
VOLT 2014 Workshop Report

Moussa Amrani1, Eugene Syriani2, Manuel Wimmer3, Robert Bill3,
Martin Gogolla4, Frank Hermann5, and Kevin Lano6

1 University of Namur, Belgium
Moussa.Amrani@unamur.be
2 University of Montreal, Canada
syriani@iro.umontreal.ca

3 Vienna University of Technology, Austria
{wimmer,bill}@big.tuwien.ac.at

4 University of Bremen, Germany
gogolla@informatik.uni-bremen.de

5 Université du Luxembourg, Luxembourg
frank.hermann@uni.lu
6 King’s College London, UK
kevin.lano@kcl.ac.uk

Abstract. This report is a summary of the Third International Workshop on the
Verification Of modeL Transformation (VOLT 2014) held at the STAF 2014 con-
ference. The workshop brought together researchers from model-driven engineer-
ing, in particular from model transformation language engineering and model-
based verification. The major aims of VOLT 2014 were to identify motivations,
problems, and requirements for model transformation verification as well as to
present different proposals supporting different kinds of model transformations
and verification techniques.

1 Introduction

Model transformations are everywhere in software development, implicitly or explic-
itly. They became first-class citizens with the advent of Model-Driven Development
(MDD). Despite some recent activity in the field, the work on the verification of model
transformations remains scattered and a clear perspective on the subject is still not in
sight. Furthermore, current model transformation tools mostly lack verification tech-
niques to support such activities.

The Third International Workshop on the Verification Of modeL Transformation
(VOLT 2014) is one of the most accurate venues to offer researchers a dedicated forum
to classify, discuss, propose, and advance verification techniques dedicated to model
transformations.

VOLT 2014 promoted discussions between theoreticians and practitioners from
academy and industry, given its ideal co-location with STAF. A significant part of the
workshop included a forum for discussing practical applications of model transforma-
tions as well as their verification. In particular, the following topics have been consid-
ered in the scope of VOLT 2014:



– Application of formal verification, theorem proving, model checking or testing to
model transformation;

– Verification techniques dedicated to model transformation;
– Taxonomies of techniques for model transformation verification;
– Properties relevant to specific model transformations;
– Verification of model transformations expressed in languages such as: ATL, QVT,

TGG, VIATRA, Kermeta, Epsilon, etc.;
– Verification of domain-specific model transformations, in contrast to general-purpose

transformations;
– Case studies and experience reports;
– Tools and automation.

The remainder of this report is based on the outcome of the two moderated presen-
tation sessions and the discussion session at the end of the workshop. In Section 2, we
summarize the presentations and individual discussions of the presentations, while in
Section 3 we summarize the overall discussions regarding model transformation verifi-
cation in general and about property languages for model transformations in particular.
Finally conclusions are presented in Section 4 with an outlook on future efforts to fur-
ther establish and advance the model transformation verification community.

2 Papers and Presentations

The papers and the associated presentations are available on the workshop web pages
(http://volt2014.big.tuwien.ac.at).

Checking Transformation Model Properties with a UML and OCL Model Validator by
Martin Gogolla, Lars Hamann, and Frank Hilken. This contribution discussed model
transformations in the form of transformation models which connect source and tar-
get metamodels. A transformation model is a direction-neutral transformation char-
acterization that specifies in a descriptive way by means of OCL [12] invariants the
[source,target] pairs constituting the transformation. Transformation models are ana-
lyzed with (what we call) a UML and OCL model validator on the basis of an imple-
mentation of relational logic on top of Kodkod. Within this approach it is feasible to
prove transformation model consistency, i.e., to automatically construct a valid meta-
model instance. Transformation model consistency is discussed in various flavours, i.e.,
(a) weak consistency, (b) class instantiability, and (c) class and association instantiabil-
ity. Certain properties implied by the transformation model, e.g., whether a particular
property is preserved by the transformation, can be inspected as well.

The discussion at the workshop brought up (among other interesting questions) the
following topics: (a) Transformation computation: The model validator may be used to
effectively compute the transformation that is determined by the transformation model;
it is possible to specify a partial object diagram that represents, for example, the source
part of a [source,target] pair; the model validator can then complete the partial object di-
agram, if possible, and present the target part of the model transformation again in form
of an object diagram; this also works in the opposite direction from the target to the



source; (b) Used OCL features: Transformation models and their properties typically
employ only a subset of full OCL; in particular patterns involving nested occurrences
of forAll and exists are frequently used; depending on the nature of the underlying
source and target metamodel, the closure operation may be needed in connection with
reflexive associations; (c) Nature of analyzable transformation properties: Any prop-
erty that can be formulated as an OCL invariant and that can be added to the current
transformation model can be checked; the added invariant is then negated, added to the
present invariants and an adequate configuration must be prepared by the developer for
the model validator; if the model validator does not find a valid object diagram un-
der the given configuration for the given invariants and the added negated invariant, it is
assumed that the newly introduced invariant is a consequence from the stated invariants.

Language-independent model transformation verification by Kevin Lano, Shekoufeh
Kolahdouz Rahimi, and Tony Clark. We present work on establishing a general veri-
fication framework for model transformations which is able to represent and analyse
transformations in a range of model transformation languages. Specifications in dif-
ferent transformation languages are represented in a single transformation metamodel
formalism. From this representation mappings to semantic models in specific verifica-
tion formalisms, such as theorem provers and satisfaction checkers, can be defined.

This approach means that only one semantic mapping needs to be defined and veri-
fied for each target formalism, rather than semantic maps for each different transforma-
tion language and target formalism. The approach is illustrated by applying it to ATL.

Null considered harmful (for transformation verification) by Kevin Lano. OCL [12] is
the official textual specification language used with the UML, and it is also widely used
as a constraint language within model transformation languages, such as ATL, QVT,
ETL, Kermeta and others to define transformation rules. The OCL standard defines two
special values which may be used in specifications, null and invalid: null represents
the absence of a valid value, in contrast to invalid, which represents an invalid evalua-
tion.

This paper identifies problems with use of explicit null and invalid values in OCL,
when OCL is used as part of a transformation specification language. The paper pro-
poses an alternative restricted use of OCL which avoids these problems and facilitates
transformation verification. Verification techniques are also described for a transforma-
tion language, UML-RSDS, based on this approach.

MocOCL: A Model Checker for CTL-Extended OCL Specifications by Sebastian Gab-
meyer, Robert Bill, Petra Kaufmann, and Martina Seidl. This contribution discussed
MOCOCL7, a framework for the verification of CTL extended Essential OCL con-
straints on behavioral models defined using graph transformations specified by the tool
HENSHIN and an initial Ecore state. Valid parts of CTL formulae like Always Globally
are syntactically treated like regular boolean expressions requiring boolean parameters.

7 Available at http://modelevolution.org/prototypes/mococl with a web demo for a Pacman ex-
ample available on http://modelevolution.org/mococl

http://modelevolution.org/prototypes/mococl
http://modelevolution.org/mococl


MOCOCL consists of a web interface for putting in metamodel, behavioral specifi-
cation, initial model and the expression to be verified and an interspecting the result and
an iterative, explicit state model checker integrated into the Xtext OCL Engine calculat-
ing the expression result and a cause, a generalized form of a counterexample providing
all information sufficient to explain the result. The cause is visualized by an expression
tree displaying subexpressions and informations about states and transitions as subtrees,
the leaf nodes being single values or objects. The (sub)statespace corresponding to the
cause of a subexpression of a CTL operation is vizualized as well. A click on a state
gives the model for the state, a click on a transition gives displayed the two states in sto-
ryboard notation. Objects and values occuring in the cause are highlighted. The paper
mainly discusses the visual interface and general use of the tool.

Since the tool could not yet be used for industrial-sized examples, a main topic of
discussion was performance, especially (a) the state explosion problem typically occur-
ring in model checkers which could be reduced by the use of symbolic model checking
and/or differential states like in GROOVE and (b) that parallelization efforts could pro-
vide some speedup, both by parallelizing graph transformation applications and the
model checking process in general.

Towards Domain Completeness for Model Transformations Based on Triple Graph
Grammars by Nico Nachtigall, Frank Hermann, Benjamin Braatz, and Thomas Engel.

This presentation discussed the property of domain completeness for model trans-
formations, which states that the model transformation can be executed for each valid
input model. The main challenge here for analysing and ensuring this property is to
bridge the gap between the specification formalism used for defining the source do-
main language and the specification formalism or technique used to define the model
transformation.

The presentation focussed on model transformations that are based on triple graph
grammars (TGGs) [1, 8, 13], which are a well-established concept for the specification
and execution of bidirectional model transformations within model driven software en-
gineering. Their main advantage is an automatic generation of operational rules for
forward and backward model transformations, which simplifies specification and en-
hances usability as well as consistency. Several formal results for ensuring correctness
and completeness have been published [4, 5, 7]. However, the result for ensuring com-
pleteness requires that the source domain language is a subset of the source component
of the language generated by the TGG. Up to now, checking this condition was left to
the domain expert.

In practical scenarios, the source and target languages are given independently from
the TGG. In particular, this is the case for an industrial application for satellite systems
using the tool HenshinTGG8 [6]. As main result, we provided a general method for
analysing and showing that the source domain language LS is included in the language
L(TGGS) that is generated by the source rules of the TGG. This provides the first of
two components for verifying domain completeness.

Since the presented method does not yet fully bridge the described gap, the work-
shop discussion addressed questions on how effective and usable the approach already is

8 Available at http://de-tu-berlin-tfs.github.io/Henshin-Editor/

http://de-tu-berlin-tfs.github.io/Henshin-Editor/


and how it can be adapted to show full domain completeness. One solution for showing
the remaining step for analysing full domain completeness is to show that L(TGGS)
is contained in L(TGG)S, i.e., that the triple rules imply the same restriction on the
source domain as it is the case for the derived source rules of the TGG. This would
allow us to apply the general result of TGGs that ensure completeness for L(TGG)S.

3 Discussions

The discussion session was structured as follows: first, we aimed at determining the
current tool support of the formalisms used in the talks given during the workshop; sec-
ond, we outlined a potential wish list for property languages for model transformations
based on the results of the first discussion. This section summarizes each discussion.

3.1 Formalisms for Model Transformation Property Languages

We concluded that currently, two formalisms are mainly used for defining structural as
well as temporal properties of model transformations, a fact that was also reflected by
the presentations of the workshop:

Structural Properties are commonly expressed with either graph patterns or using
the Object Constraint Language (OCL). It seems that each formalism corresponds
to the underlying constructs for designing models (either graph-based or MOF-like
models, respectively), and reflects the practice and the familiarity of modelers.

Temporal Properties exist in both styles as extensions in the literature to go beyond
structural properties [11, 16].

Kevin Lano’s paper [9] raised an interesting discussion about which intermediate
language could act as a pivot model to bridge the current formalisms to formal methods
and accompanying tool support.

Both property languages could be used to catch properties of interest for in-place
and out-place transformations [10]. However, as noted by the audience, upcoming trans-
formation paradigms such as streaming transformations [3] or approximate transforma-
tions [15] may challenge the current state-of-the-art, thus requiring to build new prop-
erty languages more suited to these kinds of transformations. As a result, a general
theory may be required to derive a mapping between property kinds and transformation
kinds, e.g., it is not clear if temporal properties are of particular purpose for out-place
transformations, while they seem perfectly applicable for in-place transformations.

Based on the discussions, the participants concluded that we are still in the explo-
ration phase concerning property languages for model transformations. Therefore, more
empirical studies are needed to compare, classify and potentially (partially) unify the
different approaches currently available.



3.2 Wish List for Property Languages

We dedicated the second part of the discussion at exploring two research questions: (i)
what kind of properties transformation engineers may like to specify? (ii) Which future
can we foresee for property languages?

One major distinction made by the audience is the difference between white-box
and black-box properties: the black-box approach only reasons about the input/output
models pairs, while the white-box approach allows to reason about the state/transition
systems induced by the application of the transformation rules.

Another important challenge for property languages is to find a acceptable balance
between reusing well-known languages such as modelling standards, while reaching
the performances of current mature mainstream model-checking tools available from
the Computer-Aided Verification community. This challenge seems impossible to reach
because it seems contradictory, even if dedicated transformations between transforma-
tion languages as well as the associated property languages towards the input languages
of such tools may seems largely feasible. Furthermore, what has to be explored in this
respect are the current boundaries of model transformation verification approaches con-
cerning the impact of property specifications and transformation implementations on
the memory consumption and execution time of verification approaches.

Another topic of discussion was the different ways of addressing non-functional
properties of models and/or transformations. Currently, there is no standard way to rep-
resent model or transformation traces, because the abstraction level into which traces
are expressed may highly depend on the verification purpose. One interesting approach
allowing to define only the necessary traces is presented in [14]: it builds on the idea
of observers that record certain information during transformations. Having more gen-
eralized observers which may be reusable in different transformations but which are
specific for certain properties is considered as a promising research line to enable spe-
cific verification properties with keeping the trace models minimal. To summarise, the
question about the relationship between property languages and trace languages has to
be explored further in the context of model transformation verification.

Finally, we discussed about transformations that may be used for Models@Runtime
which may have quite strict requirements on performance and timing. In this context,
the question came up if probabilistic properties may be of interest for model transfor-
mation verification as well compared to the state-of-the-art of having flat properties.

4 Conclusion

At the end of the workshop many participants agreed that there is a need for further
working on the foundations as well as application of model transformation verifica-
tion. A future research line for an upcoming VOLT workshop may include to propose a
common model verification example to compare different model transformation verifi-
cation approaches; similar as it has been done in 2005 to compare different approaches
for implementing model transformations [2].



Acknowledgement

The authors would like to thank all the authors and participants of VOLT 2014 for their
contributions.

References
1. Andy Schürr and Felix Klar. 15 Years of Triple Graph Grammars. In Proc. ICGT’08, volume

5214 of LNCS, pages 411–425, 2008.
2. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model transformations in practice workshop.

In Satellite Events at the MoDELS 2005 Conference, pages 120–127, 2005.
3. J. S. Cuadrado and J. de Lara. Streaming model transformations: Scenarios, challenges

and initial solutions. In 6th International Conference on the Theory and Practice of Model
Transformations (ICMT), pages 1–16, 2013.

4. Fernando Orejas, Esther Guerra, Juan de Lara, and Hartmut Ehrig. Correctness, Complete-
ness and Termination of Pattern-Based Model-to-Model Transformation. In Int. Conf. on
Algebra and Coalgebra in Computer Science (CALCO’09), volume 5728 of LNCS, pages
383–397. Springer, 2009.

5. Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Formal analysis of
model transformations based on triple graph grammars. Mathematical Structures in Com-
puter Science, 24(4):1–57, 2014.

6. Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Benjamin Braatz, Gi-
anluigi Morelli, Alain Pierre, Thomas Engel, and Claudia Ermel. Triple Graph Grammars in
the Large for Translating Satellite Procedures. In Proc. Int. Conf. on Model Transformations
(ICMT 2014), number 8568 in LNCS, pages 122–137. Springer, 2014.

7. H. Giese, S. Hildebrandt, and L. Lambers. Bridging the gap between formal semantics and
implementation of triple graph grammars. Software & Systems Modeling, 13(1):273–299,
2014.

8. Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele Taentzer. In-
formation Preserving Bidirectional Model Transformations. In Fundamental Approaches to
Software Engineering, volume 4422 of LNCS, pages 72–86. Springer, 2007.

9. K. Lano. Null Considered Harmful (for Transformation Verification). In Third International
Workshop on Verification of Model Transformations (VOLT), 2014.

10. T. Mens and P. Van Gorp. A Taxonomy Of Model Transformation. Electronic Notes in
Theoretical Computer Science (ENTCS), 152:125–142, 2006.

11. B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer. Promobox:
A framework for generating domain-specific property languages. In 7th International Con-
ference on Software Language Engineering (SLE), pages 1–20, 2014.

12. Object Management Group. Object Constraint Language (OCL) Specification (Version 2.2,
formal/2010-02-01). Technical report, Object Management Group, 2010.

13. A. Schürr. Specification of graph translators with triple graph grammars. In Graph-Theoretic
Concepts in Computer Science, volume 903 of LNCS, pages 151–163. Springer, 1994.

14. J. Troya, J. E. Rivera, and A. Vallecillo. Simulating domain specific visual models by obser-
vation. In Spring Simulation Multiconference (SpringSim), page 128, 2010.

15. J. Troya, M. Wimmer, L. Burgueño, and A. Vallecillo. Towards approximate model trans-
formations. In Proceedings of the 3rd Workshop on the Analysis of Model Transformations
(AMT) @ MODELS, pages 1–10, 2014.

16. P. Ziemann and M. Gogolla. OCL extended with temporal logic. In 5th International Andrei
Ershov Memorial Conference - Perspectives of Systems Informatics (PSI), pages 351–357,
2003.


	VOLT 2014 Workshop Report

