing M0, M1, M2, and M3 into a Single Object Diagram
Authors: Martin Gogolla, Jean-Marie Favre, Fabian Büttner
Abstract: We propose an approach for the integrated description of a meta-
model and its formal relationship to its models and the model instantiations.
The central idea is to use so-called layered graphs permitting to describe type
graphs and instance graphs. A type graph can describe a collection of types and
their relationships whereas an instance graph can represent instances belonging
to the types and respecting the relationships required by the type graph. Type
graphs and instance graphs are used iteratively, i.e., an instance graph on one
layer can be regarded as a type graph of the next lower layer. Our approach
models layered graphs with a UML class diagram, and operations and invariants
are formally characterized with OCL and are validated with the USE tool. Meta-
modeling properties like strictness or well-typedness and features like potency
can be formulated as OCL constraints and operations. We are providing easily
understandable definitions for several metamodeling notions which are currently
used in a loose way by modelers. Such properties and features can then be dis-
cussed on a rigorous, formal ground. This issue is also the main purpose of the
paper, namely, to provide a basis for discussing metamodeling topics.



Title: Formal Description of OCL Specification Patterns for Behavioral Speci-
fication of Software Components
Author: Jörg Ackermann
Abstract: The Object Constraint Language (OCL) is often used for behavioral
specification of software components. One current problem in specifying behav-
ioral aspects comes from the fact that editing OCL constraints manually is time
consuming and error-prone. To simplify constraint definition we propose to use
specification patterns for which OCL constraints can be generated automati-
cally. In this paper we outline this solution proposal and develop a way how to
formally describe such specification patterns on which a library of reusable OCL
specifications is based.

Title: Supporting OCL as part of a Family of Languages
Authors: David H. Akehurst, Gareth Howells, Klaus D. McDonald-Maier
Abstract: With the continued interest in Model Driven techniques for software
development more and more uses are found for query or expression languages
that navigate and manipulate object-oriented models. The Object Constraint
Language is one of the most frequently used languages; however, its original
intended use as a constraint expression language has been succeeded by its fre-
quently proposed use as a basis for a more general model query language, model
transformation language and potential action language. We see a future where
OCL forms a basis for a family of languages related in particular to Model Driven
Development techniques; as a consequence we require an appropriate tool suite
to aid in the development of such language families. This paper proposes some
important aspects of such a tool suit.

Title: Generation of an OCL 2.0 Parser
Authors: Birgit Demuth, Heinrich Hussmann, Ansgar Konermann
Abstract: The OCL 2.0 specification defines explicitly a concrete and an ab-
stract syntax. The concrete syntax allows modelers to write down OCL expres-
sions in a textual way. The abstract syntax represents the concepts of OCL
using a MOF compliant metamodel. OCL 2.0 implementations should follow
this specification. In doing so emphasis is placed on the fact that at the end
of the processing a tool should produce the same well-formed instance of the
abstract syntax as given in the specification. This offers the possibility to imple-
ment OCL-like languages with the same semantics that are for example easier
to use for business modelers. Therefore we looked for a parser technique that
helps us to generate an OCL parser to a large extent. In this paper we present
the technique we developed and proved within the scope of the Dresden OCL
Toolkit. The resulting Dresden OCL2 parser is especially characterized by us-
ing a generation approach not only based on a context-free grammar but on an
attribute grammar to create the required instance of the abstract syntax of an
OCL expression.

Title: Lessons Learned from Developing a Dynamic OCL Constraint Enforce-
ment Tool for Java
Authors: Wojciech J. Dzidek, Lionel C. Briand, Yvan Labiche



Abstract: Analysis and design by contract allows the definition of a formal
agreement between a class and its clients, expressing each partys rights and
obligations. Contracts written in the Object Constraint Language (OCL) are
known to be a useful technique to specify the precondition and postcondition
of operations and class invariants in a UML context, making the definition of
object-oriented analysis or design elements more precise while also helping in
testing and debugging. In this article, we report on the experiences with the
development of ocl2j, a tool that automatically instruments OCL constraints in
Java programs using aspect-oriented programming (AOP). The approach strives
for automatic and efficient generation of contract code, and a non-intrusive in-
strumentation technique. A summary of our approach is given along with the
results of an initial case study, the discussion of encountered problems, and the
necessary future work to resolve the encountered issues.

Title: Proposals for a Widespread Use of OCL
Authors: Dan Chiorean, Maria Bortes, Dyan Corutiu
Abstract: In spite of the fact that OCL and UML evolved simultaneously, the
usage of the constraint language in modeling real-world applications has been
insignificant compared to the usage of the graphical language. Presently, OCL
is requested in new modeling approaches: Model Driven Architecture, Model
Driven Development, Domain Specific Languages, Aspect Oriented Modeling,
and various emerging technologies: Semantic Web, Business Rules. In this con-
text, the question What has to be done for OCL to become the rule, not the
exception, in the modeling domain? is more pressing than ever. The purpose of
this paper is to propose an answer to this question, although not a complete
one. Our work is an attempt to synchronize the language specification and its
understanding, straight related to the language implementation in CASE tools,
by proposing solutions for incomplete or non-deterministic OCL specifications.
In order to manage the new extensions required for the constraint language, a
new language structure is suggested.

Title: OCL and Graph Transformations – A Symbiotic Alliance to Alleviate the
Frame Problem
Author: Thomas Baar
Abstract: Many popular methodologies are influenced by Design by Contract.
They recommend to specify the intended behavior of operations in an early
phase of the software development life cycle. In practice, software developers
use most often natural language to describe how the state of the system is
supposed to change when the operation is executed. Formal contract specifica-
tion languages are still rarely used because their semantics often mismatch the
needs of software developers. Restrictive specification languages usually suffer
from the frame problem: It is hard to express which parts of the system state
should remain unaffected when the specified operation is executed. Constructive
specification languages, instead, suffer from the tendency to make specifications
deterministic.
This paper investigates how a combination of OCL and graph transformations
can overcome the frame problem and can make constructive specifications less



deterministic. Our new contract specification language is considerably more ex-
pressive than both pure OCL and pure graph transformations.

3 Workshop Results

The workshop attracted 38 registered attendees. The motivation was rather
divers; some of them wanted to learn OCL and to get acquainted with it, others
came to discuss specific problems in depth.

3.1 Spontaneous Tool Overview Session

Since the workshop attracted many people from academia and industry who
were not OCL experts but wanted to get an overview on OCL technology, Mar-
tin Gogolla made, after every workshop participant has introduced himself, the
suggestion to devote the first session to present briefly some of the currently
existing OCL tools. This was especially attractive since some of the tool devel-
opers were sitting in the workshop room. The following tools were informally
presented to the audience:

Martin Gogolla: USE tool The USE tool (UML-based Specification Envi-
ronment)9 supports analysts, designers and developers in executing UML
models and checking OCL constraints and thus enables them to employ
model-driven techniques for software production. USE allows the validation
of UML models and OCL constraints based on animation and certification.
USE permits analyzing the model structure (classes, associations, attributes,
and invariants) and the model behavior (operations and pre- and postcon-
ditions) by generating typical snapshots (system states) and by executing
typical operation sequences (scenarios). Developers can formally check con-
straints (invariants and pre- and postconditions) against their expectations
and can, to a certain extent, derive formal model properties.

Heinrich Hußmann: Dresden OCL2 Toolkit The Dresden OCL2 Toolkit10

is a set of tools for processing OCL specifications. The heart of the toolkit is
a recently redesigned parser for OCL 2.0. The Abstract Syntax Tree (AST)
produced by the parser conforms with the official metamodel of OCL 2.0.
Other tools in the toolkit can translate OCL specifications into SQL queries
or into Java code, which is able to check the correctness of OCL assertions
at runtime.

Behzad Bordbar: UML2Alloy UML2Alloy11 allows to translate UML class
diagrams enriched with OCL expressions into models written in Alloy. Class
diagrams are used to depict the static structure of the system. OCL state-
ments are used to both define behavior through pre- and postconditions,
and invariants on the UML class diagrams. The tool accepts a UML model

9 See http://www.db.informatik.uni-bremen.de/projects/USE/
10 See http://dresden-ocl.sourceforge.net
11 See http://www.cs.bham.ac.uk/~bxb/UML2Alloy.html



of the system in XMI format and guides the user step by step through the
translation of the UML model to a corresponding Alloy model. Users can
then use Alloy Analyzer on the produced Alloy model to conduct analysis.
Alloy Analyzer provides the ability of Analysis. This includes simulation of
the system, which provides examples of instances that conform to the model.
This is particularly helpful in checking if the model is overconstrained and
to increase the confidence in correctness of the model. It is also possible to
check the correctness of logical statements, assertions, about the model.

Thomas Baar: KeY tool and Grammatical Framework (GF) The KeY
tool12 is not primarily an OCL tool but has an OCL front end (in fact, it uses
the OCL parser from the Dresden OCL toolkit) for behavioral specification
of operations in a UML class diagram. The KeY tool allows the user to verify
the correctness of operation implementations written in Java in respect to
an OCL specification given as a pair of pre- and postcondition (contract).
Otherwise stated, using KeY one can statically prove that whenever the
operation’s implementation is invoked in a state in which the pre-condition
holds, the execution of the implementation will terminate and yield to a
state in which the postcondition holds.
The Grammatical Framework (GF) is designed as a stand-alone tool but
has been fully integrated into the KeY tool. The Grammatical Framework
offers translations of OCL specifications into natural language. Most devel-
opers appreciate if OCL constraints are presented in natural language since
– as for any other formal specification language – it is time consuming to
read and to understand formal OCL constraints. Languages, currently sup-
ported by GF as a target language, are English, Swedish, Finnish, German.
Also the opposite direction of translation, from natural language to OCL, is
prototypically realized.

3.2 Discussion

The last session of the workshop was devoted to discussion on OCL issues raised
during the paper presentation sessions as well as other issues that are of com-
mon interest. The following list captures the main points of the discussion. Many
problems remained unsolved and it was not always possible to come to an agree-
ment among all participants.

OCL must be supported by better tools.
Most of the current OCL tools are academic tools and were developed by
a team of a single university. Although the quality of tools has improved
considerably over the last years, it is not a surprise that these OCL tools
cannot compete in terms of usability and the functionality they offer with
integrated development environments for writing implementation code.
One trap a lot of OCL tool development teams fall into is to capture every
possible application scenario for OCL by their tool. Instead of a one-fits-
it-all-tool we need rather a component-oriented approach where specialized

12 See http://www.key-project.org



tools provide services using standardized interfaces and other tools can take
advantages of them. Examples for such services could be: parse a constraint,
evaluate a constraint, pretty print a constraint, find counterexample that
constraint always holds, generate implementation code, etc. A first step to-
wards this goal could be to define a list of functionalities a user would expect
from a matured OCL tool. The list should also clarify in which scenario the
functionality would be useful.

Applying OCL yields to better software and saves valuable time.
Based on the current examples and case studies it is hard to convince software
developers on the usefulness of applying OCL in practice. There are even
experiences reported in the literature where an OCL specification of a Java
framework is considered to be less informative than other ways to specify the
framework, e.g. by a reference implementation or carefully written informal
comments. On the other hand, a few controlled experiments conducted in
academic settings have reported positive results on using OCL in UML based
developments.
Developers might be convinced more easily once we had compelling results
from more experiments available. For instance, it would be interesting to
set up two teams developing the same application in parallel and measure
the effort and the quality of the resulting artifacts. One team uses OCL
assertions whereas the other tries to model and implement the application
the traditional way without OCL assertions. Such an experiment can hardly
be done in real software industry but it is possible to run it at universities
with two groups of students (trained in OCL and without any knowledge on
OCL).

Promising application areas for OCL have to be identified.
We need a clear idea on what are the most promising application scenarios for
OCL. If OCL is used at the very detailed level of implementation models to
describe the behavior of implemented methods, then it competes for instance
with JML. In this case, OCL is often not chosen as the specification language
because it’s semantics is not aligned enough with this application area. For
instance, the type system of OCL refers to that of UML and do not take
the peculiarities of Java’s type system into account (however, the Java type
system could be made available to OCL via a Java profile).
But weaknesses on one side are strengths on the other side. Since OCL is
fully integrated into the UML metamodel, it can specify properties directly
at any level of abstraction. As another advantage, OCL provides powerful
mechanisms for reflection and allows the user to explore the metamodel
within a constraint.

OCL is a family of languages.
The application scenarios of OCL are very divers and require sometimes to
adapt the semantics of certain constructs to the current scenario or to add
new, scenario-specific constructs. This gives rise to treat OCL as a family of
languages instead of a fixed one. The OCL language specification should be



rewritten according to this fact and should allow the user to customize the
currently needed dialect of OCL. The possibility to customize the language
has of course to be backed by the tools that support OCL. Either a tool
can be customized by the user, i.e. the tool is tailored to the OCL dialect
the user has in mind, or the tool clearly states which of OCL’s dialects it
supports.

More teaching modules on the art of specification are needed.
There is still a lack of good teaching modules for OCL and the diversity
among the illustrating examples for OCL constraints is rather low. Also
case studies on bigger projects would help many potential users to find out
whether or not OCL is the proper formalism to describe the problems they
have.
It was decided on the workshop to launch a new website as an archive of
existing teaching modules, experience reports, etc. This website is already
available under http://www-st.inf.tu-dresden.de/ocl/. Everybody is
encouraged to contribute!

Acknowledgement

The authors are grateful to Behzad Bordbar and Dave Akehurst for their com-
ments on earlier drafts of this workshop report.

References

1. Thomas Baar, editor. Tool Support for OCL and Related Formalisms - Needs
and Trends, MoDELS’05 Conference Workshop, Montego Bay, Jamaica, October
4, 2005, Proceedings, Technical Report LGL-REPORT-2005-001. EPFL, 2005.

2. Homepage of OCL Workshop 2005. http://lgl.epfl.ch/members/baar/oclws05.
3. Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On squeezing M0, M1, M2,

and M3 into a single object diagram.
4. Jörg Ackermann. Formal description of OCL specification patterns for behavioral

specification of software components.
5. David H. Akehurst, Gareth Howells, and Klaus D. McDonald-Maier. Supporting

OCL as part of a family of languages.
6. Birgit Demuth, Heinrich Hussmann, and Ansgar Konermann. Generation of an

OCL 2.0 parser.
7. Wojciech J. Dzidek, Lionel C. Briand, and Yvan Labiche. Lessons learned from

developing a dynamic OCL constraint enforcement tool for Java.
8. Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread use of

OCL.
9. Thomas Baar. OCL and graph transformations – a symbiotic alliance to alleviate

the frame problem.


